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Abstract— Socially compliant navigation is among the vital
precursors to enable deployment of autonomous robots in
populated environments. In order for mobile robots to plan
trajectories that are safe and socially acceptable, they need to
accurately and efficiently predict future trajectories of the sur-
rounding pedestrians. Although current approaches for motion
prediction utilize data-driven methods to estimate the behavior
of pedestrians, they only model a local neighborhood around
each pedestrian. This often results in suboptimal behavior in
densely populated environments, where the interactions are
more complex in nature. In this work, we propose the IA-TCNN
architecture to address the problem of efficient trajectory
prediction for multiple interacting pedestrians in a scene. Our
network leverages the previous motion information of all pedes-
trians in order to aggregate trajectories of the most relevant
pedestrians within the scene, thus predicting an accurate future
trajectory. Extensive experimental evaluations on indoor and
outdoor benchmarks demonstrate that our approach achieves
state-of-the art performance, while simultaneously achieving
fast inference time thereby facilitating online deployment.

I. INTRODUCTION

Among the major goals of robotics is the development
of intelligent platforms that are capable of performing
a variety of tasks in everyday life for their users. Over
the previous decade, robots have become more integrated
into our daily lives; performing numerous tasks including
domestic cleaners, navigational aids and last-mile delivery.
In particular for mobile robots that share the space with
humans, compliant navigation is a crucial capability.
Identifying and fulfilling such behavior in itself is a
skill that we learn as humans over several years and we
reiterate this learning process whenever we go to a different
society. Hence, hard-coding a set of behavioral rules for
a mobile robot to abide by is not only tedious, but also
requires constant upkeep depending on the environment.
Recently, learning-based motion prediction approaches [1],
[4], [5] have shown considerable robustness in modeling
pedestrian interactions in various environments. However
as the complexity of the scene increases, the run-time and
representational capabilities of such approaches substantially
decreases, since they rely on modeling each pedestrian
separately by considering only their local neighborhood.

In this work, we propose a novel scalable approach to
address the problem of learning trajectories in populated
environments. We frame the problem of trajectory estimation
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Fig. 1. Schematic representation of our proposed IA-TCNN architecture
for motion prediction. Input to the network is the observed trajectories for
all pedestrians over a time interval. For each pedestrian, the network predicts
the trajectory for the upcoming interval by capturing the interactions among
the various pedestrians in the scene.

as a sequence-to-sequence modeling task. We utilize a data-
driven method to represent the behavior of pedestrians, thus
enabling our approach to leverage the inherent interdepen-
dencies in the motion thereby learning interactions without
manually specifying a set of behavioral rules [2], [7]. Instead
of the widely employed recurrent units such as LSTMs, our
proposed network employs causal convolutions which facili-
tates both accurate modeling of the sequential behavior of the
pedestrians and online deployment in resource constrained
systems. In order to evaluate the applicability of our approach
we perform exhaustive experiments in a diverse set of indoor
settings and outdoor environments across different cities.

II. TECHNICAL APPROACH

Given the trajectory information for each pedestrian over
a certain time period, the output of our model is the corre-
sponding trajectory for each pedestrian over the prediction
interval. We define the trajectory Oi for pedestrian i during
an observation interval Tobs = {1, . . . , tobs} as:
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where each trajectory point is represented by the spatial
coordinates (xti, y

t
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in normalized quaternion representation. Our network pro-
duces the predicted trajectory Wi over the interval Tpred =
{tobs + 1, . . . , tpred} such that:
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In order to represent this problem as a sequence-to-
sequence modeling task, the predicted output at timestep



t ∈ Tpred can only depend on inputs from t′ ∈ Tobs. In other
words, predictions cannot depend on future states of traffic
participants. Moreover, we predict the future trajectories for
an interval greater than or equal to the observation interval,
as estimating the trajectories for an interval shorter than the
observation interval is rather simple. In this work, however,
our goal is to accurately predict the future trajectories of
pedestrians for intervals longer than the observation intervals.

We propose the Interaction-aware Temporal Convolutional
Neural Network (IA-TCNN), depicted in Fig. 1, to address
the above requirements. Our network consists of three causal
blocks; where each block contains zero-padding followed by
dilated causal convolution, cropping and tanh activation. In
each block, we employ zero padding and cropping layers
to satisfy the requirement of predicting a trajectory with
length greater than or equal to the observed trajectory. We
utilize causal convolutions where the output at each timestep
is convolved with elements from earlier timesteps, thereby
preventing information leak across different layers. Although
the amount of previous information utilized by causal convo-
lutions is linear to the network depth, increasing the depth or
using extremely large filter sizes increases the inference time
as well as the training complexity. We overcome this problem
by employing dilated causal convolutions to increase the
receptive field without increasing the depth of the network.
We use a constant kernel size of 30 × 30 for each of
the convolutional layers with filter sizes of [128, 128, 128]
respectively, and increase the dilation rate by 1 for each
following block. We model the predicted spatial coordinates
of each pedestrian using a bivariate Gaussian distribution
to obtain a measure of confidence over the output of the
network. The output of the last block is passed to a time dis-
tributed dense layer of size 7 to produce temporal predictions
for each timestep of the prediction interval, where for each
pedestrian the network predicts the mean µti = (µx, µy)

t
i,

standard deviation σti = (σx, σy)
t
i, correlation coefficient ρti,

and quaternion qti .
We train our model by minimizing the weighted combi-

nation of the negative log likelihood loss of the groundtruth
position under the predicted Gaussian distribution parameters
and the L2 loss of the orientation in normalized quaternion
representation as follows:

Lγ =
∥∥qti − q̂ti∥∥2

Lp = − log
(
P
(
xti, y

t
i | µ̂ti, σ̂ti , ρ̂ti

))
(3)

LMP =

N∑
i

tpred∑
t

Lp exp(−ŝp) + Lγ exp(−ŝγ) + ŝp + ŝγ ,

where N is the number of pedestrians, ŝp, ŝγ are learnable
weighting variables for balancing the translational and rota-
tional components of the predicted pose.
Since in real world data the trajectories of the different
pedestrians have varying lengths due to the limited sensor
range, and in order to fully leverage all the information

available during training, we train our proposed IA-TCNN
with dynamic sequence lengths by using binary activation
masks predicted by the network to signify the end of a
trajectory. This in turn implicitly enables the network to learn
when a pedestrian exits the field of view of the sensor. The
predicted trajectory is then first multiplied by the activation
mask before computing the prediction error. Moreover, as
opposed to explicitly selecting for each pedestrian the set
of pedestrians likely to affect its behavior, our proposed
model utilizes information from all pedestrians during the
observation interval to predict the trajectory for each of the
observed pedestrians. This has the advantage of eliminating
the need for creating handcrafted definitions which attempt
to explicitly model how the behavior of a pedestrian is af-
fected by surrounding pedestrians. Furthermore, it expedites
the information flow throughout the various layers of the
network, hence facilitating fast trajectory estimation for all
pedestrians in the scene.

III. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed IA-TCNN
on both the indoor L-CAS dataset [8] and the outdoor
ETH [3] and UCY [2] crowd set datasets. The L-CAS
dataset is composed of over 900 pedestrian tracks divided
into a training and a test split. Each pedestrian track has an
average length of 13.5s, wherein each pedestrian is identified
by a unique ID, time frame at which they were detected,
spatial coordinates and orientation angle. There are several
factors that make benchmarking on this dataset extremely
challenging such as people pushing trolleys and children
running, in addition to groups forming and dispersing.

The ETH crowd set dataset consists of two scenes: Univ
and Hotel, containing a total of approximately 750 pedestri-
ans exhibiting complex interactions. Each tracked pedestrian
is identified by a pedestrian ID, frame number and spatial
coordinates at which they were observed. Similar to the ETH
dataset, the UCY dataset is a crowd set dataset comprised
of three scenes: Zara01, Zara02 and Uni, with a total of
approximately 780 pedestrians. For each scene, the dataset
provides an annotations file consisting of a series of splines
each describing the trajectory of a pedestrian using the spatial
coordinates, frame number and the viewing direction of
the pedestrian. This dataset in addition to the ETH dataset
are widely used in conjunction as benchmarks for motion
prediction and pedestrian tracking due to the wide range of
non linear trajectories and pedestrian interactions exhibited.
In order to facilitate comparison with existing work on
these benchmarks, we use the provided train and test split
for the L-CAS dataset, while we combine both the ETH
and UCY datasets, similar to previous works [1], [6], and
apply a leave-one-out procedure during training, by randomly
selecting trajectories from all scenes except the testing scene.
Furthermore, for the L-CAS dataset, we utilize and predict
the spatial and angular information for each pedestrian,
while for the ETH and UCY datasets, we only predict the



(a) IA-LinConv (b) IA-DResTCNN
Fig. 2. Schematic representation of two variants of our proposed architec-
ture; IA-LinConv and IA-DResTCNN.

2D spatial coordinates of each pedestrian to facilitate the
combination of the data.

In order to train our IA-TCNN model such that it is robust
to the varying number of pedestrians observable in every
interval, we introduce a variable to represent the maximum
number of distinct trajectories observed within an interval
and initially set it to the maximum observed in all datasets.
During training and testing, we use an activation mask to
encode the positions of valid trajectories and discard all
remaining information. We train our approach for 100 epochs
with a mini-batch size of 12. We employ the Adam solver
for optimization, with a learning rate of 0.0005 and apply
gradient clipping. All experiments are conducted on the
Tensorflow library on a single Nvidia Titan X GPU.

We evaluate the accuracy of our motion prediction model
by reporting the following metrics:

• Average Displacement Error: mean squared error over
all predicted and groundtruth points in the trajectory.

• Final Displacement Error: the distance between the
predicted and groundtruth poses at the end of the
prediction interval.

In order to evaluate the efficacy of our proposed
convolutional network for the sequence modeling task, we
create two variants of our method; namely IA-LinConv and
IA-DResTCNN, depicted in Fig. 2. IA-LinConv closely
resembles IA-TCNN with the exception of employing
standard convolutions in place of the dilated convolutions.
While in the IA-DResTCNN, we replace the middle causal
block by a residual block, and the tanh activation function
by the standard ReLU activation.

Following the evaluation procedure of [5], we train on
a sequence length of 20 frames on the L-CAS dataset,
and use an observation and prediction of 8 and 12 frames
respectively during testing. The average displacement error
of our approach in comparison to current state-of-the-art
methods is shown in Tab. I. Both our baseline approaches,
IA-LinConv and IA-DResTCNN, are able to outperform
the standard recurrent-based methods by 64.2%, and 32.0%
in the translational and rotational components respectively
which in turn corroborates the advantage of utilizing a
convolutional architecture over recurrent methods. Moreover,
by utilizing our proposed IA-TCNN, we are able to achieve
an average displacement error of 0.11m and 21.7◦ further

TABLE III
COMPARISON WITH THE STATE-OF-THE-ART ON UCY-UNI.

Method Avg. Disp.
Error (m)

Final Disp.
Error (m)

Run-time
(s)

Size
(MB)

Social-LSTM [1] 0.27 0.77 1.78 95.8
IA-TCNN (Ours) 0.29 0.46 0.26 7.0

improving upon the achieved results by 67.6% and 8.8% in
translation and orientation respectively. This improvement
over the results achieved by IA-LinConv is attributed to
employing dilated convolutions which increase the receptive
field, thereby increasing the amount of information utilized
at each layer. However, we observe that adding a residual
block to our network as in IA-DResTCNN did not help in
improving the prediction accuracy over IA-TCNN.

In Tab. II, we demonstrate the average displacement error
of our proposed approach in comparison to state-of-the-art
methods on the different sequences of the ETH and UCY
datasets. We train our model using a sequence length of
20 observations, and during testing we observe 8 frames
(corresponding to 3.2s) and predict the upcoming 12 frames
(4.8s). Note that for each of the methods, we report the
numbers directly from the corresponding manuscripts, with
the exception of the Social Forces model where we report the
numbers from [1] as the original manuscript does not report
the same metrics as the ones employed by the state-of-the-art
methods. Utilizing the proposed architecture, we achieve an
improvement of 29.6% in comparison to the previous state-
of-the-art. Despite the sparse amount of sequences available
for these datasets, and the complexity of the pedestrian
interactions demonstrated, our method is able to achieve the
lowest final displacement error, as depicted in Tab. IV, with
an improvement of 55.7% in comparison to previous works
on all the sequences.

Tab. V shows the effect of varying the observation and
prediction lengths of the average displacement accuracy of
our proposed IA-TCNN approach on the Uni sequence of
the UCY crowd set dataset. For short observation lengths
(2− 4 frames), the error in the predicted trajectory linearly
increases with the increase in the prediction length. This ac-
counts for the increased difficulty of making accurate predic-
tions given short trajectory information as future interactions
cannot be reliably predicted. Concurrently, by increasing
the observation length, the prediction accuracy gradually
increases with small improvements between 6 − 8 observa-
tion frames. This can be attributed to the reduction in the
amount of significant information over time due to the short
interaction times between pedestrians and the low likelihood
of abrupt changes in the behavior of one or more pedestrians.

We further compare the run time and model size of our
approach with Social-LSTM [1] in Tab. III. The results
show that using our proposed IA-TCNN, we improve
upon the final displacement accuracy by 40.3% while being
85.4% faster than Social-LSTM [1]. Moreover, our proposed
approach only requires 7.0MB of storage space, which is



TABLE I
AVERAGE DISPLACEMENT ACCURACY OF IA-TCNN IN COMPARISON TO EXISTING METHODS ON THE L-CAS DATASET.

Dataset Social-LSTM [1] Pose-LSTM [5] IA-LinConv IA-DResTCNN IA-TCNN (Ours)

L-CAS 1.19m, NAN 0.95m, 35.0◦ 0.34m, 23.8◦ 0.46m, 33.1◦ 0.11m, 21.7◦

TABLE II
AVERAGE DISPLACEMENT ACCURACY OF IA-TCNN ON THE ETH AND UCY DATASETS IN COMPARISON TO STATE-OF-THE-ART METHODS.

Dataset Social
Forces [7]

Basic
LSTM

Social-
LSTM [1]

Social-
Attention [6]

IA-LinConv IA-
DResTCNN

IA-TCNN
(Ours)

ETH-Univ 0.41m 0.39m 0.50m 0.39m 0.27m 0.43m 0.15m
ETH-Hotel 0.25m 0.32m 0.11m 0.29m 0.28m 0.36m 0.16m
Zara01 0.40m 0.18m 0.22m 0.20m 0.34m 0.45m 0.14m
Zara02 0.40m 0.28m 0.25m 0.30m 0.38m 0.37m 0.19m
UCY-Uni 0.48m 0.30m 0.27m 0.33m 0.41m 0.36m 0.29m

Average 0.39m 0.29m 0.27m 0.30m 0.34m 0.39m 0.19m

TABLE IV
FINAL DISPLACEMENT ACCURACY OF IA-TCNN IN COMPARISON TO EXISTING METHODS ON THE ETH AND UCY DATASETS.

Dataset Social
Forces [7]

Basic
LSTM

Social-
LSTM [1]

Social-
Attention [6]

IA-LinConv IA-
DResTCNN

IA-TCNN
(Ours)

ETH-Univ 0.59m 1.06m 1.07m 3.74m 0.27m 0.60m 0.21m
ETH-Hotel 0.37m 0.33m 0.23m 2.64m 0.32m 0.52m 0.18m
Zara01 0.60m 0.93m 0.48m 0.52m 0.54m 1.08m 0.27m
Zara02 0.68m 1.09m 0.50m 2.13m 0.47m 0.88m 0.25m
UCY-Uni 0.78m 1.25m 0.77m 3.92m 0.66m 1.03m 0.46m

Average 0.60m 0.93m 0.61m 2.59m 0.45m 0.82m 0.27m

TABLE V
EFFECT OF THE VARYING THE OBSERVATION AND PREDICTION LENGTHS IN FRAMES ON THE AVERAGE DISPLACEMENT ERROR FOR OUR PROPOSED

IA-TCNN METHOD ON THE UCY-UNI DATASET.

Obs. Length
Pred. Length

2 3 4 5 6 7 8 9 10 11 12

2 0.42m 0.48m 0.50m 0.53m 0.56m 0.61m 0.63m 0.62m 0.62m 0.61m 0.60m
3 0.31m 0.36m 0.41m 0.45m 0.49m 0.52m 0.52m 0.51m 0.51m 0.51m 0.51m
4 0.23m 0.30m 0.35m 0.39m 0.42m 0.43m 0.43m 0.43m 0.43m 0.43m 0.44m
5 0.20m 0.26m 0.31m 0.36m 0.36m 0.37m 0.37m 0.37m 0.38m 0.38m 0.38m
6 0.18m 0.23m 0.28m 0.29m 0.30m 0.32m 0.32m 0.33m 0.33m 0.33m 0.34m
7 0.15m 0.20m 0.22m 0.24m 0.26m 0.27m 0.28m 0.29m 0.29m 0.30m 0.31m
8 0.14m 0.17m 0.19m 0.21m 0.23m 0.24m 0.25m 0.26m 0.26m 0.27m 0.29m

substantially lesser than its counterparts, enabling it to be
efficiently deployed in resource limited systems.

IV. CONCLUSION & FUTURE WORK

In this paper, we presented an approach for interaction-
aware motion prediction using a temporal convolutional
architecture which accurately predicts the trajectory of pedes-
trians. Our approach efficiently encodes observations from all
pedestrians in the scene, thereby rendering it scalable to com-
plex environments while simultaneously predicting accurate
trajectories. Extensive experimental evaluations demonstrate
that our IA-TCNN achieves state-of-the-art performance on
both indoor and outdoor datasets, while achieving faster in-
ference times in comparison to recurrent approaches. Regard-
ing future work, we aim to additionally predict the obstacle
map of the environment, as we believe that knowledge about

the vicinity can improve the overall prediction accuracy by
avoiding trajectories that are occupied by obstacles.
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