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VLocNet++: Deep Multitask Learning for
Semantic Visual Localization and Odometry

Noha Radwan∗ Abhinav Valada∗ Wolfram Burgard

Abstract—Semantic understanding and localization are fun-
damental enablers of robot autonomy that have for the most
part been tackled as disjoint problems. While deep learning has
enabled recent breakthroughs across a wide spectrum of scene
understanding tasks, its applicability to state estimation tasks
has been limited due to the direct formulation that renders it
incapable of encoding scene-specific constrains. In this work, we
propose the VLocNet++ architecture that employs a multitask
learning approach to exploit the inter-task relationship between
learning semantics, regressing 6-DoF global pose and odometry,
for the mutual benefit of each of these tasks. Our network
overcomes the aforementioned limitation by simultaneously em-
bedding geometric and semantic knowledge of the world into the
pose regression network. We propose a novel adaptive weighted
fusion layer to aggregate motion-specific temporal information
and to fuse semantic features into the localization stream based
on region activations. Furthermore, we propose a self-supervised
warping technique that uses the relative motion to warp inter-
mediate network representations in the segmentation stream for
learning consistent semantics. Finally, we introduce a first-of-a-
kind urban outdoor localization dataset with pixel-level semantic
labels and multiple loops for training deep networks. Extensive
experiments on the challenging Microsoft 7-Scenes benchmark
and our DeepLoc dataset demonstrate that our approach exceeds
the state-of-the-art outperforming local feature-based methods
while simultaneously performing multiple tasks and exhibiting
substantial robustness in challenging scenarios.

Index Terms—Deep Learning in Robotics and Automation;
Visual Learning; Localization

I. INTRODUCTION

AUTONOMOUS robots today are a complex ensemble
of modules each of which specializes in a particular

domain such as state estimation and scene understanding. While
significant strides have been made considering these domains
separately [1], [2], very little progress has been made towards
exploiting the relationship between them. In this work, we focus
on jointly learning three diverse vital tasks that are crucial
for robot autonomy, namely, semantic segmentation, visual
localization and odometry from consecutive monocular images.
We approach this problem from a multitask learning (MTL) per-
spective with the goal of learning more accurate localization and
semantic segmentation models by leveraging the predicted ego-
motion. This problem is extremely challenging as it involves
simultaneously learning cross-domain tasks that perform pixel-
wise classification and regression with different units and scales.
However, this joint formulation enables inter-task learning
which improves both generalization capabilities and alleviates
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Fig. 1. Schematic representation of our proposed VLocNet++ architecture.
The network takes two consecutive monocular images (It , It−1) as input
and simultaneously predicts the global 6-DoF pose pt , odometry pt,t−1 and
semantics Mt of the scene. zl

t−1 denotes the feature maps of layer l from
the previous timestep and Dt denotes a predicted depth map that is used for
representational warping in the semantic stream.

the problem of requiring vast amounts of labeled training
data which is especially hard to obtain in the robotics domain.
Moreover, as robots are equipped with limited resources, a joint
model is more efficient for deployment and enables real-time
inference on a consumer grade GPU.

Most existing CNN-based metric localization approaches [3],
[4] perform direct pose regression from image embeddings
using naive loss functions. In order to more effectively encode
knowledge about the environment, we propose a principled
approach to embed geometric and semantic knowledge into
the pose regression model. Our network utilizes our Geometric
Consistency loss function [5] that incorporates relative motion
information to learn a model that is globally consistent. Firstly,
unlike the previous approach [5], to efficiently utilize the
learned motion specific features from the previous timestep,
we employ an adaptive weighting technique to aggregate
motion-specific temporal information. Secondly, by jointly
estimating the semantics, we instill structural cues about the
environment into the pose regression network and implicitly
pull the attention towards more informative regions in the
scene. Existing semantics-aware localization techniques extract
predefined stable features, emphasize or combine them with
local features but often fail when the predefined structures are
occluded or not visible in the scene. Our approach is robust to
such situations as it uses our proposed adaptive fusion layer to
fuse learned relevant features not only based on the semantic
category but also the activations in the region.

Predicting consistent semantics is a critical prerequisite
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for semantic visual localization. Inspired by early cognitive
studies in humans showing the importance of learning self-
motion for acquiring basic perceptual skills [6], we propose a
novel self-supervised semantic context aggregation technique
leveraging the predicted relative motion from the odometry
stream of our network. Using pixel-wise depth predictions
from a CNN [7] and differential warping, we fuse intermediate
network representations from the previous timestep into the
current frame using our proposed adaptive weighted fusion
layer. This enables our semantic segmentation network to
aggregate more scene-level context, thereby improving the
performance and leading to faster convergence.

In summary, the primary contributions of this paper are
as follows: (i) A novel MTL framework for jointly learning
semantics, visual localization and odometry from consecutive
monocular images. (ii) A CNN architecture for pose regression
that significantly outperforms state-of-the-art approaches on
the challenging Microsoft 7-Scenes benchmark. (iii) A self-su-
pervised context aggregation technique based on differential
warping that improves semantic segmentation and reduces the
training time by half. (iv) A novel adaptive weighted fusion
layer for element-wise fusion of feature maps based on region
activations to exploit inter/intra task dependencies. (v) Finally,
to facilitate this work, we introduce a first-of-a-kind outdoor
dataset consisting of multiple loops with pixel-level semantic
labels and localization ground truth. It contains repetitive,
translucent and reflective surfaces, weakly textured regions and
low-lighted scenes with shadows, thereby making it extremely
challenging for benchmarking a variety of tasks.

II. RELATED WORKS

Over the past decade there has been a gradual shift from
employing traditional handcrafted pipelines to learning-based
methods particularly for perception related tasks. In this section,
we discuss recent learning-based approaches for multitask
learning, pose regression and semantic segmentation.
Multitask Learning can be defined as an inductive transfer
mechanism that improves generalization by leveraging domain
specific information from related tasks. It has been applied to
a wide range of tasks [8]. Bilen et al. propose the use of an
instance normalization layer to train a network that recognizes
objects across multiple visual domains including digits, signs
and faces [9]. In [10], the authors introduce a model with a
sparsely-gated mixture of experts layer for the task of language
modeling and machine translation. Multinet [8] proposes a
unified architecture consisting of a shared encoder and task-
specific decoders for classification, detection and segmentation.
For combining different loss functions in a multitask model,
Kendall et al. [11] propose a loss function based on maximizing
the Gaussian likelihood using homoscedastic task uncertainty.
While the aforementioned approaches mostly have shared
parts of the network that learn low-level features followed by
individual task-specific branches, we propose a novel adaptive
weighted fusion layer that learns the most favorable weighting
of feature maps for the mutual benefit of the tasks.
Visual Localization has been addressed by a variety of
approaches ranging from image retrieval, local feature-based
pipelines, to end-to-end learning methods [12]. Recently, pre-
trained DCNNs designed for classification have been success-
fully adapted for pose regression. Kendall et al. proposed

PoseNet [13], an end-to-end approach for directly regressing
the 6-DoF camera pose from a monocular image using a
DCNN. Since then several improvements have been proposed
in terms of incorporating Long-Short Term Memory (LSTM)
units for dimensionality reduction [14], symmetric encoder-
decoder architecture for regression [15] and an improved loss
function based on scene geometry [3]. NNnet [16] employs a
hybrid approach where a DCNN trained on relative camera pose
estimation is employed to extract features for identifying the
nearest neighbors of a query image among the database images.
Recently, Brachmann et al. proposed a differentiable version of
RANSAC (DSAC) [12] and a successor version [17] for camera
localization. Currently this approach [17] achieves state-of-the-
art performance on the Microsoft 7-Scenes benchmark. More
recently, VLocNet [5] presented the Geometric Consistency
Loss function that constricts the search space with the relative
motion information during training to obtain pose estimates that
are consistent with the true motion model. The focus of this pa-
per is to improve VLocNet’s performance by adaptively fusing
semantic features and aggregated motion-specific information
from the previous timestep into the localization network.
Visual Odometry: Another similar line of work is to estimate
the incremental change in position from images. Nicolai et
al. [18] employed a simple Siamese architecture with al-
ternating convolution and pooling layers to estimate the
transforms from consecutive point clouds. Konda et al. [19]
proposed an end-to-end architecture for learning ego-motion
from a sequence of RGB-D images using a prior set of
discretized velocities and directions. DeepVO [20] presents an
AlexNet-based Siamese architecture for odometry estimation
from monocular images, in which they also experiment with
appending FAST features along with the images as input to
the network. Melekhov et al. [2] propose a CNN architecture
that incorporates spatial pyramid pooling and demonstrates
improved performance compared to local feature-based ap-
proaches that utilize SIFT or ORB.
Semantic Segmentation: Fully Convolutional Neural Net-
works (FCNs) [21] first proposed the encoder-decoder model
replacing inner-product layers with convolution layers to enable
pixel-wise classification. Several networks built upon FCNs by
introducing more refinement stages [22], efficient non-linear
upsampling schemes [23] and adding global context [24]. Yu et
al. [25] proposed a context module the uses dilated convolutions
to enlarge the receptive field. DeepLab [26] proposed using
multiple parallel dilated convolutions with different sampling
rates for multi-scale learning in addition to using CRFs for
post-processing. AdapNet [1] introduced multi-scale residual
blocks with dilated convolutions as parallel convolutions to
enable faster inference without compromising the performance.
For learning consistent semantics in VLocNet++, we build
upon AdapNet’s model and propose a self-supervised warping
technique for scene-level context aggregation. We warp feature
maps of the preceding frame and fuse them using the proposed
adaptive fusion layer which leads to improved accuracy and
faster convergence.

III. TECHNICAL APPROACH

In this section, we detail our MTL framework for jointly
estimating global pose, odometry and semantic segmentation
from consecutive monocular images. While the approach
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presented in this paper focuses on joint learning of the
aforementioned tasks, each of the task-specific models can
be deployed independently during test-time. We propose a
novel strategy for encoding geometric and structural constraints
into the pose regression network, namely by incorporating
information from the previous timesteps to accumulate motion
specific information and by adaptively fusing semantic features
based on the activations in the region using our proposed
fusion scheme. As being able to predict robust semantics is an
essential prerequisite for the proposed fusion, we present a new
self-supervised warping technique for aggregating scene-level
context in the semantic segmentation model. Our architecture,
depicted in Fig. 1 consists of four CNN streams; a global
pose regression stream, a semantic segmentation stream and a
Siamese-type double stream for visual odometry estimation.

Given a pair of consecutive monocular images It−1, It ∈ Rρ ,
the pose regression stream predicts the global pose pt = [xt ,qt ]
for image It , where x ∈ R3 denotes the translation and q ∈
R4 denotes the rotation in quaternion representation, while
the semantic stream predicts a pixel-wise segmentation mask
Mt mapping each pixel u to one of the C semantic classes,
and the odometry stream predicts the relative motion pt,t−1 =
[xt,t−1,qt,t−1] between consecutive input frames. zl denotes
the feature maps from layer l of a particular stream. In the
remainder of this section, we describe the constituting network
components and our MTL scheme.

A. Geometrically Consistent Pose Regression

Our model for regressing the global pose is based on the
recently proposed VLocNet [5] architecture. It has five residual
blocks that downsample the feature maps by half at each block,
similar to the full preactivation ResNet-50 architecture, but
replaces the conventional Rectified Linear Units (ReLUs) acti-
vation function with Exponential Linear Units (ELUs), which
help learning representations that are more robust to noise
and also lead to faster convergence. We add a global average
pooling layer after the fifth residual block, followed by three
inner-product layers fc1, fc2 and fc3 of dimensions 1024, 3 and
4 respectively, where fc2 and fc3 regress the translational x and
rotational q components of the pose. Unlike VLocNet which
fuses the previous predicted pose directly using inner-product
layers, we adopt a more methodological approach to provide
the network with this prior. Fusing the previous prediction
directly inhibits the network from being able to correlate motion
specific spatial relations crucial for this task, with that of the
previous timestep as the network does not retain these features
thereafter. In this work, we integrate the network’s intermediate
representation z5a

t−1 from the last downsampling stage (Res5a)
of the previous timestep using our proposed adaptive weighted
fusion layer detailed in Sec. III-D. Our fusion scheme learns
the most favorable element-wise weighting for this fusion,
and when trained end-to-end with the Geometric Consistency
Loss, enables aggregation of motion-specific features across the
temporal dimension. We denote the aforementioned architecture
as VLocNet++STL in our experiments.

As opposed to naively minimizing the Euclidean loss
between the predicted poses and the ground truth, we employ
the Geometric Consistency Loss function, which in addition
to minimizing the Euclidean loss, adds another loss term to
constrain the current pose prediction by minimizing the relative

motion error between the ground truth and the estimated motion
from the odometry stream. By utilizing the predictions of the
network from the previous timestep along with the current
timestep, the relative motion loss term LRel ( f (θ | It)) can be
computed as a weighted summation of the translational and
rotational errors, where θ is defined to be the parameters of
the network, and f (θ | It) denotes the predicted output of the
network for image It . Eq. (1) details the relative motion loss
term, in which we assume that the quaternion output of the
network has been normalized a priori for ease of notation,
and ŝxRel , ŝqRel denote the learnable weighting variables for the
translational and rotational components [3].

LRel ( f (θ | It)) = LxRel ( f (θ | It))exp(−ŝxRel )+ ŝxRel (1)
+LqRel ( f (θ | It))exp(−ŝqRel )+ ŝqRel

LxRel ( f (θ | It)) := ‖xt,t−1− (x̂t − x̂t−1)‖2

LqRel ( f (θ | It)) :=
∥∥qt,t−1−

(
q̂−1

t−1q̂t
)∥∥

2 .

Following the aforementioned notation, the Euclidean loss term
can be defined as

LEuc ( f (θ | It)) = Lx ( f (θ | It))exp(−ŝx) (2)
+ ŝx +Lq ( f (θ | It))exp(−ŝq)+ ŝq

Lx ( f (θ | It)) := ‖xt − x̂t‖2

Lq ( f (θ | It)) := ‖qt − q̂t‖2 .

The final loss term to be minimized is

Lloc ( f (θ | It)) := LEuc ( f (θ | It))+LRel ( f (θ | It)) . (3)

By minimizing the aforementioned loss function, our network
learns a model that is geometrically consistent with respect to
the motion. Moreover, by employing a mechanism to aggregate
motion specific features temporally, we enable the Geometric
Consistency Loss to efficiently leverage this information.

B. Learning Visual Odometry

Our proposed architecture for relative pose estimation takes
a pair of consecutive monocular images (It−1, It) as input and
yields an estimate of ego-motion pt,t−1 = [xt,t−1,qt,t−1]. We
employ a dual-stream architecture in which each of the streams
is identically similar in structure and is based on the full
preactivation ResNet-50 model. We concatenate the feature
maps of the individual streams before the last downsampling
stage (end of Res4) and convolve them through the last residual
block, followed by an inner-product layer and two regressors for
estimating the pose components. During training, we optimize
the following loss function by minimizing the Euclidean error
between the ground truth and the predicted motion.

Lvo ( f (θ | It , It−1)) := Lx ( f (θ | It , It−1))exp(−ŝxvo) (4)
+ŝxvo +Lq ( f (θ | It , It−1))exp(−ŝqvo)+ ŝqvo ,

where Lx and Lq refers to the translational and rotational
components respectively. We also employ learnable weighting
parameters to balance the scale between the translational and
rotational components in the loss term. As shown in Fig. 1, the
dual odometry streams have an architecture similar to the global
pose regression network. In order to enable the inductive trans-
fer of information between both networks, we share parameters
between the odometry stream taking the current image It and
the global pose regression network as detailed in Sec. III-D.
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C. Learning Semantics

Our model for learning consistent semantics has two variants:
a single-task base architecture that takes a monocular image as
input and predicts a pixel-wise segmentation mask (green and
purple blocks in Fig. 1) and a multitask architecture built upon
the base model that incorporates our proposed self-supervised
warping and adaptive fusion layers (orange and red blocks).
Network Architecture: For the single-task base model, we
adopt the AdapNet [1] architecture which follows the general
encoder-decoder design principle. Similar to the localization
network, the encoder is based on the ResNet-50 model which
includes skip connections and batch normalization layers
that enable training such deep architectures by alleviating
the vanishing gradient problem. The encoder learns highly
discriminative semantic features and yields an output 16-times
downsampled with respect to the input dimensions. While
the decoder consists of two deconvolution layers and a skip
convolution from the encoder for fusing high resolution feature
maps and upsampling the downscaled feature maps back to
the input resolution. The architecture also incorporates multi-
scale ResNet blocks which have dilated convolutions parallel to
the 3×3 convolutions for aggregating features from different
spatial scales, concurrently maintaining fast inference times.

Following the notation convention, we define a set of training
images T = {(In,Mn) | n = 1, . . . ,N}, where In = {ur | r =
1, . . . ,ρ} denotes the input frame and the corresponding ground
truth mask Mn = {mn

r | r = 1, . . . ,ρ}, where mn
r ∈ {1, . . . ,C}

is the set of semantic classes. We define θ as the network
parameters. Using the classification scores s j at each pixel ur,
we obtain a probabilities P = (p1, . . . , pC) with the softmax
function σ(.) such that

p j(ur,θ | In) = σ (s j (ur,θ)) =
exp(s j (ur,θ))

∑
C
k exp(sk (ur,θ))

(5)

denotes the probability of pixel ur being classified with label
j. The optimal θ is estimated by minimizing

Lseg(T ,θ) =−
N

∑
n=1

ρ

∑
r=1

C

∑
j=1

δmn
r , j log p j(ur,θ | In), (6)

for (In,Mn) ∈ T , where δmn
r , j is the Kronecker delta.

Self-Supervised Warping: In order to aggregate scene-level
context for learning consistent semantics, we first leverage
the estimated relative pose from the odometry stream to warp
feature maps from the previous timestep into the current view
using a predicted depth map. We then fuse the warped feature
maps with the intermediate network representations of the
current timestep. By incorporating feature maps from multiple
views and resolutions using the representational warping
concept from multi-view geometry, we enable our model to
be robust to camera angle deviations, object scale, frame-level
distortions and implicitly introduce feature augmentation which
facilitates faster convergence. We utilize DispNet [7] to obtain
the depth map Dt and fuse warped feature maps as described
in Sec. III-D. We introduce the warping and fusion layers (red
and orange blocks in Fig. 1) at Res4f and Res5c to fuse the
corresponding feature maps z4 f

t−1 and z5c
t−1 from the previous

timestep into the network. As the warping is fully differentiable,
our approach does not require any pre-computation for training
and runs online. Moreover, our self-supervised warping adds
minimal overhead as we only calculate the warping grid once

at the input resolution in terms of pixels ur and employ average
pooling to apply the grid at multiple scales for transforming the
feature maps zt−1 to its warped current view representation ẑt−1.
In order to facilitate computation of gradients necessary for
back-propagation, we use bilinear interpolation as a sampling
mechanism for warping. Utilizing the relative pose, a depth map
Dt of the image, and the projection function π , we formulate
the warping as

ûr := π
(
T (pt,t−1)π

−1 (ur,Dt (ur))
)
. (7)

Given a previous image It−1 and the relative motion between
the images pt,t−1, we can project each pixel ur from It−1 to
It as per Eq. (7). The warped pixel ûr is obtained using the
depth information Dt (ur) and the relative pose pt,t−1, where
the function T (pt,t−1) denotes the homogenous transformation
matrix of pt,t−1, π denotes the projection function transforming
from world to camera coordinates such that π : R3 7→ R2

and π−1 denotes the transformation from camera to world
coordinates using a depth map Dt (ur).
D. Deep Multitask Learning

Our main motivation for jointly learning semantics, global
pose regression and odometry is twofold: to enable inductive
transfer by leveraging domain specific information while
simultaneously exploiting complementary features, and to
enable the global pose regression network to encode geometric
and semantic knowledge of the environment while training.
To achieve this goal, we structure our multitask framework
to be interdependent on the outputs as well as intermediate
representations of each of these tasks. Specifically, as shown in
Fig. 1, we employ hybrid hard parameter sharing until the end
of the Res3 block between the global pose regression stream
and the odometry stream that both receive the image from
the current timestep. This exploits the task-specific similarities
among these pose regression tasks and influences the shared
weights of global pose regression network to integrate motion-
specific features due to inductive bias from odometry estimation,
in addition to effectuating implicit attention on regions that
are more informative for relative motion estimation.

A common practice employed for combining features from
multiple layers or multiple networks is to perform concatenation
of the tensors or element-wise addition/multiplication. Although
this might be effective when both tensors contain sufficient
relevant information, it often accumulates irrelevant feature
maps and its effectiveness highly depends upon the intermediate
stages of the network where the fusion is performed. One of
the key components of our multitask learning framework is
the proposed adaptive weighted fusion layer which learns the
most favorable element-wise weighting for the fusion based
on the activations in the region, followed by a non-linear
feature pooling over the weighted tensors. Pooling in the feature
space (as opposed to spatial pooling) is a form of coordinate-
dependent transformation which yields the same number of
filters as the input tensor. For ease of notation, we formulate the
mathematical representation of the adaptive weighted fusion
layer with respect to two activation maps za and zb from layers a
and b, while extending the notation to multiple activation maps
is straightforward. The activation maps can be from layers in the
same network or from different task-specific networks. The out-
put of the adaptive weighted fusion layer can be formulated as

ẑ f use = max
(

W∗
(
(wa� za)⊕

(
wb� zb

))
+b,0

)
, (8)
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where wa and wb are learned weightings having the same
dimensions as za and zb; W and b are the parameters of the non-
linear feature pooling; with � and ⊕ representing per-channel
scalar multiplication and concatenation across the channels; and
∗ representing the convolution operation. In other words, each
channel of the activation map za is first weighted, then linearly
combined with the corresponding weighted channels of the
activation map zb. Non-linear feature pooling is then applied,
which can be easily realized with existing layers in the form
of a 1×1 convolution with a non-linearity such as ReLUs. As
shown in Fig. 1, we incorporate the adaptive fusion layers (red
blocks) at Res4c to fuse semantic features into the global pose
regression stream. In addition, we also employ them to fuse
warped semantic feature maps from the previous timestep into
the segmentation stream at the end of Res3 and Res4 blocks. We
denote this architecture as VLocNet++MTL in our experiments.
Moreover, in Sec. IV-C, we demonstrate that over simple con-
catenation, our adaptive weighted fusion learns what features
are relevant for both inter-task and intra-task fusion. In order
to jointly learn all tasks, we minimize the loss function below:

Lmulti := Lloc exp(−ŝloc)+ ŝloc +Lvo exp(−ŝvo)+ ŝvo

+Lseg exp(−ŝseg)+ ŝseg, (9)

where Lloc is the global pose regression loss as per Eq. (3);
Lvo is the visual odometry loss from Eq. (4), and Lseg is the
cross-entropy loss for semantic segmentation from Eq. (6).
Due to the inherent nature of the diverse tasks at hand, each
of the associated task-specific loss terms has a different scale.
If the task-specific losses were to be naively combined, the
task with the highest scale would dominate during training
and there would be little if no gain for any of the other tasks.
To counteract this problem, we use learnable scalar weights
ŝloc, ŝvo, ŝseg to balance the scale of each of the loss terms.
E. Datasets and Augmentation

Supervised learning techniques such as DCNNs require a
large amount of training data with ground truth annotations
which is laborious to acquire. This becomes even more critical
for jointly learning multiple diverse tasks which necessitate
individual task-specific labels. Although there are publicly
available task-specific datasets for visual localization and
semantic segmentation, to the best of our knowledge there
is a lack of a large enough dataset that contains both semantic
and global localization ground truth with multiple loops in the
same scene. To this end, we introduce the challenging DeepLoc
dataset containing RGB-D images tagged with 6-DoF poses
and pixel-level semantic labels of an outdoor urban scene that
we make publicly available. In addition to our new dataset, we
also benchmark the performance of our localization network
(without joint semantics learning) on the challenging Microsoft
7-Scenes dataset. We chose these datasets based on the criteria
of having diversity in scene structure and environment as well
as the medium with which the images were captured.

We do not perform any pose augmentations [4] as our
initial experiments employing them did not demonstrate any
improvement in performance in the aforementioned datasets.
However for learning semantics, we randomly apply image
augmentations including rotation, translation, scaling, skewing,
cropping, flipping, contrast and brightness modulation.
Microsoft 7-Scenes dataset [27] is a widely used dataset for
camera relocalization and tracking. It contains RGB-D image

sequences tagged with 6-DoF camera poses of 7 different
indoor environments. The data was captured with a Kinect
camera at a resolution of 640×480 pixels and ground truth
poses were generated using KinectFusion [27]. Each of the
sequences contains about 500 to 1000 frames. This dataset is
very challenging as it contains textureless surfaces, reflections,
motion blur and perceptual aliasing due to repeating structures.
DeepLoc: We introduce a large-scale urban outdoor localization
dataset collected around the university campus, which we make
publicly available 1. The dataset was collected using our robot
platform equipped with a ZED stereo camera, an XSens IMU,
a Trimble GPS Pathfinder Pro and several LiDARs. RGB and
depth images were captured at a resolution of 1280×720 pixels,
at 20Hz. The dataset was collected in an area spanning 110×
130m, that the robot traverses multiple times with different
driving patterns. We use the LiDAR-based SLAM system from
Kümmerle et al. [28] to compute the ground truth pose labels.

Furthermore, for each image we provide pixel-level semantic
segmentation annotations for ten categories: Background, Sky,
Road, Sidewalk, Grass, Vegetation, Building, Poles & Fences,
Dynamic and Other. To the best of our knowledge, this is
the first publicly available dataset containing images tagged
with 6-DoF poses and pixel-level semantic segmentation labels
for an entire scene with multiple loops. We divide the dataset
into a train and a test split such that the training set consists
of seven loops with alternating driving styles amounting to
2737 images, while the test set consists of three loops with a
total of 1173 images. This dataset can be very challenging for
vision based applications such as global localization, camera
relocalization, semantic segmentation, visual odometry and loop
closure detection, as it contains substantial lighting, weather
changes, motion blur and perceptual aliasing due to similar
buildings and glass structures. We hope that this dataset enables
future research in multitask and multimodel learning.

IV. EXPERIMENTAL EVALUATION

In order to quantify the performance of VLocNet++, we first
compare our single-task models against other deep learning
based methods in each corresponding task in Sec. IV-A,
followed by a more comprehensive comparison against the state-
of-the-art in Sec. IV-B and with multitask variants in Sec. IV-C.
Furthermore, we present extensive qualitative experiments and
an ablation study in Sec. IV-D which demonstrates the efficacy
of our approach and provides insights on the representations
learned by our network. For all the experiments, we train
our models from random crops of the image and test on the
center crop. We initialize the five residual blocks of our tasks-
specific networks with weights from the ResNet-50 model
trained on the ImageNet dataset and the other layers with
Xavier initialization. We use the Adam solver for optimization
with β1 = 0.9,β2 = 0.999 and ε = 10−10. We employ a multi-
stage training procedure and first train task-specific models
individually using an initial learning rate of λ0 = 10−3 with a
mini-batch size of 32 and a dropout probability of 0.2. Using
transfer learning, we initialize the joint MTL architecture with
weights from the best performing single-task models and train
with a lower learning rate of λ0 = 10−4. We use TensorFlow
for the implementation and training the network on a single

1VLocNet++ live demo and dataset are publicly available at:
http://deeploc.cs.uni-freiburg.de

http://deeploc.cs.uni-freiburg.de
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TABLE I
MEDIAN LOCALIZATION ERROR ON THE 7-SCENES DATASET.

Scene PoseNet2 [3] NNnet [16] VLocNet [5] VLocNet++STL
(Ours)

Chess 0.13m, 4.48◦ 0.13m, 6.46◦ 0.036m, 1.71◦ 0.023m, 1.44◦
Fire 0.27m, 11.3◦ 0.26m, 12.72◦ 0.039m, 5.34◦ 0.018m, 1.39◦
Heads 0.17m, 13.0◦ 0.14m, 12.34◦ 0.046m,6.64◦ 0.016m, 0.99◦
Office 0.19m, 5.55◦ 0.21m, 7.35◦ 0.039m, 1.95◦ 0.024m, 1.14◦
Pumpkin 0.26m, 4.75◦ 0.24m, 6.35◦ 0.037m, 2.28◦ 0.024m, 1.45◦
RedKitchen 0.23m, 5.35◦ 0.24m, 8.03◦ 0.039m, 2.20◦ 0.025m, 2.27◦
Stairs 0.35m, 12.4◦ 0.27m, 11.82◦ 0.097m, 6.48◦ 0.021m, 1.08◦

Average 0.23m, 8.12◦ 0.21m, 9.30◦ 0.048m, 3.80◦ 0.022m, 1.39◦

TABLE II
MEDIAN LOCALIZATION ERROR ON THE DEPLOC DATASET.

PoseNet [13] Bayesian
PoseNet [29]

SVS-
Pose [4]

VLocNet [5] VLocNet++STL
(Ours)

2.42m, 3.66◦ 2.24m, 4.31◦ 1.61m, 3.52◦ 0.68m, 3.43◦ 0.37m, 1.93◦

NVIDIA Titan X GPU takes 23 hours for the model to converge.

A. Comparison with the State-of-the-art

In this section, we show empirical evaluations comparing
each of the single-task models VLocNet++STL with other
CNN-based methods for each of the corresponding tasks.
Evaluation of Visual Localization: As a primary evaluation
criteria, we first report results in comparison to deep learning-
based approaches on both the publicly available Microsoft
7-Scenes (indoor) and DeepLoc (outdoor) datasets. We analyze
the performance in terms of the median translation and
orientation errors for each scene using the original train and
test splits provided by the datasets. Tab. I shows the results
for the 7-Scenes dataset, for which VLocNet++STL achieves
an overall improvement of 54.17% in translation and 63.42%
in rotation, thereby substantially outperforming existing CNN-
based approaches. The largest improvement was obtained in
the perceptually hardest scenes that contain textureless regions
and repeating structures such as in the stairs scene shown in
Fig. 5(a). In this scene, we achieve an improvement of 78.35%
in translation and 83.34% in rotation over the previous state-
of-the-art. Tab. II shows the results on the DeepLoc dataset, for
which we obtain almost half the error as previous methods. This
demonstrates that VLocNet++STL performs equally well in
outdoor environments where there is a significant amount of per-
ceptual aliasing as well as in indoor textureless environments.
Evaluation of Visual Odometry: We evaluate the performance
of VLocNet++ for 6-DoF visual odometry estimation and show
quantitative results in Tab. III for the 7-Scenes dataset and
in Tab. IV for the DeepLoc dataset. We report the average
translational and rotational errors relative to the sequence
length. On the 7-Scenes dataset VLocNet++ outperforms end-
to-end approaches, achieving a translational error of 1.12% and
rotational error of 1.09deg/m. While on the outdoor DeepLoc
dataset, accurately estimating ego-motion is a rather challenging
task due to the more apparent motion parallax and dynamic
lighting changes. Despite this fact, VLocNet++ surpasses the
accuracy of competitors with a translational error of 0.12%
and a rotational error of 0.024deg/m.
Evaluation of Semantic Segmentation: We present compre-
hensive evaluations of VLocNet++ for semantic segmentation
on the DeepLoc dataset and report the Intersection over Union
(IoU) score for each of the individual categories as well as the

TABLE III
6DOF VISUAL ODOMETRY ON THE 7-SCENES DATASET [%,deg/m].

Scene LBO
[18]

DeepVO
[20]

cnnBspp
[2]

VLocNet
[5]

VLocNet++
(Ours)

Chess 1.69, 1.13 2.10, 1.15 1.38, 1.12 1.14, 0.75 0.99, 0.66
Fire 3.56, 1.42 5.08, 1.56 2.08, 1.76 1.81, 1.92 0.99, 0.78
Heads 14.43, 2.39 13.91, 2.44 3.89, 2.70 1.82, 2.28 0.58, 1.59
Office 3.12, 1.92 4.49, 1.74 1.98, 1.52 1.71, 1.09 1.32, 1.01
Pumpkin 3.12, 1.60 3.91, 1.61 1.29, 1.62 1.26, 1.11 1.16, 0.98
RedKitchen 3.71, 1.47 3.98, 1.50 1.53, 1.62 1.46, 1.28 1.26, 1.52
Stairs 3.64, 2.62 5.99, 1.66 2.34, 1.86 1.28, 1.17 1.55, 1.10

Average 4.75, 1.79 5.64, 1.67 2.07, 1.74 1.51, 1.45 1.12, 1.09

TABLE IV
6DOF VISUAL ODOMETRY ON THE ON THE DEEPLOC DATASET [%,deg/m].

LBO [18] DeepVO [20] cnnBspp [2] VLocNet [5] VLocNet++
(Ours)

0.41, 0.053 0.33, 0.052 0.35, 0.049 0.15, 0.040 0.12, 0.024

mean IoU. As shown in Tab. V, VLocNet++ achieves a mean
IoU of 80.44%, consistently outperforming the baselines in
all the categories. This improvement can be attributed to both
the self-supervised warping as well the inductive transfer that
occurs from the training signals of the localization network,
as the AdapNet model which we build upon achieves a lower
performance without our proposed improvements. In addition,
this enables the model to converge in about 26k iterations,
whereas Adapnet requires 120k iterations to converge.

B. Benchmarking on Microsoft 7-Scenes Dataset
We benchmark the performance of our single-task

VLocNet++STL model and the multitask variant
VLocNet++MTL on the Microsoft 7-Scenes dataset by
comparing against both local feature-based pipelines and
learning-based techniques. We present our main results in
Fig. 2 using the median localization error metric and the
percentage of poses for which the error is below 5cm and 5◦.
While VLocNet [5] was the first deep learning-based approach
to yield an accuracy comparable to local feature-based pipelines
achieving higher performance than SCoRe Forests [30] in
terms of number of images with pose error below 5cm and 5◦,
it was recently outperformed by the approach of Brachmann et
al. [17] which is the current state-of-the-art.

From the results presented in Fig. 2, we see that our
VLocNet++STL model achieves a localization accuracy of
96.4%, improving over the accuracy of Brachmann et al. [17]
by 20.3% and by over an order of magnitude compared to
the other deep learning approaches [3], [16]. Moreover, by
employing our proposed multitask framework, VLocNet++MTL
further improves on the performance and achieves an accuracy
of 99.2%, setting the new state-of-the-art on this benchmark.
Furthermore, VLocNet++ only requires 79ms for a forward-
pass on a single consumer grade GPU versus the 200ms
required by the previous state-of-the-art [17]. It is important
to note that other than VLocNet [5], the competitors shown
in Fig. 2 rely on a 3D scene model and hence require RGB-
D data, whereas VLocNet++ only utilizes monocular images.
DSAC [12] and its variant [17] that utilize only RGB images
demonstrate a lower performance than the results shown in
Fig. 2. The improvement achieved by VLocNet++ shows that
the apt combination of employing the Geometric Consistency
Loss and the adaptive weighted fusion layer enables the network
to efficiently leverage the motion-specific and semantic features



RADWAN et al.: VLOCNET++: DEEP MULTITASK LEARNING FOR SEMANTIC VISUAL LOCALIZATION AND ODOMETRY 7

TABLE V
COMPARISON OF SEMANTIC SEGMENTATION PERFORMANCE WITH STATE-OF-THE-ART APPROACHES ON OUR DEEPLOC DATASET.

Approach Sky Road Sidewalk Grass Vegetation Building Poles Dynamic Other Mean
IoU

FCN-8s [21] 94.65 98.98 64.97 82.14 84.47 87.68 45.78 66.39 47.27 69.53
SegNet [23] 93.42 98.57 54.43 78.79 81.63 84.38 18.37 51.57 33.29 66.05
UpNet [22] 95.07 98.05 63.34 81.56 84.79 88.22 31.75 68.32 45.21 72.92
ParseNet [24] 92.85 98.94 62.87 81.61 82.74 86.28 27.35 65.44 45.12 71.47
DeepLab v2 [26] 93.39 98.66 76.81 84.64 88.54 93.07 20.72 66.84 52.70 67.54
AdapNet [1] 94.65 98.98 64.97 82.14 84.48 87.68 45.78 66.40 47.27 78.59
VLocNet++ (ours) 95.84 98.99 80.85 88.15 91.28 94.72 45.79 69.83 58.59 80.44

Fig. 2. Benchmarking 6DoF localization on the entire 7-Scenes dataset. We
compare against state-of-the-art approaches that utilize RGB or RGB-D data
and even with approaches that depend on a 3D model, VLocNet++ only uses
RGB images. We report the performance as median localization errors (left)
and the percentage of test images with a pose error below 5cm and 5◦ (right).

in order to learn a geometrically consistent motion model. More
extensive evaluations are shown in the supplementary material
and a live demo at http://deeploc.cs.uni-freiburg.de.

C. Multitask Learning

In this section, we primarily investigate the effectiveness of
employing our proposed adaptive fusion layer for encoding se-
mantic information and aggregating motion-specific information
into the global localization stream. We compare the localization
accuracy of VLocNet++MTL which incorporates our fusion
scheme against the performance of single-task models and three
competitive multitask baseline approaches. A rather simple
and naive approach to fuse semantic features learned by the
segmentation stream into the global localization stream would
be to concatenate the predicted segmentation mask as a fourth
channel to the input image, which we refer to as ”MTL-input-
conc”. As a second baseline, we concatenate intermediate
feature maps of the segmentation stream with the corresponding
intermediate feature maps in the global localization stream. We
exhaustively evaluated various intermediate stages to do this
fusion and in our setting we obtained the best accuracy when
concatenating the feature maps of Res5c from the segmentation
with Res4f of the global localization stream, which we denote
as ”MTL-mid-conc”. For the third baseline, we share the
latent space of both the networks as a variant of the approach
proposed in [31], which we denote in our experiments as

”MTL-shared”. More details on these baseline architectural
topologies as well as extended ablation studies on the effect
of semantic fusion and representational warping are shown in
the supplementary material. Fig. 3 shows the results from this
experiment on the DeepLoc dataset. VLocNet++MTL achieves
the highest performance with an improvement of 36% in
translational and 53.87% in rotational components of the pose,
compared to the best performing MTL-input-conc baseline.
While in comparison to our single-task VLocNet++STL model
we achieve an improvement of 13.51% and 23.32% in the

Fig. 3. Localization error of various multitask models in comparison to our
proposed VLocNet++ incorporating our novel adaptive weighted fusion layer
for fusing semantic features into the localization stream.

PoseNet [13] VLocNet++

Fig. 4. 3D multi-dimensional scaling (MDS) of features from the penultimate
layer of PoseNet [13] and VLocNet++ trained on the DeepLoc dataset.
Inputs are images from the testing seq-01 loop and the points shown are
chronologically coloured. Features learned by VLocNet++ show precise
correlation with the trajectory (Fig. 5(b)), whereas PoseNet fails to capture
the distribution especially for the poses near the glass buildings.

translation and rotation components respectively, demonstrating
that our network is able to learn the most favorable weighting
for fusion based on region activations in the feature maps. We
visualize these activation maps in Fig. 6.

D. Ablation Study and Qualitative Analysis

Despite the recent surge in applying deep learning approaches
to various domains, there is still a lack of fundamental
knowledge regarding what kind of representations are learned
by the networks, which is primarily due to their high dimen-
sionality. To aid in this understanding, feature visualization
and dimensionality reduction techniques can provide helpful
insights when applied thoughtfully. Such techniques transform
the data from high dimensional spaces to one of smaller
dimensions by obtaining a set of principle values. For the task
of localization, techniques that preserve the global geometry
of the features such as Multi-Dimensional Scaling (MDS) are
more meaningful to employ than approaches that find clusters
and subclusters in the data such as the t-Distributed Stochastic
Neighbor Embedding (t-SNE). Therefore, we apply 3D metric
MDS to the features learned by the penultimate layer of our
VLocNet++ model to visualize the underlying distribution.
Fig. 4 displays the down-projected features obtained after
applying MDS for VLocNet++ and PoseNet [13] on the
DeepLoc dataset. Unlike PoseNet, the features learned in
VLocNet++ directly correspond to the ground truth trajectory

http://deeploc.cs.uni-freiburg.de
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(a) Stairs (b) DeepLoc

Fig. 5. Qualitative localization results of one test loop depicting the estimated
global pose (yellow trajectory) versus the ground truth pose (red trajectory)
plotted with respect to the 3D scene model for visualization. VLocNet++
accurately estimates the pose in both indoor (a) and outdoor (b) environments
while being robust to textureless regions, repetitive and reflective structures in
the environment where local feature-based pipelines perform poorly.

(a) Input Image (b) Semantic Output (c) ST Activation (d) MT Activation

Fig. 6. Qualitative analysis of the predicted segmentation output along with
a visualization of the regression activation maps [32] for both the single-task
(ST), and multitask (MT) variant of VLocNet++ on the DeepLoc dataset.

shown in Fig. 5(b) (red trajectory), whereas PoseNet fails
to capture the pose distribution in some areas of the dataset.
Furthermore, in Fig. 5 we show the plot of the ground truth
and the estimated poses as trajectories within the 3D model of
the scenes for visualization. Using our proposed VLocNet++
the estimated poses are visually indistinguishable from the
ground truth demonstrating the efficacy of our approach.

In an effort to investigate the effect of incorporating semantic
information on the features learned by the localization stream,
we visualize the regression activation maps of the network
for both the single-task and multitask variants of VLocNet++
using Grad-CAM++ [32]. In Fig. 6 we show two example
scenes that contain glass facades and optical glare. Despite
their challenging nature, our model is able to segment both
scenes with high granularity. As we compare the activation
maps of our single-task and multitask models, we observe that
multitask activation maps have less noisy activations focusing
on multiple structures to yield an accurate pose estimate.

V. CONCLUSION

In this paper, we proposed a novel multitask learning frame-
work for 6-DoF visual localization, semantic segmentation
and odometry estimation, with the goal of exploiting inter-
dependencies within these tasks for their mutual benefit. We
presented a strategy for simultaneously encoding geometric and
structural constraints into the the pose regression network by
temporally aggregating learned motion specific information and
adaptively fusing semantic features. To this end, we proposed
an adaptive weighted fusion layer that learns the most favorable
weighting for fusion based on region activations. In addition,
we proposed a self-supervised warping technique for scene-
level context aggregation in semantic segmentation networks

that improves performance and adds minimal computational
overhead while substantially decreasing the training time.
Furthermore, we introduced a large-scale outdoor localization
dataset with multiple loops and pixel-level semantic ground
truth for training multitask deep networks. Comprehensive
evaluations on benchmark datasets demonstrate that VLocNet++
exceeds the state-of-the-art by 67.5% in the translational and
25.9% in the rotational components of the pose, while being
60.5% faster and simultaneously performing multiple tasks.
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