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Abstract— Text is one of the richest sources of information in
an urban environment. Although textual information is heavily
relied on by humans for a majority of the daily tasks, its
usage has not been completely exploited in the field of robotics.
In this work, we propose a localization approach utilizing
textual features in urban environments. Starting at an unknown
location, equipped with an RGB-camera and a compass, our
approach uses off-the-shelf text extraction methods to identify
text labels in the vicinity. We then apply a probabilistic
localization approach with specific sensor models to integrate
multiple observations. An extensive evaluation with real-world
data gathered in different cities reveals an improvement over
GPS-based localization when using our method.

I. INTRODUCTION

Localization is one of the fundamental problems in the
area of mobile robotics. The accurate knowledge of the
robot position enables a variety of tasks including navigation,
transportation, as well as search and rescue. Additionally,
the exact information about the position of a user gives
the opportunity to offer so-called location-based services
with plenty of uses in social networking, health, guidance,
entertainment and many others. In outdoor settings, GPS is a
popular solution to estimate the position of the robot or the
user. Although GPS can theoretically reach an accuracy of a
few meters, it cannot always be achieved in practice; due to
GPS outages, e.g. inside or near buildings.

Recent advances in the field of computer vision led to a
surge in the number of vision-based techniques for localiza-
tion [11, 18, 23]. The availability of large scale, public, and
continually updated comprehensive maps, such as Google
Maps and OpenStreetMap, spurred research into utilizing
them for robot navigation and localization [1, 22]. In the
classical approach, localization is performed after a previous
visit of the environment during which a map has been
built. The advantage of leveraging and processing publicly
available maps lies in the ability to localize without an initial
mapping step. The majority of currently available methods
mostly focus on only one kind of information provided by
those maps, namely geo-tagged street-level imagery.

In this paper, we propose an approach that uses a standard
RGB camera to localize on publicly available online maps
without any use of street-level imagery. The idea is to
exploit the rich textual meta-data content of maps, such as
the annotations of local shops and businesses as high-level
information. Our approach moves away from visual-based
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Fig. 1. Localization using texts from scene images: Exploiting textual
information from surrounding shops enables us to correctly estimate the
position of the camera (green star). The images shown were captured by
rotating in place. Red rectangles highlight the output of the text extraction
phase. Our approach generates pose estimates by matching these labels with
a map of geo-referenced texts.

feature matching to use mid-level representations for esti-
mating the current geo-location of an image. Specifically, we
concentrate on extracting text “in the wild” from images that
are cross-referenced from the available annotated map. This
enables a new localization form that has global-scale breadth,
low bandwidth requirements (no images are transferred in
the network) and, lifelong capabilities (users and companies
continually update their maps).

Our procedure is split into three main stages (see Fig-
ure 1). First, we extract text from the captured scene images.
The extracted texts are then used to identify landmarks in the
vicinity of the camera. Finally, we employ a particle filter
with a dedicated sensor model to obtain accurate location
estimates. We present extensive experiments in three cities
in Germany, Switzerland, and England, and quantify the
accuracy of the proposed method through a comparison
with ground-truth and GPS. The results demonstrate that our
technique localizes successfully with a 40% improvement
over GPS-based localization.

II. RELATED WORK

A large variety of work has gone into utilizing visual
information for localization and navigation tasks. Several



approaches aim at solving the Simultaneous Localization and
Mapping (SLAM) problem using vision (refer to the work
of Fuentes-Pacheco et al. for a comprehensive overview [5]).
Cummins and Newman apply a probabilistic approach based
on an approximated Bayes network with the aim of large-
scale place recognition [4]. They build a topological map
of the environment using features extracted from images
to form a visual vocabulary. Konolige and Agrawal [7]
formalize the SLAM problem as a non-linear least squares
optimization problem. The nodes of the graph represent
places, which enforces constraints for loop closures. Lothe
et al. [9] use bundle adjustment with camera information.
They rely on 3D city models and road homography to reduce
error accumulation for SLAM in dense urban environments.

Approaches to solve the localization problem can be
divided into two groups: topological approaches, and metric
approaches. Topological approaches aim at obtaining an
estimate of the current position with respect to some known
structures in the environment, while metric localization meth-
ods typically estimate the position of the robot with respect
to geographic coordinates. Brubaker et al. [2] present an
approach to topologically localize a robot using a camera
and OpenStreetMap data. In their method, they extract a
graph from the map information, with nodes representing
streets and edges representing intersections. They apply a
probabilistic mixture of Gaussian model to estimate the pose
and orientation of the robot. Other examples of topological
localization include the works of Crandall et al. [3], and
Hayes and Efros [6], in which they crawl the image database
of Flickr to build their own geo-tagged image database. Both
approaches used a clustering approach to extract features
from the database images, that are later used to quantify
good matches in relation to a query image.

Metric localization approaches can be further split into
two subcategories: direct image matching-based techniques,
and retrieval-based techniques (refer to Sattler et al. for a
comparison [17] ). An example of a direct image matching-
based technique is the work of Sattler et al. [16], which relies
on a preexisting 3D model of the environment as well as a
direct matching framework based on image correspondences
and a visual vocabulary tree. Similarly, Qu et al. use geo-
referenced traffic signs and local bundle adjustment to local-
ize a moving vehicle [14]. They employ a traffic sign detector
once the estimated pose is close to a traffic sign in the map,
thus providing ground control points to reduce motion drift.
Torii et al. present an image retrieval-based technique for
localization using interpolation [20]. Initially, they build a
database of geo-tagged images and then compute features
for each query image. Afterwards, they apply a regression-
based approach to search for nearby images using a linear
combination of the extracted features for pose estimation.
More localization techniques using publicly-available maps
are emerging over time. Both, Majdik et al. [10] and
Agarwal et al. [1] apply an image-retrieval-based technique
for localization using a database of images collected from
Google Street View data. Majdik et al. present a solution to
the aerial localization problem by generating virtual views

from the Street View images and use a histogram-voting
scheme to select the best image correspondences to the query
image [10]. Agarwal et al., on the other hand, use panorama
images from Google Street View as database images [1].
Similar to other image retrieval-based approaches, they ob-
tain the closest matching panorama images through feature
correspondence between the query images and the database
images. They formulate the problem as a non-linear least
squares estimation to compute the rigid body transformation
between the Street View panorama and the query image.

The approach proposed in this paper lies in between topo-
logical and metric localization approaches, as we estimate
our position relative to surrounding textual landmarks. At the
same time, we extract features from the images in the form
of textual labels. We retrieve the best matching landmarks
from a database of geo-tagged textual information. Taking
advantage of the text that is abundant in urban environments
renders our approach robust to environmental changes, e.g.,
changes in daylight, scenery changes, etc. It also makes it
easy to use with any publicly-available map. Human-readable
text has also been exploited in the context of computer vision
and robotics. Both, Tsai et al. [21] and Schroth et al. [19],
extract text and visual features from query images. They
perform feature matching to return the best corresponding
images from a database such that both the query image and
the retrieved images contain the same textual information.
Posner et al. use extracted text from natural scene images to
return images that are semantically relevant to a query [13].
They build a generative model to create connections between
extracted text and locations in a map. To the best of our
knowledge, we are the first to exploit textual information in
natural scenes for localization purposes.

III. TEXT-BASED LOCALIZATION

In this work, we consider the following problem: given
that we are standing at a certain position, equipped with
an RGB-camera and a compass, can we accurately localize
ourselves using surrounding textual information? The answer
is yes, given a map of the environment, and at least two text-
containing images. Our approach works by extracting textual
features from the images and associating them to landmarks
in the environment. To obtain a robust estimate of our pose,
we adapt Monte Carlo methods accounting for the employed
text extraction approach. In the remainder of this paper, we
first describe the map representation, followed by the Monte
Carlo methods employed for pose estimation. Finally, we
outline the text spotting and data association approach used.

A. Map & State Representation

We represent the environment by a set of landmarks, each
of which corresponds to a text that could belong to a shop,
restaurant, street name, etc. The only assumption that we
make is that the text is static, i.e., it is not scrolling over
a display. Text signs which are not present in the map, e.g.
“Stop”, are not considered a part of our environment model,
and hence are not counted as landmarks for pose estimation.
We assume that for each landmark li in the map, we have the



following set of features: (a) the name, which is the text that
appears on the sign, (b) the geo-location (lix , liy ), which is
the coordinates of the sign, (c) the orientation (lio ), which is
the orientation angle of the sign (where 0 degrees is north),
and (d) size (lis ), from which we compute the maximum
distance of observing the sign. In principle, any publicly
available map can be used for the described representation,
as the extra features required can be easily inferred from the
map structure itself. Landmark orientation can be computed
from the street orientation, as text is placed either parallel
or orthogonal to the road. The map information provides
knowledge about the orientation of the streets with respect
to north, which can be directly generalized to all landmarks
within that street. A consequence of localizing in an urban
environment is that it is unlikely to be able to observe a
sign from a shop that is two streets or more away from our
location due to occlusions. Accordingly, we estimate the size
of the landmark by the width of the nearest street.

For localizing, we rely on a number of observations using
an RGB camera and a compass, such that each observation
is associated with an image of the observed landmark, the
orientation angle β with which the landmark is observed,
and the estimated maximum distance d. We do not assume
any prior knowledge of our location. Moreover, as we focus
on one-shot global localization, we do not share information
between the different poses, rather try to estimate a location
for each pose separately using the observations at that time
step. Sharing information between the different poses for
tracking purposes will be addressed in future work. The goal
of each time step is to estimate the pose in geo-coordinates.

B. Pose Estimation

At the heart of our system is the pose estimation phase. We
assume for the time being that we already extracted text from
the scene images, and each observation is associated with a,
possibly empty, set of landmarks. The goal of this phase
is to obtain a probabilistic estimate of our location. More
formally, we wish to estimate the probability p(x | z1:n,m)
of being at location x, given the observations z1, . . . , zn, and
the map m. First, we make the frequently made assumption,
that the individual measurements are independent given x
which in turn leads to

p(x | z1:n,m) = η

n∏
i=1

p(x | zi,m). (1)

To calculate p(x | z,m) we integrate over all different
landmark associations a, that are obtained from the data
association phase described in Section IV:

p(x | z,m) =
∑
a

p(x, a | z,m)

=
∑
a

p(x | a, z,m) · p(a | z,m). (2)

Since the belief computed by Equation (2) is multi-modal
with the number of modes growing combinatorially with the
possible data associations, we approximate it with a weighted

sample set. To sample from it we resort to the importance
sampling principle and choose as proposal distribution

π(x) = p(x | zi,m)

=
p(zi | x,m) · p(x)

p(zi)
, (3)

where we chose the measurement zi uniformly at random.
According to the importance sampling principle, we compute
for each sample its importance weight

w(x) =
p(x | z1:n,m)

p(x | zi,m)

= p(z1:n)
−1p(zi)

∏
l 6=i

p(zl | x,m)

∝
∏
l 6=i

p(zl | x,m) (4)

We model the individual likelihood with a mixture dis-
tribution over the latent data association variables. In this
work, we assume the set of associations returned from the
text spotting phase to be equally likely. This results in:

p(zi|x,m) =
∑
ai

1

|ai|
p(zi|ai, x,m)

=
∑
ai

1

|ai|
U(di, 0, d̂i)N (βi, β̂i, σ

2) (5)

where |ai| denotes the number of data association from text
spotting, βi and di are respectively the angle and distance
measurements, and β̂i and d̂i are the predicted values.

To be robust to outliers and false measurements from the
data association phase, we apply a robust method to compute
the particle weights, inspired by the trimmed estimator
approach [15]. A trimmed estimator excludes extreme values
while computing the desired statistics. Extreme values can
be either the lowest/highest 5th percentile or the n-th max-
imum/minimum points. In our work, we discard the lowest
percentile of likelihood values to compute the weights.

IV. TEXT SPOTTING & DATA ASSOCIATION

To recognize texts in natural scene images, we employ
the method from Neumann and Matas, which falls into
the category of approaches that use region groupings [12].
In their work, the authors train a sequential classifier for
character detections to select extremal regions from the
component tree of the image. They further use a number of
heuristic functions to effectively prune the selected regions.
This allows for a fast exhaustive search of the state space
of character sequences before grouping the regions into high
level text blocks. We adopted this method in our work due to
its robustness, and relied on an open-source implementation
by the authors. Note that our approach is independent of the
particular text extraction method used.

The text extraction method provides a list of the different
detected words, each with an associated confidence score.
We perform two-phase post-processing on the extracted text.



In the first stage, we filter the extracted words based on both
confidence scores and the word structure. More precisely, we
discard words with confidence scores lower than 50%, single
letter words and words with multiple consecutive character
occurrences, e.g., “gaummmm”. The goal of the second stage
is to fix any substitution errors (e.g., the letter “l” and the
number “1”). For this purpose, we use the GNU Aspell1

spell checker with a custom dictionary that contains only the
words that occur in our map. We check each extracted word
against the dictionary to replace it by the closest matching
word, if needed. If the extracted word matches an existing
dictionary word then it does not get replaced. However, in the
case where it does not match, it gets replaced with the closest
matching word, only if the number of edits is less than half of
the length of the word. An example case is the detected word:
“volksl”. Using the custom dictionary, the word: “oska” has
a smaller edit distance than the word: “volksbank”, which is
the correct spelling in this case. However, since the number
of edits is more than half the length of the word, we do not
make the correction, and retain the word as it is. This adds
flexibility for landmark association, by not committing to a
correction when we are uncertain.

After the post-processing stage, we use the extracted text
to assign a set of landmarks for each image. The size of
the landmark set varies depending on the quality of the
extracted text. The closer the extracted text is to landmarks
in our world representation, the smaller the size of the
landmark set. We measure closeness of text to a landmark
using a probability mass function based on the Levenshtein
distance [8] between the text and the landmark. The prob-
ability of observing a landmark lj , with extracted text ti is
approximated by a Gaussian distribution on the Levenshtein
distance score sij . This probability is conditioned on the
observation angle βi to ensure text readability, i.e.,

p(ti | lj) =
{
N (sij , 0, 1) if visible(lj , βi)
0 otherwise. (6)

We compute the above probability for all landmarks in
the map. To avoid exponential blow-up with big maps, we
return the top n landmarks, where the probability p(ti | lj) is
higher than some threshold. Assigning multiple landmarks to
a single observation results in having multiple hypotheses for
a single pose, which is in turn handled by the pose estimation
step (Section III-B). In the event that the extracted text does
not occur in the map, or does not match any of the landmarks,
then this observation is discarded.

V. EXPERIMENTS

We evaluated our method on three different datasets. For
all datasets, we analyzed the performance of our method by
evaluating both the whole pipeline, and the pose-estimation
using ground-truth text labels. Evaluating using ground-truth
text labels serves to have a baseline of the best achievable
performance with perfect text recognition. We collected the
first dataset in Freiburg using a Google Tango tablet, while

1K. Atkinson. GNU Aspell, 2003. http://aspell.net

Fig. 2. Example pose from the Freiburg dataset. The green star represents
the ground-truth position, the blue star shows the estimated pose from
our approach. Lines connect the pose with the observed landmarks. Red
rectangles in the images show the output of the text-spotting phase.

Fig. 3. Example pose from the London dataset. The green star represents
the ground-truth position, the blue star shows the estimated pose from
our approach. Lines connect the pose with the observed landmarks. Red
rectangles in the images show the output of the text-spotting phase.

we obtained the two remaining datasets for London and
Zurich using Google Street View.

For each pose, we collect a minimum of two observations.
At each time step, the observations were captured by standing
in a certain pose, and rotating in place. For both the Freiburg
and London dataset, we were able to obtain on average 3
observations per pose. However, in Zurich, we were only
able to obtain an average of 2 observations per pose. This
is a consequence of the difficulty of obtaining Street View
images from Zurich. The restricted availability of Street View
images in down-town areas, and the presence of motion blur
in some images increased the difficulty of collecting more
observations per pose, which in turn affects the quality of the



localization results. The quality of all the results is expected
to improve by sharing information between the different
poses, e.g. in tracking. However, we intend to investigate
this in future work.

In order to quantify the localization results, we report the
mean location of the data association mode with the high-
est average weights. Furthermore, text-spotting localization
failures are defined as cases where the text-spotting method
fails to extract any text for 50% or more of the captured
images; which causes our algorithm to output “not enough
data, unknown location”.

Figure 2 and Figure 3 show examples of applying our
approach in Freiburg and London respectively. In both fig-
ures, the ground-truth position is shown in green, and the
estimated location is shown in red. For both poses, we have
an error of approximately 8 m. Notice in Figure 3, in the
T.M. Lewin image, despite the bad performance of the text-
spotting, we are still able to achieve 100% data association
accuracy for that pose. We are able to achieve this result
as we select the best N matches for each image; for the
T.M. Lewin image we select multiple shops as the text is not
distinctive enough. We rely on the pose estimation phase to
handle the multiple hypotheses; which in this case entails that
particles with wrong data associations receive low weights,
and in turn are replaced in the resampling step.

A. Freiburg Dataset

During the evaluation phase, we manually added a few
annotations to tag some more shops in Google Maps which
were not annotated, or changing the position of a label to
match changes due to construction sites. We collected a
total of 60 poses from different locations in the city of
Freiburg. Additionally, our map consists of approximately
180 landmarks. Due to the unavailability of Google Street
View in Freiburg, we used the odometry obtained from
Google’s Tango tablet as ground-truth. Furthermore, we
collected GPS coordinates for each pose, in order to compare
the localization performance of our method with standard
GPS obtained from a mobile device.

Figure 4 displays the cumulative error plot of the presented
approach in comparison to GPS. Our method has a mean
localization error of 10.7 m (7.0 m with manual text labeling),
versus a mean of 27.0 m from GPS obtained poses. In 85% of
the cases, our approach performs better than GPS localization
alone. Furthermore, over 80% of our localization results are
at a distance between 0 and 20 m from the ground-truth. On
the other hand, 80% of the GPS localization results are at a
distance between 0 and 40 m from the ground-truth position.
On this dataset, we have 18.3% text-spotting localization
failure, which justifies the performance gap between the
whole pipeline, and using ground-truth text labels. Another
source of error comes from the data association phase, when
the text does not match the text in the map.

B. London Dataset

Google’s Street View maps are used for data collection
and as a source of ground-truth for the London dataset. We
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Fig. 4. Freiburg dataset cumulative error plot. The x-axis shows the distance
from ground-truth position in meters, and the y-axis shows the percentage
of points with distance less than or equal to the x-value. Results show that
the visual localization approach has higher percentage of points lying within
a low error distance in comparison to localization using GPS.
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Fig. 5. London dataset error histogram. dataset cumulative error plot. The
x-axis shows the distance from ground-truth position in meters, and the y-
axis shows the percentage of points with distance less than or equal to the
x-value. The plot compares the performance of our full approach (red plot)
versus using our approach with manually labeled text (blue plot). We show
an average localization error of 12.5 m and a baseline of 9.6 m.

collected approximately 300 poses from different locations
in London, and have a map of around 1,000 landmarks
from different shops, restaurants and signs. The poses were
collected from different districts in the city ranging between
urban, rural, and motorway regions.

The results of our approach can be seen in Figure 5. For
this dataset, as the poses are extracted from Google’s Street
View, unlike the Freiburg dataset, we do not compare the
results with GPS, since we do not have access to raw GPS
measurements from Google’s Street View maps. Our method
has a mean localization error of 12.5 m and an error of 9.6 m
with the baseline approach. Furthermore, on this dataset,
80% of the localization poses are at a distance between 0
and 25 m from the ground-truth position. We suffer from
2.33% localization failures due to incorrect data association,
and 53.3% text-spotting localization failures.

C. Zurich Dataset

The Zurich dataset contains approximately 300 poses and
900 landmarks obtained using Google’s Street View maps.



The poses were collected from central, industrial and rural
regions. The histogram error plots using our approach are
presented in Figure 6. Similar to the London dataset, we
compare the performance of our approach to the baseline
with perfect text detection. The results show a mean local-
ization error of 23.2 m for the full approach versus 9.7 m
for the approach with ground-truth text labeling. On this
dataset, 60% of the localization poses lie within 0 and 25 m
distance from the ground-truth position. We suffer from
3.66% localization failures due to incorrect data associations,
and 57.6% text-spotting localization failures. This plus the
increased mean error are due to the larger difficulty of
the text extraction for this dataset because of the motion
distortion and the smaller number of observations per pose.

VI. CONCLUSIONS

In this paper, we presented a novel approach to the global
localization problem that exploits the abundance of textual
information in urban environments. Our method first extracts
texts from the natural scene images, associates it to a map
consisting of landmarks and corresponding text labels and
then estimates the pose of the camera based on the angle
and size of the extracted texts. In extensive experiments
we evaluate the performance of the suggested approach,
and the results demonstrate an accuracy of up to 1 meter,
which corresponds to a 40% improvement over GPS poses
obtained with a mobile device. Furthermore, unlike feature-
based visual localization approaches, our proposed method
is robust to scenery and environmental changes. This clearly
demonstrates the potential of using text as a source of
information in localization applications. Note that the only
sensory requirement is a stream of camera images and a map
of landmarks with labels that can easily be created. This
makes our method easy to deploy and affordable to use. In
future work we will consider improving on the text-spotting
and the data association approaches used, as they are the
current bottleneck of the approach. In addition, we plan to
investigate the performance of this approach in a tracking
scenario, where the goal is to optimize the whole path error.

REFERENCES

[1] P. Agarwal, W. Burgard, and L. Spinello. Metric localization using
google street view. In Int. Conf. on Intelligent Robots and Systems
(IROS), 2015.

[2] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging the crowd
for probabilistic visual self-localization. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 3057–3064, 2013.

[3] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg. Map-
ping the world’s photos. In Int. Conf. on World Wide Web, pages
761–770, 2009.

[4] M. Cummins and P. Newman. Appearance-only SLAM at large scale
with FAB-MAP 2.0. Int. J. of Robotics Research (IJRR), 30(9):1100–
1123, 2011.

[5] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha.
Visual simultaneous localization and mapping: A survey. Artificial
Intelligence Review, 43(1):55–81, 2015.

[6] J. Hayes and A. A. Efros. IM2GPS: Estimating geographic information
from a single image. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, 2008.

[7] K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment
to realtime visual mapping. IEEE Transactions on Robotics, 24(5):
1066–1077, 2008.

0 20 40 60 80 100
distance from ground-truth (m)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e 

er
ro

r

visual localization
visual localization w/ text labeling

Fig. 6. Zurich dataset error histogram. dataset cumulative error plot. The
plot compares using the full approach (red plot) versus the baseline using
manual text labeling (blue plot). The x-axis shows the distance from ground-
truth position in meters, and the y-axis shows the percentage of points with
distance less than or equal to the x-value. On this dataset, our approach
results in an average localization error of 23.2 m, and an improved error
(average 9.7 m) with manual text labeling.

[8] V. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Dokl. Akad. Nauk, volume 163, pages 845–848,
1965.

[9] P. Lothe, S. Bourgeois, E. Royer, M. Dhome, and S. Naudet-Collette.
Real-time vehicle global localisation with a single camera in dense
urban areas: Explotitation of coarse 3D city models. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 863–870,
2010.

[10] A. L. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza. MAV urban
localization from google street view data. In Int. Conf. on Intelligent
Robots and Systems (IROS), pages 3979–3986, 2013.

[11] N. Mattern, R. Schubert, and G. Wanielik. High-accurate vehicle
localization using digital maps and coherency images. In Intelligent
Vehicles Symposium (IV), pages 462–469, 2010.

[12] L. Neumann and J. Matas. Real-time scene text localization and recog-
nition. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 3538–3545, 2012.

[13] I. Posner, P. Corke, and P. Newman. Using text-spotting to query the
world. In Int. Conf. on Intelligent Robots and Systems (IROS), pages
3181–3186, 2010.

[14] X. Qu, B. Soheilian, and N. Paparoditis. Vehicle localization using
mono-camera and geo-referenced traffic signs. In Intelligent Vehicles
Symposium (IV), pages 605–610, 2015.

[15] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier
detection, volume 589. John Wiley & Sons, 2005.

[16] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization
using direct 2D-to-3D matching. In Int. Conf. on Computer Vision,
pages 667–674, 2011.

[17] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image retrieval
for image-based localization revisited. In British Machine Vision
Conference (BMVC), volume 6, page 7, 2012.

[18] M. Schreiber, F. Pggenhans, and C. Stiller. Detecting symbols on road
surface for mapping and localization using OCR. In Int. Conference
on Intelligent Transportation Systems (ITSC), pages 597–602, 2014.

[19] G. Schroth, S. Hilsenbeck, R. Huitl, F. Schweiger, and E. Steinbach.
Exploiting text-related features for content-based image retrieval. In
Int. Symposium on Multimedia (ISM), pages 77–84, 2011.

[20] A. Torii, J. Sivic, and T. Pajdla. Visual localization by linear
combination of image descriptors. In Int. Conf. on Computer Vision
Workshops (ICCV Workshops), pages 102–109, 2011.

[21] S. S. Tsai, H. Chen, D. M. Chen, and B. Girod. Mobile visual search
with word-HOG descriptors. In Data Compression Conference (DCC),
pages 343–352, 2015.

[22] A. R. Zamir and M. Shah. Accurate image localization based on
google maps street view. In European Conf. on Computer Vision
(ECCV), pages 255–268. 2010.

[23] W. Zhang and J. Kosecka. Image based localization in urban environ-
ments. In Int. Symposium on 3D Data Processing, Visualization and
Transmission, pages 33–40, 2006.


