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Abstract— We consider the problem of developing robots that
navigate like pedestrians on sidewalks through city centers for
performing various tasks including delivery and surveillance.
One particular challenge for such robots is crossing streets
without pedestrian traffic lights. To solve this task the robot
has to decide based on its sensory input if the road is clear. In
this work, we propose a novel multi-modal learning approach
for the problem of autonomous street crossing. Our approach
solely relies on laser and radar data and learns a classifier based
on Random Forests to predict when it is safe to cross the road.
We present extensive experimental evaluations using real-world
data collected from multiple street crossing situations which
demonstrate that our approach yields a safe and accurate street
crossing behavior and generalizes well over different types of
situations. A comparison to alternative methods demonstrates
the advantages of our approach.

I. INTRODUCTION

The last two decades have seen tremendous advances
in the fields of mobile robotics and autonomous vehicles.
Research initiatives have been active in attempting to solve
the challenges of urban navigation such as traffic merg-
ing, navigating in narrow lanes, and handling intersections.
Initiatives such as RoboCup and DARPA are aimed for
the development of autonomous agents for complex tasks.
Over time both initiatives expanded taking significant strides
towards solving the next milestone including but not limited
to rescue robotics, and autonomous urban driving.

We consider pedestrian robots that are designed to au-
tonomously navigate on sidewalks among pedestrians in
urban environments and provide assistance to users for tasks
such as parcel delivery, guidance or surveillance. Similar
to self-driving vehicles, they need to navigate within the
environment and interact with surrounding vehicles in a safe
manner. One of the key requirements for such robots is
to properly perceive their environment. In order to ensure
safe operation, the agents should be able to identify possibly
dangerous situations and seek a plan that avoids them.

For both pedestrian robots and autonomous vehicles, street
intersections pose a threat not only for them but also for
surrounding traffic if not handled correctly. Approaches
aiming to solve this challenging problem depend on the
type of intersection, whether a traffic light regulated one,
an unsignalized crossing or a zebra crossing. Detecting and
recognizing traffic lights in a scene is a difficult problem
due to the small size of the light, the presence of similarly
colored objects in the scene and especially in the case of
self-driving vehicles, a decision needs to be made almost
instantaneously. Even if a traffic light is detected correctly
it is always desirable to determine if it is safe to cross, e.g.,
when a speeding car or an ambulance is approaching.

For unsignalized crossing situations the problem is even
harder. Without a clear signal, such as a traffic light, the robot
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Fig. 1. Autonomous navigation at a street intersection by combining
information from different modalities. The figure shows our robotic platform
at a street intersection, where it uses the data from the laser and radar sensors
to decide when it is safe to cross.

must make a decision based on the behavior of surrounding
vehicles. Current approaches to solve this problem em-
ploy the use of a vehicle-to-vehicle communication systems
alongside with a reservation based approach [17]. However
such approaches were developed with automated vehicles in
mind, and would require equipping all vehicles with such a
system to function properly.

In this paper, we present a novel approach that addresses
the problem of autonomous road crossing. We formalize
the problem as a classification decision as to when it is
safe to cross the street. The presented approach is robust
to the dynamics of the environment such as the width of
the street, road curvature, lighting and weather conditions.
We consider pedestrian robots operating on sidewalks and
employ a multi-modal approach to solve the problem of
perceiving vehicles in traffic (see Figure 1). Our robot is
equipped with two electronically scanning radars (ESR) on
the sides to cover long distances and as well as with multiple
laser range scanners to perceive the vicinity of the robot.
We compute tracks of objects in laser range data and use
radar detections in the form of radial velocity, distance
and approach angle over a fixed time interval. Using data
labeled by humans, we train a Random Forest classifier
to predict when it is safe to cross a street. In parallel,
we introduce a real-world dataset that we make publicly
available. The data was collected from different intersections
in Freiburg, Germany over the course of two weeks, and
contains over 1, 200 annotated scenes of different crossing
scenarios. We evaluate our approach on this dataset and show
that our algorithm is able to accurately determine safe situa-
tions. Furthermore, we compare the prediction accuracy and
generalization capabilities of the Random Forest classifier
with different classifiers and a baseline approach. Extensive
experimental evaluations demonstrate the performance gain



using the proposed method.

II. RELATED WORK

Research on the problem of safe autonomous naviga-
tion across intersections has been an active topic in the
context of self-driving vehicles. However, few approaches
have addressed this problem for pedestrian robots. Bauer
et al. present an autonomous pedestrian robot navigating
in outdoor urban environments [3]. The robot is capable
of navigating through signalized crossings by detecting and
classifying traffic signals at intersections. Baker and Yanco
use a vision-based system for autonomous street crossing
targeted at assistive robots [1]. Using cameras mounted to
both sides of the platform, they track oncoming vehicles to
determine the intersection safety. Once the decision to cross
the street has been made, they continue to track oncoming
vehicles to maintain an updated measure of the intersection
safety. Due to the short range of the camera, the approach
can only detect nearby vehicles in a two-lane street.

In the context of autonomous vehicles, the problem has
been divided into smaller sub-problems depending on the
intersection type. For traffic light regulated intersections,
state-of-the-art approaches vary between combining com-
puter vision-based methods with prior scene information to
improve detection accuracy while reducing the search space
within the image [2, 9, 13, 18].

Navigation through unsignalized intersections such as
roundabouts is a more difficult problem, where the behavior
of the vehicle is dependent on the action of surrounding
agents. Several approaches have targeted the area of vehicle
coordination to enable smooth interactions in intersection and
merging scenarios [17]. Campos et al. present a decentralized
solution for intersection crossing where local state constraints
are used to enforce collision avoidance [6]. Similarly, Lee
and Park develop a Cooperative Vehicle Intersection Control
(CVIC) system designed to find safe driving trajectories for
all vehicles approaching the intersection [15].

Recently, approaches have been developed that tackle the
problem independent of the type of intersection and without
the use of vehicle-to-vehicle communication systems [8, 19].
Dickmann et al. augment their vehicle setup with radar
sensors mounted to the left and right, to enable information
processing in roundabout and intersection scenarios. They
process the raw radar data to build a tracker that is able to
detect and track oncoming vehicles in roundabout crossings.

An alternative to the learning-based approach that we
employ, some techniques model the problem as a behavioral
prediction one. The aim is to compute the set of paths that an
agent might follow starting from its current state [5, 10, 11].
Meissner et al. use a multi-sensor tracking system for clas-
sification of relevant objects [16]. This information is used
to predict the motion of relevant objects which facilitates
decision making in crossing scenarios.

The problem of safe navigation across intersections for
mobile robots is quite different than for autonomous vehicles,
as mobile robots do not need to make on the spot decision
to stop or go. On the contrary, the robot can stand at the
pedestrian crossing until the intersection is clear, whereas
such behavior for an autonomous vehicle would be dangerous
for oncoming traffic. Furthermore as pedestrian robots do
not have the infrastructure to communicate with surrounding
vehicles, they must rely solely on the sensory information to
make their decision.

(a) time = 0 sec

(b) time = 5 sec

Fig. 2. Time sequence example of the input radar data. The dashed circles
highlight the positions of the tracked vehicles. In (a), two vehicles are
approaching the robot as displayed by the pink arrows. At time = 5 sec,
as shown in (b), we can observe one of the vehicles moving away from the
robot which is visualized by green arrows.

Unlike behavioral prediction techniques, we do not attempt
to forecast the motion of surrounding agents or introduce
environment specific information such as number of lanes or
road curvature. We are only interested in making a binary
decision as to whether or not it is safe to cross the road.
In order to make our approach suitable for the dynamic
environment in which it is to be employed, we make the
decision of crossing after observing oncoming traffic for
a certain time interval. Thus, the behavior of surrounding
vehicles is recorded for the classifier to use in making
its decision. To the best of our knowledge, we are the
first to present an autonomous street crossing approach for
a pedestrian robot that uses automotive radars and laser
scanners. The use of this sensory setup enables us to monitor
oncoming traffic and make an informed decision based on
vehicles up to 100 m away.

III. LEARNING TO CROSS THE STREET

We formulate the problem of safe autonomous street
crossing as a binary classification task. The input to the
classifier is the sensor data from the most recent K -second
interval, while the output is a binary value as to whether
it is safe or not to cross the street. Figure 2 shows a time
sequence example of the sensory input data from the radars.
Two radars are mounted perpendicular to the left and right
of the movement direction of the robot in order to observe
oncoming traffic. Tracked vehicles heading towards the robot
are visualized by pink arrows, while vehicles moving away
from the robot are visualized by green arrows. The size of
the arrows increase with the magnitude of the velocity of the
vehicles. In addition to the tracked radar data, our approach
uses laser data that are preprocessed using an object tracker
developed by Kümmerle et al. [14]. This approach clusters
obstacles and provides bounding box information regarding
their position, size and velocity (see Figure 3).



(a) t1 (b) t2

Fig. 3. Visualization of the output from the dynamic obstacle detection
approach used from two consecutive time intervals. Tracked objects are
visualized by a surrounding bounding box and an arrow displaying the
direction of motion.

Given the described hardware setup with both radar and
laser sensors, we track nearby objects O1, · · · , Om for a time
interval K . We extract features from the selected interval to
create a feature vector F , which along with a label L is
used to train a classifier. We represent each object by its
ID i, distance from the robot ri, velocity with which it is
approaching the robot vi, and the angle with which it was
detected αi. Accordingly, an object is represented as a triple
OT = (r, v, α).

We create a feature vector for each time interval with a
size of m × n × k where n is the number of features for
each object (in our case n = 3), and k is the size of interval.
The number of vehicles tracked m is set to the maximum
number of vehicles observed during an interval. During
dataset processing, we observed the maximum number of
vehicles tracked to be 60 during rush hour over a 15 sec.
long interval. Accordingly, we set m to this value. Objects
are arranged in the vector with respect to their detection time,
followed by distance to the robot with the closest object first.
Under this representation, the final feature vector has the
following format:

F =


Ot1

1 Ot2
1 Ot3

1 · · ·

Ot1
2 Ot2

2 Ot3
2 · · ·

...
...

... · · ·


We pass each feature vector as a training/testing sample

to the classifier, along with the label L (0 representing an
unsafe crossing situation and 1 a safe one). If fewer objects
than the maximum are detected in the interval, the rest of
the feature vector is padded with zeros.

In this paper we propose a Random Forest classifier [4]
to learn the decision of when to cross. We compare it
to a Support Vector Machine (SVM) [12] approach, a k-
Nearest Neighbor (kNN) [7] method as well as a a baseline
approach. The latter approach iterates over all detected
objects within an interval, and independent of their temporal
behavior decides if it is safe to cross or not. Therefore,
we use the distance of the object from the robot and the
detected velocity to compute the time to collision assuming
the velocity remains constant. If the computed time is below
a certain threshold for any of the objects throughout the time
interval, the whole interval is considered unsafe.

IV. DATASET

We collected data from three different street crossings in
Freiburg, Germany; two of which were traffic light regulated

(a) (b) (c)

Fig. 4. Images from the different streets where the data was recorded. Both
situations are shown in (a) and (b) and have traffic lights for pedestrians and
an island in the middle. The intersection in (c) is a zebra crossing without
a middle island.

intersections and one a zebra crossing without traffic lights.
From the traffic light regulated intersections, one was a T-
junction shaped intersection, and the second was an inter-
section along a curved road. The zebra crossing intersection
on the other hand was situated on a straight road. Figure 4
shows example images of the different intersections captured
from the perspective of the robot. The data was gathered on
different days at different times over the course of two weeks.
To collect the data, we placed the robot on the side of the
road facing the street, and recorded live traffic data from both
sides of the street. Both traffic light regulated intersections
contained an island in the middle of the road, therefore we
also recorded data standing in the middle island facing each
possible crossing direction.

The dataset used for this paper is publicly available1. For
each separate data file, we provide the output from the laser
and radar trackers, along with the annotation and camera
images captured from the frontal view of the platform.

Annotating the data proved to be a rather challenging
problem for multiple reasons. First, the decision to cross or
not must be made using only the information from this time
interval without any knowledge of future or past intervals.
Second, the time period for which an individual observes
oncoming traffic before making a decision varies from one
person to the other, rendering it difficult to assign a pre-
determined fixed value for it. In addition, depending on the
traffic flow people often change their decision of crossing on
the spot. Finally, different individuals have different crossing
behaviors; in the same situation at an intersection, some
might decide to cross while others choose a more conser-
vative approach and wait for the next opportunity. Adding
more difficulty to the problem, the crossing behavior varies
within the same person depending on the type of intersection
and the width of the street. These factors combined made the
labeling procedure a rather tedious task, where we attempted
to eliminate as much non-determinism as possible in order
to enable our classifier to learn a meaningful classification
strategy as close to human behavior as possible. For each
data sample, the decision to cross is made at the end of the
interval. We used a graphical user interface that combined
the radar and laser views. Furthermore, we do not take
into account any information regarding the intersection for
making the decision, e.g. number of lanes, road curvature.
We used three human annotators to label the data. In case
of disagreement between the annotators, we chose majority
voting over the decision of the annotators. We measured the
inter-annotator agreement using Cohen’s Kappa, and get a
value of 0.47. The produced labels were saved with their

1http://www2.informatik.uni-freiburg.de/
%7Eradwann/freiburg_street_crossing_dataset.html

http://www2.informatik.uni-freiburg.de/%7Eradwann/freiburg_street_crossing_dataset.html
http://www2.informatik.uni-freiburg.de/%7Eradwann/freiburg_street_crossing_dataset.html


Fig. 5. The robot Obelix equipped with three laser scanners and two radars.

corresponding data point to be used for the classifier training.

V. EXPERIMENTS

A. Hardware Setup
Our robot platform, Obelix [14], is equipped with several

sensors. For this paper, we only relied on the three laser
scanners, a Velodyne HDL-32E scanner, a tilting Hokuyo and
a vertically mounted SICK scanner. In addtion, we employed
two Delphi ESR radar sensors which are mounted to the left
and right sides of the robot. Each radar provides both wide
angle coverage at mid-range and high resolution coverage
at long-range. The radar is designed specifically for the
automotive industry, allowing the detection and tracking of
adjacent vehicles and pedestrians across the width of the
equipped platform. The long-range coverage can identify
vehicles up to 174m with a field of view ±10 deg, while
the mid-range coverage has a shorter range of only 60m
but with a much larger field of view ±45 deg. Each radar
provides tracked object information such as time at which
the object was detected, object ID, range, radial velocity,
radial acceleration and angle.

B. Experimental Setup
Following the data collection procedure, we divided each

file into five second interval blocks. The resulting samples
from different days were combined forming approximately
1,270 data points. We divided the data into a training and
a test set with a 3 : 2 split ratio. The collected sample data
shows a slightly biased class distribution, with more non
crossing examples than crossing ones with a ratio of 5 : 4.

The parameters of the classifiers were selected by an
exhaustive grid search over the hyperparameter space. We
evaluated each parameter setting on the training data by
applying leave-one-out-cross-validation. The training data
was divided into five folds of equal size. We used four folds
for training the model and one for evaluating the current
parameter configuration. In the remainder of this paper, we
report the results using the parameter configuration produc-
ing the best average precision and recall values. For the
baseline classifier, the minimum time to collision threshold
was set to 10sec. This value was selected as a representative
of the average time it took our platform to cross from one
end of the sidewalk to the other.

(a) Random Forest (b) SVM

(c) kNN (d) Baseline

Fig. 6. Confusion matrix for the various trained classifiers on the test
dataset. The Random Forest classifier has the highest accuracy followed by
the kNN classifier.

C. Quantitative Results

In this section, we present different quantitative measures
for comparing the proposed approach. Evaluating the dif-
ferent parameter configurations on the performance of the
Random Forest classifier shows that the learning behavior of
the classifier is robust to the selected parameters. We opted
for a maximum tree depth of 100, a minimum sample size
of 50 and an active variable size of 100. We evaluated the
performance of the SVM classifier on the kernel type, C -
value and γ-value, and obtain the best performance using
a Sigmoid kernel with a C -value of 2.0 and a γ-value of
0.1. Cross validation showed that changing the values of
either parameter did not lead to a significant performance
improvement. For training the kNN classifier, we used a k -
value of 8, which proved to provide the best compromise
between precision and recall.

Figure 7 plots the precision and recall performance for the
evaluated classifiers. In our problem setting, low precision is
more dangerous than low recall, as low precision increases
the risk of getting run over by an oncoming vehicle. On
the other hand, low recall demonstrates a more conservative
crossing approach where the robot would rather wait for
the obstacle to pass than cross. Nonetheless, we do not
encourage a very conservative approach as it could lead
to the robot being caught in a deadlock situation unable
to cross. Given our problem definition, the Random Forest
classifier shows the best performance as it is able to balance
between accurately determining when to cross the street and
minimizing the waiting time for crossing.

The confusion matrix for the different classifiers is shown
in Figure 6. Our Random Forest classifier shows the best
accuracy with the lowest false positive rate in comparison
to all other classifiers. The confusion matrix of the SVM
classifier shows that it favors labeling examples as not safe
to cross over safe, which indicates that the learned classifier
is more likely to wait for longer periods of time. The kNN
classifier shows slightly better performance compared to the



Fig. 7. Bar plot showing the precision and recall of the trained classifiers on
the test data. Note that the y-axis of the plot starts from 50 to better highlight
the differences between the classifiers. Our Random Forest classifier has the
highest combined precision and recall values. The SVM classifier achieves
the second highest precision but the lowest recall. On the other hand, the
baseline classifier has the highest recall and low precision.

Fig. 8. Bar plot showing the precision and recall values of the evaluated
classifiers, which were trained on data from two street crossing places and
tested on sample data from a third place. Note that the y-axis of the plot
starts from 50 to better highlight the differences between the classifiers.
Our Random Forest classifier shows the best generalization capabilities
with the highest combined precision and recall values, 98.6% and 82.8%
respectively. The lowest precision is achieved by the baseline classifier with
a value of 65.6%.

SVM, but with a higher number of mispredictions in com-
parison to the Random Forest. The baseline approach shows
the worst accuracy, consistently confusing both classes.

D. Generalization Capabilities
The goal of this experiment is to measure the robustness

of the presented approach with regard to the corresponding
scenario. As previously mentioned, we collected our data
from three different intersections. We used data from traffic
light regulated intersections to create the training set, while
we test the performance of the learned classifiers on data
from the zebra crossing. After splitting the training data
was observed to have the same class distribution as the
original experimental setup, however the test data has a class
distribution with more negative examples.

Figure 8 displays a bar plot of the precision and re-
call values for the trained classifiers. Our Random Forest

classifier shows the best generalization capabilities with a
precision value of 98.6% and recall of 82.8%. The SVM
classifier has higher recall values in comparison with the
initial setup, which we attribute to the unbalanced class
distribution of the test set. On the contrary, the kNN classifier
is able to generalize better with a 10% improvement in
precision and a 3% improvement in recall relative to the
initial setup. The baseline classifier on the other hand, shows
the worst performance with a precision value slightly better
than random guessing. This observed drop in performance for
the baseline classifier can be attributed to the field of view of
the radars. Since there is no full overlap between the field-
of-view of the radars and the Velodyne, blind spots exist.
The learning-based classifier approaches are able to learn
about the presence of intermediate blind spots and hence can
recover from these situations, whereas the baseline approach
fails to capture them.

E. Qualitative Results
In this section, we present qualitative results on the pre-

sented dataset trained using the Random Forest classifier.
Figure 9 and Figure 10 show examples of false negative
predictions by the classifier. In Figure 9, the tracked vehi-
cle slows down during the first half of the interval, then
continues to speed up again in the remainder of it. In this
example the decision of crossing varies within individuals,
making it difficult to define what a ground-truth label should
be. Figure 10 shows an example scenario in which a car
appears to be approaching during the length of the interval
with decreasing velocity. Ideally, we expect our classifier
to learn in such cases that it is safe to cross, mimicking
the behavior of humans at zebra crossings. However, the
trained classifier is unable to learn such a behavior due to the
insufficient number of examples showing similar situations in
the training data. On the other hand, Figure 11 demonstrates
a situation where the learned classifiers labels an unsafe
situation as safe. In this example, a car coming from a side
street outside of the sensor range of the robot is treated by
the classifier as a false tracker detection leading to incorrect
safe classification. We believe this occurs because the car
appears at the very end of the interval and only for a few
seconds, which closely resembles the characteristics of a
ghost detection.

VI. CONCLUSIONS

In this paper, we presented a novel approach based on
Random Forests for learning to predict when it is safe
to cross a street. We employ a pedestrian robot that uses
multiple sensor modalities. Our approach takes into account
information from laser and radar sensors to detect moving
objects. Given such data over a short time interval, it
decides whether it is safe to cross the street. We trained
and evaluated a Random Forest classifier based on these
modalities using real-world data from different places. The
corresponding dataset has been made publicly available. The
experimental results show that our classifier is robust to the
type of intersection, generalizes well to different situations
and outperforms different alternative approaches.

For future work, we would like to extend our approach
into an end-to-end learning technique in which we continue
to track oncoming traffic after the initial decision has been
made. This would ensure safe operation in unpredictable
dynamic situations that could occur during the traversal.



(a) time = 0 sec (b) time = 2.5 sec (c) time = 5 sec

Fig. 9. Example of a misclassified sample from the test data, with a safe to cross label versus an unsafe to cross prediction. The dashed circle shown in
the images highlights the positions of oncoming vehicles. At the first half of the interval a car appears to slow down, but at the last second it speeds up
again. In such cases, the label selected during annotation varies greatly from one individual to the other.

(a) time = 0 sec (b) time = 2.5 sec (c) time = 5 sec

Fig. 10. Visualization of a false negative classification on the test data. Throughout the entire interval the car appears to be slowing down. However, the
classifier opts for a more conservative approach than the annotation.

(a) time = 0 sec (b) time = 2.5 sec (c) time = 5 sec

Fig. 11. Example of an incorrect classification on a data point. The classifier predicted the interval to be safe to cross, whereas at the last second in the
window a car is passing in front of the robot. Both trackers were unable to detect the car until the last second as it was outside of their sensing range due
to the curvature of the road.
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