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Zusammenfassung

Ein Ziel der Forschung im Bereich mobile Robotik ist die Entwicklung intelligenter

Plattformen, die verschiedene Aufgaben im Alltag ihrer Nutzer erledigen können. Im

letzten Jahrzehnt sind Roboter immer mehr Bestandteil unseres Lebens geworden, wo sie

Aufgaben in vielen Umgebungen übernehmen, wie etwa in der Fertigung und Montage

im industriellen Kontext, der Heimassistenz und Bildungsarbeit innerhalb von Gebäuden,

oder dem Rasenmähen und der Paketauslieferung in Außenbereichen. Trotz der signifi-

kanten Fortschritte in diesen Anwendungsgebieten bleibt der zuverlässige Einsatz von

Robotern in urbanen Umfeldern eine Herausforderung.

Um das Ziel einer allgegenwärtigen Robotik zu erreichen, ist es für mobile Roboter

essentiell ihren eigenen Zustand und den anderer Agenten in ihrer Nähe zu schätzen.

Damit dieses Ziel erreicht werden kann müssen jedoch mehrere Hürden bewältigt wer-

den. Die Wahl der Sensormodalität für die Informationsbeschaffung über die Umgebung

spielt eine wesentliche Rolle in der Repräsentationsleistung des Lokalisierungsmoduls.

Während Lidar-Sensoren geometrische Informationen bereitstellen können, so bieten Ka-

meras eine kostengünstige Alternative mit hoher Farb- und Texturinformationsdichte, die

unerlässlich für eine korrekte Bewertung des Umfelds sind. Die genaue Lagebestimmung

eines Roboters ausschließlich mit Kameras ist jedoch, vor allem in urbanen Szenarien,

eine schwierige Aufgabe. Der komplexe Aufbau städtischer Umgebungen mit vielen repe-

titiven Elementen und Glasfassaden der Gebäude machen eine zuverlässige Lokalisierung

sehr schwierig. Des Weiteren erfordern die wechselnden Wetter- und Lichtbedingungen,

sowie die gebäudebedingte häufig wechselnde Szenerie, eine konstante Wartung des

Lokalisierungsmoduls um eine genaue Zustandsschätzung aufrechtzuerhalten. Urbane

Umgebungen sind durch Fußgänger, Autos und Radfahrer üblicherweise von hoher dy-

namischer und stochastischer Natur. Diese Agenten bewegen sich üblicherweise entlang

unterschiedlicher Trajektorien und folgen verschiedenen Verkehrsregeln. Daher wird auch

deren Zustandsschätzung zu einer schwierigen Aufgabe. Die genannten Schwierigkei-

ten verhindern es ebenfalls für Experten genaue, generalisierende und handgefertigte

Zustandsschätzer zu entwickeln, da es unmöglich ist alle potentiellen Szenarien zu antizi-

pieren und Lösungen dafür zu programmieren. Einen vielversprechenden Lösungsansatz

für dieses Problem bieten Roboter, die ihre informationsreiche Umgebung zu nutzen

verstehen und mit semantischen, strukturellen und geometrischen Informationen ein

zuverlässiges und genaues Modell zur Zustandsschätzung lernen.

In dieser Arbeit untersuchen wir die Problemstellung der zuverlässigen Zustandsschätzung
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in urbanen Umgebungen durch neue Techniken, die diese Herausforderungen durch das

Ausnutzen spärlich und häufig vorhandener Merkmale angehen. Wir präsentieren eine

Lokalisierungsmethode nach dem Vorbild menschlicher Ortsbeschreibungen, die Text-

informationen von visuellen Umgebungsdaten nutzt um die Position des Roboters mit

Hilfe von öffentlich verfügbaren Karten zu schätzen. Dadurch erreicht unsere Methode

einen globalen Anwendungsbereich mit niedrigen Bandbreiteanforderungen. Wir verwen-

den distanz- und sprachbasierte Metriken, um einen unbewegten Textausschnitt aus der

Umgebung mit Orientierungspunkten in Karten zu assoziieren. Damit ist die von uns vor-

gestellte Technik die Erste, die Textinformationen zur zuverlässigen Positionsschätzung

nutzt. Um auch ohne solche Information eine genaue Lagebestimmung zu gewährleisten,

präsentieren wir zusätzlich eine visuelle Multitask-Lokalisierung, die Ähnlichkeiten zwi-

schen der Lokalisierung, der Bestimmung der Eigenbewegung und der semantischen

Szenensegmentierung nutzt, um damit eine Verbesserung jeder dieser Aufgaben zu errei-

chen. Der Einsatz von geometrischen und semantischen Zwangsbedingungen in unserem

Netzwerk führt zu einer genaueren Lageschätzung, die geometrisch konsistent mit den

Bewegungen des Roboters ist und gleichzeitig robust gegen Aliasing der Sensorik und

schlechte Lichtverhältnisse bleibt. Als letzten Schritt führen wir eine multimodale, inter-

aktionsbasierte Methode zur Verhaltensvorhersage ein, die für ein gegebenes Zeitfenster

die Sicherheit einer Straßenüberquerung abschätzt. Dieser Beitrag erweitert bestehende

Methoden zur Verhaltensvorhersage durch das Betrachten der Interaktionen und gegen-

seitigen Abhängigkeiten der Verkehrsteilnehmer, um simultan genaue Trajektorien für

jeden Agenten vorherzusagen. Durch das Kombinieren dieser Pfade mit der Erkennung

des Ampelsignals ist unser Model in der Lage die Sicherheit einer Straßenüberquerung

unabhängig von der Art der Kreuzung abzuschätzen.

Wir demonstrieren mit umfangreichen Experimenten auf verschiedenen Benchmarks

und auf realen Daten die Effektivität unserer Methoden im Schätzen des Zustands des

Roboters und der wahrnehmbaren Agenten in seinem Umfeld. Des Weiteren zeigen wir

empirisch die Generalisierung und Robustheit unserer Methoden im Kontext verschiedener

Umgebungen und schwieriger sensorischer Bedingungen, wodurch wir den Pfad zu einem

zuverlässigen, dauerhaften Einsatz autonom navigierender Roboter in unseren Städten

einschlagen.



Abstract

An ultimate goal of mobile robotics research is the development of intelligent platforms

that are capable of undertaking a variety of tasks in everyday life for their users. Over

the previous decade, robots have become more integrated into our daily lives, perform-

ing tasks in numerous environments including industrial settings such as assembly and

manufacturing, indoor scenes such as home assistance and educational tasks, and outdoor

areas such as lawn mowing and parcel delivery. Despite the significant strides achieved in

the various application areas, reliably deploying robots in urban environments remains an

open challenge.

In order to realize the goal of ubiquitous robotics, the ability of mobile robots to

reliably estimate their state as well as the state of the agents in their vicinity is crucial

for their successful deployment. However, in order to achieve this goal, robots need to

overcome several challenges. The choice of sensor modality employed for extracting

information about the environment plays a major role in the representational capabilities of

the localization module. While LiDAR sensors are able to provide geometric information

of the environment, cameras provide a low cost alternative with rich color and texture

information which is crucial for reasoning about the scene. However, accurately estimating

the pose of the robot using only cameras is an arduous task especially in urban scenarios.

The complex nature of urban environments due to the presence of multiple repetitive

structures and glass facades of buildings render the task of reliable localization extremely

challenging. Furthermore, the varying weather and illumination conditions in addition

to the frequently changing nature of the scene due to constructions necessitates the

constant maintenance of the localization module to enable accurate state estimation.

Urban environments commonly are of a highly dynamic and stochastic nature caused by

moving pedestrians, cars and cyclists. Each of these agents often traverses a different

trajectory and obeys different traffic rules. This in turn makes the task of estimating

the state of surrounding agents extremely challenging. The aforementioned challenges

render highly accurate generalizable hand-crafted solutions to the state estimation problem

unattainable, as it is infeasible for an expert to anticipate and pre-program solutions for

all potential scenarios. A promising solution for this problem is robots that are able to

leverage the abundant rich information in the environment such as semantic, structural and

geometric information in order to learn models for reliable and accurate state estimation.

In this thesis, we address the problem of reliable state estimation in urban environments

by introducing novel techniques that address these challenges through exploiting sparse
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and dense features of the scene. Inspired by how humans describe their location in urban

cities, we propose a visual localization method that leverages the textual information in

the scene to estimate the location of the robot by utilizing publicly available maps. This

enables our method to achieve global scale breadth and low bandwidth requirements. We

employ distance and linguistic-based metrics to probabilistically associate stable text

from the environment with landmarks in the map. Our proposed method is the first to

utilize textual information from the scene to produce reliable position estimates. In order

to enable accurate pose estimation in the absence of textual information, we propose a

multitask visual localization method that leverages the inter-task similarities between

localization, ego-motion estimation and semantic scene segmentation for the mutual

benefit of each of these tasks. Incorporating geometric and semantic constraints into

our network enables the prediction of accurate pose estimates that are geometrically

consistent with the robot motion, while being tolerant to perceptual aliasing and adverse

illumination conditions. Finally, we propose a multimodal interaction-aware behavior

prediction method for predicting the safety of street intersections for crossing during a

given time interval. Our contribution goes beyond existing behavior prediction approaches

by leveraging the interaction interdependencies between the various traffic participants to

simultaneously predict an accurate future trajectory for each participant. Furthermore, by

utilizing the predicted motions along with recognizing the traffic light signal, our model

can estimate the safety of a street intersection for crossing while being invariant to the

type of intersection.

We present extensive experimental evaluations on several benchmarks as well as real-

world datasets and show the effectiveness of our proposed methods in reliably estimating

the state of the robot and all observable agents in its vicinity. Moreover, we provide

thorough empirical evidence that demonstrates the generalization ability and robustness

of our methods to different environments and challenging perceptual conditions, thus

paving the way towards the reliable life-long deployment of robots that can autonomously

navigate in our complex cities.
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Chapter 1

Introduction

From the vast depths of the oceans to the peaks of the highest mountains, humans have

had the desire to explore since the beginning of time, whether for survival reasons such

as finding better hunting grounds, or in search for better living conditions. Satisfying

this desire to explore, however, meant finding solutions to the question of how to reach

specific locations (navigation), which in itself entails sufficient knowledge of your position

along the traversed path (localization). The earliest localization methods dating back to

3000 BC used the locations of stars for navigating across seas, oceans and deserts [1].

During the middle ages, tools such as the magnetic compass and the kamal were used

to aid in celestial navigation by providing rudimentary measures for the positions of the

stars [2]. Over time, the tools enabling celestial navigation evolved from using quadrants

and astrolabes to cross staffs and sextants around the early 1700s [3].

The 1920s featured the installation of radio beacons [4]. Using radio sets, accurate

localization was made possible by calculating the distance to the nearest known transmis-

sion station. Radio-based localization, however, came with the disadvantage of requiring

relatively flat regions to enable accurate localization estimates. In order to circumvent

this issue, the Global Positioning System (GPS) was launched in the early 1970s as a

satellite-based radio navigation system [5]. It enabled users with a GPS receiver to gain

accurate knowledge of their location with less interference from mountains and buildings

compared to radio beacons. Currently, GPS is employed in multiple domains such as ge-

ofencing for tracking animals, persons or vehicles [6], cartography [7], disaster relief [8],

aircraft tracking [9, 10], and navigation [11] whether using a smartphone or an automotive

navigation system [12].

The 1900s also witnessed the introduction of the concept of a robot. The term “robot”

was first introduced in a satire play, referring to beings that performed all unpleasant

manual labor [13]. Over the remainder of the century, the idea of employing robots to

carry out labor-intensive, mundane or dangerous tasks gained popularity, with the goal

of increasing operation safety and saving time. The first industrial robot was introduced

in the 1960s by Unimation [14]. The robot undertook the dangerous task of transporting

die castings from an assembly line to a welding station, where it welded the parts onto

auto bodies. As industrial robots evolved, they became more integrated into factories [15,
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16]. However, their operation remained mostly confined to designated areas where

they carried out tasks with a set of pre-programmed actions. Deploying robots in more

complex environments to perform tasks that entail navigating from one location to another

necessitates developing robust methods to reliably estimate the state of the robot and other

agents in its vicinity amongst other challenges.

After several years of battling these challenges, teams from Carnegie Mellon University

were the first to develop a robot that could autonomously navigate across cities. Using

GPS and gyroscope information, their autonomous vehicle was able to navigate from

Pittsburgh to San Diego for 98% of the 2,800 mile journey. Despite this successful

demonstration of utilizing GPS as a solution to the localization problem, employing GPS

solely is insufficient for reliably deploying robots in urban environments. This comes as a

consequence of the dense structure of urban cities and the presence of high rises which

cause a degradation in the quality of the GPS signal. Following the advances realized

through utilizing GPS, Simultaneous Localization and Mapping (SLAM) frameworks

have enabled further progress in the field of robotics by facilitating state estimation

using a map that is incrementally built while navigating the environment [17]. By

incorporating the map building process coupled with loop closure detection, SLAM

approaches have revolutionized state estimation methods by reducing trajectory drift

that accumulates over time. Utilizing SLAM for state estimation has brought many

advances including RHINO the interactive museum tour-guide robot [18], robotic vacuum

cleaners [19], lawnmowers [20], self-driving cars [21, 22, 23] and, more recently, delivery

robots [24, 25, 26]. Each of these innovations employed more advanced systems for

navigation and state estimation, improving upon the state of the art and opening up

new possibilities. Despite the generalizability of SLAM to the type of sensor used,

LiDAR sensors are most commonly used due to the high accuracy of the depth estimates

provided by these sensors which in turn facilitates accurate estimation of the pose of

the robot [27, 28, 29]. Nonetheless, the cost of LiDAR sensors prohibits the widespread

production and retail of mobile robots using them, which has consequently lead to

an increased interest in camera-based state estimation methods. Unlike LiDAR-based

state estimation, camera-based approaches present a low-cost and an affordable solution.

However, achieving comparable localization accuracy to LiDAR-based methods using

camera-based approaches remains an open challenge which is essential for the large scale

deployment of robots. In this thesis, we introduce several frameworks to address the

fundamental problem of reliable state estimation for mobile robots by leveraging the

inherent semantic and geometric structures from the sensor data with the goal of enabling

efficient and reliable deployment in urban environments.

Current predictions indicate that autonomous vehicles will make over 80% of last-mile

deliveries by 2025 [30]. However, several challenges remain preventing the widespread

deployment of robots in everyday life. In order to reliably localize in dense urban cities,

the GPS signal alone is insufficient due to signal degradation and outages in the vicinity
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of skyscrapers. Currently, the majority of localization approaches employ highly precise

maps that are custom-built by mapping service providers [31, 32, 33]. However, due

to the constantly changing nature of the environment, the maps need to be frequently

updated in order to enable accurate localization. Moreover, utilizing a pre-existing map for

localization leads to confining the autonomous operation of the robots to the areas mapped

beforehand. This has limited companies that deploy robots for pickup and delivery of

packages, such as Hermes, to operate within a small region of the city which is guaranteed

to have an up-to-date map [34]. Additionally, the presence of multiple dynamic objects

such as pedestrians, cars and bikes makes the localization task even more challenging,

since to enable reliable localization, it is required to distinguish between the stable features

such as those belonging to buildings, and features belonging to dynamic or potentially

movable objects such as cars. Semantic information in the form of street and shop signs

is, however, abundant in dense urban cities and is used by humans to localize and navigate

in their daily lives. Effectively leveraging this semantic information can aid in robustly

localizing in text-rich urban cities.

Among the challenges faced for making robots ubiquitous is the choice of sensors

used for state estimation. Despite the accuracy of LiDAR-based localization meth-

ods [35, 36, 37], glass structures such as windows which commonly occur in urban

environments disturb the localization accuracy of the system [38]. Similarly, seasonal,

weather and illumination conditions such as snow, presence of fallen leaves or cast shad-

ows disturb the accuracy of camera-based localization methods [39]. Currently, the

minimal set of sensors required to enable accurate and efficient localization remains to

be defined [40]. While current approaches for camera-based localization that employ

hand-engineered features with a 3D model of the environment are able to provide accurate

localization estimates in certain conditions, such methods, however, do not generalize

well to varying weather and seasonal appearance changes [41, 42]. Furthermore, local

feature-based localization methods require expert knowledge for designing and choosing

features that are representative of the deployment environment, which in turn reduces

the robustness of these methods when applied in different environments than the ones

for which the features were designed. On the other hand, although deep learning-based

localization methods are able to generalize to varying environments, adverse weather

and seasonal conditions, they require a large amount of training data and achieve lower

localization accuracy in comparison to local feature-based methods as they cannot encode

the geometric features of the environment into the network [43, 44]. The major challenge

lies in the ability to combine the advantages of both localization approaches by encoding

the geometric and semantic structural information of the environment into the localization

network, thereby enabling accurate localization that is robust to weather and illumination

conditions. Naively encoding the structural information through concatenation leads to

suboptimal performance as over time the network accumulates irrelevant information.

Similarly, defining a fixed feature set from the semantics of the environment and dis-
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carding information from the remaining structures restricts the operation to pre-defined

environments that follow the hand-crafted definition. Learning the set of stable semantic

features in a self-supervised manner will enable the network to utilize this information

more efficiently, while facilitating deployment in new environments.

Ubiquitous robotic deployment will eventually lead to the presence of robots with

various purposes navigating the streets and sharing the living space with humans. In order

for robots to be safely deployed among humans, their ability to infer the state and future

motion of humans and agents in their vicinity is crucial. In most situations humans have the

ability to predict the future motion of those surrounding them without the need for explicit

communication. Current research methods, in the area of computational motion prediction,

rely on some mode of communication between the mobile robots for instance at street

intersections to signal the right-of-way [45, 46]. This however, requires the standardization

of the communication protocol among all manufacturers, which is infeasible. Furthermore,

additional protocols need to be devised for facilitating communication between robots and

humans. Alternative approaches for estimating the future trajectories of nearby pedestrians

and vehicles manually define a set of behavioral rules [47], rank the significance of

surrounding pedestrians and vehicles in order to approximate motion dependencies and

interactions [48], or estimate the behavior of a single pedestrian or vehicle regardless of

their surroundings [49]. Employing such methods prevents the deployment of robots in

new environments without manually adjusting the set of rules, which is both taxing and

infeasible at a large scale. Furthermore, they are unable to accurately estimate the future

motion [50] or have slow interaction times [51]. This can lead to dire consequences as

current records from the California Department of Motor Vehicles (DMV) for 2018 show

that two thirds of the filed autonomous vehicle collisions are rear-ending accidents, with

78% of the accidents occurring with the vehicle in fully autonomous mode [52]. The

statistics suggest that the manner in which the autonomous vehicles currently behave is

different from what human drivers would expect. Another example can be seen in San

Francisco where citizens petitioned against the operation of delivery robots on sidewalks

due to the operating speeds of the robots and their slow interaction times which renders

them as a source of threat for the nearby pedestrians [53]. Among the core challenges of

safely navigating across intersections is the ability to estimate the motion of the nearby

pedestrians and vehicles in real-time. As opposed to manually defining a set of behavioral

rules that do not generalize well to new scenarios, leveraging the observed motion for all

observable pedestrians and vehicles is expected to enable the robot to learn a prediction

model that is more aware of its surroundings. Hence, enabling the prediction of safer

and more accurate trajectories that resemble human behavior. Concurrently, leveraging

information from multiple modalities such as LiDARs, radars, and cameras can aid in

making decisions that are robust to failures from each single modality, which is crucial

when navigating street intersections.

Considering the aforementioned challenges that face the deployment of robots in urban
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environments, we pose the following research questions that we address in this thesis:

• How can a robot accurately localize in constantly changing urban environments

without the need to frequently update the map? How can we leverage the abun-

dant textual semantic information from the environment in order to enable robust

localization?

• How do we enable a robot to robustly localize in challenging perceptual conditions?

Accordingly, how can we encode geometric and semantic structural features into a

convolutional neural network architecture to enable robust localization with online

run-time capabilities?

• How can we enable a robot to learn to estimate the motion of all observable agents

in the scene without explicitly modeling the interdependencies in their motion?

Moreover, can we leverage this information to enable robots to learn to safely

navigate across street intersections?

In the scope of this thesis, we tackle the aforementioned questions and provide solutions,

which outperform current state-of-the-art methods in terms of both run-time performance

and benchmarking metrics.

1.1 Key Contributions

In this thesis, we present several contributions to the field of robotics research by devel-

oping solutions for state estimation problems in urban environments. Our contributions

address the tasks of visual localization and motion prediction by providing solutions that

enable reliable, efficient, and robust state estimation for mobile robots. Firstly, we tackle

the problem of localization in urban environments by leveraging the abundant textual

semantic information. We employ a probabilistic particle filter-based method with dedi-

cated sensor models to estimate the position of the robot using publicly available maps,

thus rendering our method robust to frequent changes in the environment. Next, in order

to facilitate pose estimation in the absence of textual features, we propose a multitask con-

volutional neural network to simultaneously predict the semantics, ego-motion and global

pose of the robot by exploiting the interdependencies among the tasks. Jointly learning all

three tasks enables our method to aggregate the geometrical and structural features of the

scene, which in turn improves the accuracy and reliability of our approach. Finally, we

propose a multimodal framework for learning to predict the safety of street intersections

for crossing by jointly predicting the motion of all observable traffic participants and

recognizing the traffic light signal. Utilizing information from both modules renders our

approach generalizable to different environments, with online run-time capabilities. We

briefly highlight each of these contributions in the remainder of this section as well as list

them at the end of the introduction of each respective chapter.
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Visual Localization using Textual Information In Chapter 3, we address the problem

of localizing in urban environments by leveraging abundant textual features from street

signs and shop fronts within the environment. Our approach is the first to utilize textual

information from scene images to enable the localization of mobile robots in urban

environments. We first extract text from natural scene images and utilize a data association

method to select a number of potential matching landmarks which are then used for

probabilistically estimating the 2D location of the robot. We propose two variants of our

approach: a single-shot global localization variant to estimate the position at a single

timestep, and a pose tracking variant which utilizes the odometry information of the

robot to maintain a tracked estimate over the various timesteps. As our method employs

publicly available maps for extracting the landmarks, it can be robustly applied in new

environments without the need for an initial mapping step. Leveraging the textual features

further renders our method both robust to appearance changes due to weather and season,

and easy to deploy in resource constrained systems. Through extensive experimental

evaluations in three cities, we demonstrate the effectiveness and robustness of our proposed

method.

Geometrically Consistent Semantic Visual Relocalization In order to enable the ro-

bust relocalization of mobile robots, independent of the presence of textual features in

the environment, we propose to leverage geometric and semantically stable features from

the scene in a multitask learning framework. We propose a convolutional neural network

architecture to jointly estimate the 6-DoF pose, 6-DoF odometry and pixel-wise semantic

segmentation of the scene in Chapter 4. Our approach combines the advantages of local

feature-based methods and convolutional neural networks for localization. We propose

a novel fusion scheme to enable the incorporation of semantic and geometric features

into the pose regression network by temporally aggregating motion-specific features and

semantic representations of the scene. In order to enable the network to fully leverage

the geometric information, we propose a novel loss function that enforces the consis-

tency of the predicted poses with the motion of the robot. We additionally propose a

self-supervised warping method to enable the aggregation of temporal features into the

semantic segmentation stream, thereby enabling the prediction of accurate segmentation

masks. We introduce two challenging datasets to facilitate the evaluation of our proposed

method in varying outdoor environments, as well as provide qualitative and quantitative

analysis on a publicly available indoor benchmarking dataset. Experimental evaluations

demonstrate that our approach is the first deep learning-based method to outperform

state-of-the-art techniques while simultaneously predicting multiple tasks and achieving

fast run-time, hence enabling reliable online deployment. Our extensive ablation stud-

ies further demonstrate the robustness of our method to perceptual aliasing, dynamic

obstacles and motion blur, and provide insights on the representations learned and the

generalization capabilities of the networks.
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Interaction-Aware Motion Prediction With the goal of enabling the autonomous nav-

igation of mobile robots in urban environments, in Chapter 5 we propose a multimodal

convolutional neural network framework for predicting the safety of street intersections for

crossing. Our architecture consists of two sub-networks: an interaction-aware motion pre-

diction stream and a traffic light recognition stream. Our motion prediction sub-network is

the first deep learning-based behavior prediction method to estimate the future trajectories

of all observed dynamic agents by utilizing causal convolutions and accounting for the

complex interactions among the various agents. Our traffic light recognition sub-network

employs an attention-based method to provide an estimate for the state of the traffic light.

We fuse the learned representations from both sub-networks to estimate the safety of the

street intersection for crossing. Incorporating the uncertainties in the predictions of each

sub-network enables our crossing predictor to learn a probabilistic function for deciding

the safety of a street intersection for crossing, while being robust to mispredictions from

either sub-network. Additionally, as we utilize information from both the motion predic-

tion and the traffic light recognition sub-networks, our approach is robust to the type of

intersection and does not require prior knowledge of the environment. In order to facilitate

the evaluation of our approach, we introduce a first-of-a-kind dataset captured at various

intersections. We provide extensive evaluations for each of the sub-networks as well as

the entire framework on multiple publicly available benchmarks, which demonstrate the

accuracy of the predictions of each component. Our proposed method generalizes well

to various environments, achieves fast run-time and requires small storage space thereby

making it efficiently deployable in an online manner while achieving state-of-the-art

accuracy for motion prediction.

1.2 Publications

Major parts of the work presented in this thesis have undergone or are currently undergoing

international peer review. In the following, we list the corresponding publications in

chronological order.

• N. Radwan, G. D. Tipalidi, L. Spinello, and W. Burgard. Do you see the Bakery?

Leveraging Geo-Referenced Texts for Global Localization in Public Maps. In Proc.

of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2016.

• N. Radwan, W. Winterhalter, C. Dornhege, and W. Burgard. Why Did the Robot

Cross the Road? - Learning from Multi-Modal Sensor Data for Autonomous Road

Crossing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2017.
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• A. Valada∗, N. Radwan∗, and W. Burgard. Deep Auxiliary Learning for Visual

Localization and Odometry. In Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA), 2018.

• A. Valada∗, N. Radwan∗, and W. Burgard. Incorporating Semantic and Geometric

Priors in Deep Pose Regression. In Proc. of the Workshop on Learning and Inference

in Robotics: Integrating Structure, Priors and Models at Robotics: Science and

Systems (RSS), 2018.

• N. Radwan∗, A. Valada∗, and W. Burgard. VLocNet++: Deep Multitask Learning

for Semantic Visual Localization and Odometry. In IEEE Robotics and Automation

Letters (RA-L), 2018.

• N. Radwan, and W. Burgard. Effective Interaction-aware Trajectory Prediction us-

ing Temporal Convolutional Neural Networks. In Proc. of the Workshop on Crowd

Navigation: Current Challenges and New Paradigms for Safe Robot Navigation in

Dense Crowds at IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2018.

• N. Radwan, A. Valada, and W. Burgard. Multimodal Interaction-aware Motion

Prediction for Autonomous Street Crossing. In arXiv preprint arXiv:1808.06887,

Int. Journal of Robotics Research (IJRR) (Under Review), 2018.

Furthermore, the following publications of the author of this thesis present work related

to localization and multitask robot learning. However, they are outside of the scope of

this thesis and thus are not covered.

• G. Oliveira∗, N. Radwan∗, W. Burgard, and T. Brox. Topometric Localization with

Deep Learning. In Proc. of the Int. Symposium on Robotics Research (ISRR), 2017.

• W. Burgard, A. Valada, N. Radwan, T. Naseer, J. Zhang, J. Vertens, O. Mees, A.

Eitel and G. Oliveira. Perspectives on Deep Multimodal Robot Learning. In Proc.

of the Int. Symposium on Robotics Research (ISRR), 2017.

1.3 Collaborations

This thesis covers work that was the outcome of collaborations with other researchers.

Prof. Wolfram Burgard contributed through scientific discussions as the supervisor of this

thesis. We outline below the collaborations beyond this supervision.

∗Denotes equal contribution
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• Chapter 3: The localization system presented in this chapter is an extension of the

author’s master thesis which was supervised by Luciano Spinello. The chapter

builds on the same concept of localizing using a publicly available map and textual

information from the scene, which the author of this thesis extensively expanded.

The extensions include the introduction of two different approaches for localiza-

tion, the introduction of two data association methods which capture the lexical

relations between the map text and the extracted words, extensions of the datasets

for which this method was evaluated as well as extensive experiments evaluating

the performance of each of the proposed components. The work on the Single

Shot Localization method was co-supervised by Gian Diego Tipaldi and Luciano

Spinello.

• Chapter 4: Both the VLocNet and VLocNet++ architectures presented in this

chapter are a result of collaboration with Abhinav Valada, who contributed the main

architectural topologies as well as the weighted fusion layer. The formulation of the

Geometric Consistency loss function and the self-supervised warping layer were

developed by the author of this thesis. The experimental evaluation was further

expanded by the author of this thesis through the addition of a novel challenging

dataset containing multiple dynamic objects that we make publicly available. The

related publications for this chapter are Valada et al. [56] and Radwan et al. [57].

• Chapter 5: This chapter is a result of the fruitful discussion with Abhinav Val-

ada, Christian Dornhege and Wera Winterhalter. Christian Dornhege and Wera

Winterhalter contributed during the early stages of this work in the formulation of

the baseline Random Forest classifier. The implementation of the Naive Crossing

Predictor baseline was realized by Wera Winterhalter. The subsequent work on the

IA-TCNN, AtteNet and ACP architectures was carried out entirely by the author of

this thesis.





Chapter 2

Background Theory

In this chapter, we briefly describe some of the basic concepts and theoretical foundations

for the methods presented later in this thesis. We begin by introducing the robotic

platform used for both conducting real-world experiments and capturing the datasets used

in Chapter 4 and 5. Next, we describe the mapping of three dimensional world coordinates

to the two-dimensional pixels in the camera model, followed by a brief mathematical

overview of the particle filter algorithm for robot localization. We then briefly describe

the constituting blocks of artificial neural networks, loss functions as well as some of

the popular architectures. Finally, we conclude this chapter by detailing the auxiliary

learning architecture for visual localization and ego-motion estimation which we build

upon in Chapter 4.

2.1 Robotic Platform

We utilize the robotic platform shown in Figure 2.1 to carry out the real-world experiments

conducted in this thesis. The robot was custom built for pedestrian assistance [67]. It is

equipped with multiple laser scanners including SICK LMS 151, Velodyne HDL-32E and

a Hokuyo UTM-30LX which are mainly used for mapping and localization. Furthermore,

an XSens IMU and a Trimble GPS Pathfinder Pro are employed to provide information

during the localization and mapping tasks, and a Bumblebee camera for visualization. In

addition to the aforementioned sensors, we further equipped the robot with a ZED stereo

camera for capturing stereo and depth images which were used in Chapter 4 for estimating

the robot pose and understanding the observed scene. We mounted two Delphi ESR radar

sensors to the left and right of the robot as shown in Figure 2.1. Each radar provides

both wide angle coverage at mid-range and high resolution coverage at long-range. The

radars are designed specifically for the automotive industry, allowing the detection and

tracking of adjacent vehicles and pedestrians across the width of the equipped platform.

The long-range coverage can identify vehicles up to 174m with a field-of-view ±10◦,

while the mid-range coverage has a shorter range of only 60m but a larger field-of-view

±45◦. The radars were added with the goal of enabling the detection and tracking of
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Figure 2.1: Our robotic platform (Obelix) that was used for capturing the different datasets and

conducting real-world experiments.

objects at long ranges such as vehicles at a road intersection and will be used in Chapter 5.

2.2 Camera Model

In this section, we describe the pinhole camera model, in which a scene view is trans-

formed by projecting 3D points M to the 2D image plane m using a perspective transfor-

mation [68] π : R3 → R
2 such that:

π(M) = K [R | t]M
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, (2.1)

where K is the intrinsic camera matrix with focal length f and optical center C. The joint

rotation-translation matrix [R | t] is used to describe the camera motion in the scene or

the motion of objects in front of a static camera.

Figure 2.2 depicts a simple pinhole camera model. The line perpendicular to the image

plane that passes through the optical center is referred to as the principal axis, and the

intersection point of the image plane with the principal axis is called the principal point.
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Figure 2.2: Illustration of the pinhole camera model describing the transformation relationship

between a point in three dimensional world coordinates p = (x, y, z)T and its corre-

sponding two dimensional projection (u, v)T on the image plane [68].

The distance between the principal point and the optical center defines the focal length

of the camera. We employ the previously described equation in Chapter 4 to temporally

transform images.

2.3 Particle Filter

Among the motivations of employing the particle filter algorithm for robot localization [69]

is its ability to deal with arbitrary distributions outside the scope of the well known normal

distributions. This ability is facilitated by the definition of the particle filter itself, wherein

the posterior distribution of the robot p(x) is represented by a set of weighted samples

which are referred to as particles:

χ =
{〈

xj, wj
〉}

, (2.2)

for j ∈ N , where j is the number of particles. Each particle represents a specific belief

over the pose of the robot and the importance weight over that belief, where the weights

sum up to one.

The particle filter is a non-parametric recursive Bayes filter approach, and as such

estimates the posterior distribution p(xt) of the state of the robot at time t given the prior

distribution p(xt−1). Ideally, one would sample the particles directly from the underlying

posterior distribution, however, in robotic applications this is often not possible. In

this thesis, we employ the importance sampling principle [70, 71], which allows us to
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estimate the posterior distribution by sampling particles from a different distribution

and weighing them using the ratio between both distributions. More precisely, given a

target distribution p(xt) representing the posterior of the robot, we draw samples from the

proposal distribution q(xt) in the prediction phase. In the correction phase, each sample j

is assigned an importance weight to account for the difference between the target and the

proposal distribution such that

wj
t =

p(xj
t)

q(xj
t)
. (2.3)

Once the importance weights have been computed, the resampling step needs to be carried

out. During resampling, the particle set is updated by drawing samples out of it, each with

a probability equal to the importance weight. The goal of the resampling step is to ensure

that the density of the final particle set is representative of the posterior/target distribution.

In the context of robot localization, the particle filter algorithm can be employed to

estimate the posterior distribution over the full trajectory of the robot. Thus each particle

does not only contain the current pose information, but rather the entire trajectory history.

In the prediction step, the motion model is used as the proposal distribution for sampling

the particles such that:

x
j
t ∼ p(xt | xt−1, ut), (2.4)

where xt is the current pose of the robot, and ut is the current odometry/motion com-

mand. In the correction step, the importance weight of the particles is computed via the

observation model such that:

wj
t ∝ p(zt | xt,m), (2.5)

where zt is the current set of observations, and m is the map. The resampling step remains

the same as in the original algorithm. There exist multiple methods for resampling,

in the scope of this thesis, we employ the stochastic universal sampling method [72].

In Chapter 3, we employ the particle filter algorithm for robot localization in urban

environments utilizing textual features from the scene.

2.4 Feed-Forward Neural Networks

Feed-forward neural networks or multi-layered perceptrons are the first artificial neural

networks proposed. They consist of an input layer, a number of hidden layers and an

output layer with information flowing in a single direction without loops between the

input and output layers. Figure 2.3 shows a three-layer feed-forward neural network with

multiple inputs, two hidden layers and two outputs. Each neuron or perceptron learns

a weighted sum of its inputs and activates if the output value is higher than a certain

threshold using a non-linear activation function. Formally, a single perceptron can be
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Figure 2.3: Depiction of a three-layer perceptron with multiple inputs, two hidden layers and two

outputs.

modeled as such:

f(x) = σ

(

N
∑

i=1

wixi + b

)

, (2.6)

where N is the number of inputs, wi is the learned weight for each input xi, b is the

added bias and σ is the non-linear activation function enabling the perceptron to learn a

non-linear mapping from the inputs to the output.

Within a single layer in a feed-forward neural network such as the one shown in Fig-

ure 2.3, there are no connections passing the information from one perceptron to the other.

Furthermore, all perceptrons within the same layer use the same activation function, with

the exception of the output layer which does not employ an activation function. Similar to

the mathematical representation of the output of a single perceptron, the output of a layer

l can be defined as:

f l(x) = σl
(

Wlx+ bl
)

, (2.7)

where Wl ∈ R
m×n is the l-th layer weight matrix with m equal to the number of neurons

in the layer and n the number of input channels in x, bl ∈ R
m is the corresponding biases

and σl denoting the activation function employed for the l-th layer. Common activation

functions employed usually include tanh, sigmoid, Rectified Linear Units (ReLU) [73]

and Exponential Linear Units (ELU) [74]. The intrinsic parameters of the network such

as weights, biases and activation functions are often encapsulated in a single term θ with

the predicted output of the network defined as ŷ = f(x | θ).
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Figure 2.4: A depiction of a convolutional neural network architecture. The network consists

of alternating convolution and pooling layers which learn the spatial structure of the

input image, followed by a fully connected layer to integrate the global information

into the output layer.

2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a shift invariant variation of the feed-forward

neural networks. Inspired by biological processes, CNNs are designed to require minimal

pre-processing with connectivity patterns between the neurons resembling the organization

of the visual cortex in animals. Individual neurons within CNNs only have access to

parts of the input or what is known as the receptive field. Furthermore, the receptive

fields of the different neurons overlap such that they fully cover the entire visual field.

Moreover, unlike multi-layered perceptrons, the number of parameters in CNNs does not

grow quadratically with the size of the network which enables the network to represent

more complex functions with fewer parameters. A standard convolutional neural network

as shown in Figure 2.4 is comprised of a series of convolutional and pooling layers which

are optionally followed by recurrent layers or fully connected layers [75, 76]. In the

following, we begin by discussing the basic constituting layers of a CNN, followed by

some standard architectures and the cost functions that are used for training the networks.

2.5.1 Layers

In this section, we describe the fundamental layers which act as building blocks for

creating the various architectures proposed in this thesis.

Convolution Layer: The convolutional layer is the core building block of the CNN

architecture and consists of a set of learnable kernels (filters) with a small receptive

field which extend through the entire depth of the input. During a forward pass, the dot

product of the filters and the input entries is computed across the height and width of
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the input volume to produce a two-dimensional activation map representing the spatial

response of the kernel at each location. Unlike fully connected layers, the learnable filters

in a convolutional layer share parameters across the depth of the input volume, thereby

conserving the number of learned parameters. The output tensor is then computed by

stacking the activation maps across the depth dimension. The size of the output tensor is

controlled by three hyperparameters; depth, stride and zero-padding. The depth parameter

controls the number of filters used during the convolution operation; each of which learns

to activate for different features in the input image. The stride defines the number of

pixels with which the kernel matrix is shifted at a time; with a stride value of one referring

to moving the kernel one pixel at a time. The zero-padding parameter controls the size of

the output volume by adding zeros around the borders of the input tensor. Given an input

tensor of size W , its output dimension Y can be computed as:

Y = ⌊
W − F + 2P

S
⌋+ 1, (2.8)

where F denotes the size of the receptive field, S the stride and P denotes the zero-

padding.

Dilated Convolution Layer: A drawback of the convolution operation is that the re-

ceptive field size grows only linearly with the number of layers. This can be very limiting

when learning tasks where the information from several scales is crucial for instance in

semantic segmentation or object detection. Dilated convolutions, also known as atrous

convolutions were proposed to alleviate this problem by introducing a dilation rate param-

eter to convolutional layers [77]. The dilation rate specifies the spacing between the kernel

values, thus increasing the receptive field while maintaining the same computational cost.

Using dilated convolution, a 3× 3 kernel with a dilation rate of 2 has the same receptive

field as a 5×5 convolutional layer. Furthermore, by stacking multiple dilated convolutions

with increasing dilation rates, the effective receptive field increases exponentially without

an exponential increase in the number of parameters.

Pooling Layer: In order to reduce the spatial dimensions of the representations learned,

pooling layers are employed within network architectures. They are most commonly

inserted between successive convolution layers within a CNN in order to reduce the

number of parameters of the network and hence control over-fitting, as well as provide

translation invariance to the representations learned by the network. The pooling layer

operates on individual depth slices of the input resizing them spatially using the specified

pooling operation such as max, average, L2-norm, stochastic or global average. The

spatial size of the output tensor can be computed using the filter size F and the stride S

given an input tensor W as:

Y = ⌊
W − F

S
⌋+ 1. (2.9)
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Since pooling layers cause an aggressive reduction in the representation size resulting

in the loss of the exact position of the features, generative models such as variational

autoencoders and generative adversarial networks have discarded pooling layers and opted

instead for convolutional layers with larger strides.

Fully Connected Layer: The structure of neurons within a fully connected layer resem-

bles that of the neurons in the feed forward neural networks presented in Section 2.4. The

term fully connected stems from the fact that each neuron within the layer is connected to

every activation from the previous layer. Similar to the neurons in a multi-layer perceptron,

the activations of the fully connected layer can be computed as a matrix multiplication

with a bias offset. They are traditionally employed towards the end of a CNN in order to

aggregate global features from various input activations.

Recurrent Layer: In order to enable the network to process sequential input such as in

video processing or language translation tasks, recurrent layers can be introduced within

the network architecture. Unlike convolutional and fully connected layers, recurrent layers

perform sequential processing of the input over time. At each time step, the output of

the recurrent layer is a combination of its internal state and the current input, with the

sequential information preserved in the hidden state of the network. A drawback, however,

of this sequential processing over time is that information has to travel through multiple

neurons before reaching the current processing neuron, which leads to the problems of

vanishing and exploding gradients during the network training. In order to overcome

this issue, (author?) proposed the Long Short-Term Memory (LSTM) units which help

preserve the error through back-propagation [78]. Unlike regular recurrent units, LSTMs

incorporate multiple gates which filter the incoming signal and decide how much of

the internal state of the network should be incorporated in the current timestep. More

precisely, an LSTM contains the following gates; input, output and forget gates, each

of which having a direct impact on the learned representations by the layer. Unlike a

standard recurrent layer, the addition of the aforementioned gates facilitates the training

of LSTMs while reducing the problem of vanishing and exploding gradients.

2.5.2 Architecture Topologies

While multiple CNN architectures can be built by stacking the various layers described in

the previous section, recent research has shown that increasing the depth of the network

does not necessarily increase its representational capabilities [79]. On the other hand,

increasing the depth renders the training of the network harder due to the vanishing

gradient problem. In order to circumvent this issue, several state-of-the-art approaches

have proposed alternative methods to stacking the blocks of the CNN by applying more

complex connections [80, 81, 82]. In this section, we describe two architecture topologies
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which address the aforementioned issue that will be used later in this thesis as a base for

our proposed networks.

Residual Networks: The Residual Network (ResNet) architecture won the first place

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [83] in 2015.

As opposed to linearly stacking the layers of the CNN, ResNets propose a residual

learning framework where the network architecture is comprised of several residual

blocks. Each residual block consists of a series of layers linearly stacked and a parallel

identity skip connection concatenating the input of the block to the output of the layers as

shown in Figure 2.5(a). Thus given an input xl, the output of the residual block can be

represented as

xl+1 = F (xl) +H(xl),

where H(xl) represents the stacked non-linear layers within the residual block and F (xl)

represents the shortcut connection. The addition of the skip connection thus facilitates the

training of deeper architectures with faster convergence time as the gradient can directly

flow through the skip connections as a shortcut. Figure 2.5(a) shows a bottleneck residual

unit which consists of three convolutions in the order of 1×1, followed by 3×3 and 1×1

with alternating batch normalization and ReLU activations. The initial 1× 1 convolution

reduces the number of channels while the final 1× 1 convolution restores the dimensions

to match the input tensor. There exist two variants of the residual unit, an identity shortcut

connection and a projection connection. Figure 2.5(a) illustrates an identity shortcut

connection in which the input and output tensors have the same dimensions. In the

projection shortcut connection on the other hand, a 1 × 1 convolution is applied to the

input tensor in order to match its dimensions to that of the output. Note that in addition

to the aforementioned bottleneck residual block structure, a two layer design was also

proposed by the authors consisting of consecutive 3× 3 convolutions.

Despite the addition of identity connections within a residual block in [84], the function

F (xl) is never equivalent to the identity function due to the presence of the ReLU

activation function after the addition of both connections. This in turn leads to loss

of information about the original state of the signal. In order to remedy this, He et

al. [81] proposed an alteration to the residual unit; namely the pre-activation residual unit

shown in Figure 2.5(b). The contents of the residual unit remain the same, with a bit of

reordering. Through moving the batch normalization layer to the beginning of the residual

unit, the input of the layer is ensured to be renormalized after the addition operation

from the previous layer, thereby improving the regularization of the network. Similarly,

moving the ReLU activations to the beginning of the unit as opposed to after the addition

operation ensures that the original information is preserved throughout the entire network.

Utilizing the pre-activation residual units has shown an overall performance improvement

as they reduce over-fitting while improving the network convergence. We employ both
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Figure 2.5: Schematic illustration of the original residual unit [84] and the pre-activation residual

unit [81].

the original residual units and the pre-activation residual units as building blocks for our

network architectures in Chapter 4 and 5.

Densely Connected Convolutional Networks: Similar to ResNets, Densely Connected

Convolutional Networks or DenseNets [82] propose a connectivity pattern to alleviate the

vanishing gradient problem occurring during training deeper architectures while ensur-

ing maximum information and gradient flow throughout the network. In the DenseNet

architecture shown in Figure 2.6, each layer is connected to every other layer in a feed

forward fashion such that the input for each layer is the concatenated feature maps of all

preceding layers, while its output is used as input for all subsequent layers. This has the

advantage of reducing the number of parameters employed as it reduces the amount of

redundant feature maps learned by encouraging feature reuse. DenseNets are comprised

of alternating dense blocks and transition blocks. Within a dense block, the dimensions

of the feature maps remain constant to enable their concatenation, however their volume

changes. Transition blocks on the other hand, perform downsampling between the dense

blocks through 1× 1 convolution and 2× 2 pooling layers. The network architecture has

one hyperparameter; growth rate which controls the number of feature maps added by

each layer, thus regulating the amount of information contributed by each layer to the
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Figure 2.6: A schematic illustration of the DenseNet-121 architecture [82].

global state. DenseNets have achieved state-of-the-art performance on object recognition

benchmarks [82], while consuming smaller number of parameters and less computation

in comparison to other state-of-the-art architectures.

2.5.3 Cost Functions

Cost functions are an essential factor for training supervised neural networks that are used

to measure the inconsistency between the predicted value and the ground-truth labels. In

the context of this thesis, we primarily use two cost functions. In Chapter 4 and 5, we

utilize the softmax function with cross-entropy loss in order to train our networks for the

tasks of classification and pixel-wise semantic segmentation. Given N training examples,

with ground-truth labels yi ∈ {1, · · · , C|i = 1, · · · , N} where C represents the number

of classes and f(xi) denotes the activations of the network for input xi. The softmax

function with cross-entropy loss can be defined as:

LCE =
−1

N

N
∑

i=1

yi log
exp (Wyif(xi) + byi)

∑C

j=1 exp (Wjf(xi) + bj)
, (2.10)

where W and b are the weight and bias of the last fully connected layer in the network.

The second cost function employed in Chapter 4 and 5 is the Euclidean loss for regression

which minimizes the sum of squared differences as:

LEuc =
N
∑

i=1

(yi − f(xi))
2 , (2.11)

where N is the number of training examples, yi is the ground-truth label and f(xi) is the

predicted output of the network.
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Figure 2.7: A depiction of the VLocNet architecture [56]. Given two consecutive monocular im-

ages, the network predicts the 6-DoF global pose and 6-DoF odometry simultaneously.

Sharing the parameters between the global pose and odometry sub-networks enables

the network to aggregate temporal features.

2.6 Auxiliary Learning Architecture for Pose Regression

In this section, we describe the VLocNet architecture [56] for regressing global poses and

simultaneously learning to regress the relative motion between two camera frames using

consecutive monocular RGB images. We build upon this architecture in Chapter 4 in order

to learn a geometrically and semantically-aware pose regression model. The primary

goal of the architecture is to precisely estimate the global pose while simultaneously

learning to estimate the ego-motion of the robot. The features learned for relative motion

estimation are leveraged by the global pose regression network to learn a more distinct

representation of the scene. More specifically, the architecture consists of a three-stream

neural network: a global pose regression stream and a Siamese-type double-stream for

odometry estimation. An overview of the VLocNet architecture is shown in Figure 2.7.

Given a pair of consecutive monocular images (It−1, It), the network predicts both

the global pose pt and the relative pose ∆pt−1,t between the input frames. The input to

the visual odometry streams are the images (It−1, It), while the input to the global pose

stream is It. In the remainder of this section, we present the constituting parts of the

VLocNet architecture along with how the joint optimization is carried out.
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2.6.0.1 Visual Localization

Given an input image It and a previous predicted pose p̂t−1, the network predicts the

6-DoF pose p̂t. In order to estimate the global pose, the topology is built upon the

ResNet-50 architecture [84] (Section 2.5.2) with the following modifications. The network

architecture follows that of the ResNet-50 up to the last average pooling layer. Overall,

the network consists of five residual blocks with multiple bottleneck residual units. Each

residual unit consists of three convolutional layers with filter sizes: 1×1, 3×3, and 1×1.

Similar to the standard residual units, each convolution layer is followed by a batch

normalization with scaling and a non-linear activation. Unlike the standard ResNet-50

architecture, Exponential Linear Units (ELUs) are used for the non-linear activation, as

opposed to the standard Rectified Linear Units (ReLUs), due to their ability to reduce

the bias shift in neurons thus enabling the network to be more tolerant to noisy data [74].

Following the fifth residual block, a global average pooling layer is added in place of the

average pooling layer, followed by three inner product layers: fc1, fc2 and fc3. The first

inner product layer has a dimension of 1,024, and the following have dimensions 3 and 4,

for regressing the translational x and rotational q components of the pose, respectively.

In order to enable the network to learn a pose estimate that is temporally consistent, the

previous pose is fed through an inner product layer fc4 of dimension D, then reshaped to

fit the dimensions of the output of the last residual unit before the downsampling stage.

Both tensors are then concatenated and fed to the subsequent residual unit. The single-task

architecture is then referred to as VLocNetSTL.

2.6.0.2 Ego-Motion Estimation

The proposed architecture for relative pose estimation takes a pair of consecutive monocu-

lar images (It−1, It) as input and yields an estimate of ego-motion ∆pt−1,t. The authors

employ a two stream Siamese-type network based on the ResNet-50 architecture [84].

Each individual stream consists of four residual blocks, after which the feature maps are

concatenated at the end of the Res4f block and convolved through the final residual block.

Similar to the global pose regression stream, a global average pooling layer is added after

the fifth residual block and subsequently three inner product layers, the first of which has

dimension 1,024, followed by 3 and 4.

As shown in Figure 2.7, the dual odometry streams have an architecture similar to

the global pose regression network in order to facilitate feature sharing across both sub-

networks. In the following section, we detail the sharing procedure between the global

pose regression stream and the odometry stream taking the current image It, which has

the goal of enabling the inductive transfer of information between both networks.
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2.6.0.3 Deep Auxiliary Learning

The authors propose to jointly learn both global pose regression and visual odometry

estimation due to the inherent similarities shared across both tasks in the feature space.

Sharing features across multiple network streams can be considered as a form of regu-

larization, in which both networks collaborate in updating the individual weights during

back-propagation with the goal of minimizing the error term. Through this collaborative

and competitive action, the network becomes less prone to over-fitting. In the proposed

multitask learning architecture, the authors share weights between the global pose re-

gression stream and the odometry stream taking image It from the current timestep as

input, contrary to the majority of visual odometry estimation approaches in which the

weights are shared across the two streams of the Siamese network. The proposed hard

parameter sharing across multiple networks enables the ego-motion estimation network to

effectively generalize to challenging situations such as motion blur or perceptual aliasing.

Simultaneously, it enables the visual localization network to adjust its weights in a manner

that places more attention towards areas of the image from which the relative motion

can be easily estimated, thereby improving the predicted pose accuracy in challenging

scenarios such as when estimating the pose in a textureless or structurally symmetric

environment. Environmental aliasing in such scenes can substantially affect the accuracy

of predicted poses in comparison to environments with abundant structural variations.

However, using the proposed parameter sharing to jointly train both networks, the global

pose stream can leverage the relative motion features from the visual odometry network

to produce more accurate localization estimates. The multitask architecture is referred

to as VLocNetMTL. In Chapter 4, we employ the VLocNet architecture as a base for our

multitask learning framework and investigate the effect of utilizing a novel loss function

accompanied with a self-supervised context-aggregation mechanism on the accuracy of

the learned pose predictions.



Chapter 3

Robust Visual Localization using

Textual Information

Accurate robot localization plays a crucial role in the success of

the overall mobile robotic system. While robotic platforms operat-

ing in urban environments most commonly utilize the GPS signal

as a reliable source of localization information, the signal quality

is often poor due to the presence of high rises causing GPS out-

ages. Textual information in the form of street and shop signs is

highly abundant in urban environments and constantly used by

humans for a majority of their daily tasks, ranging from finding

locations to specifying their position. Consequently this informa-

tion is constantly updated and highly accurate rendering it suit-

able as a source of stable features. Nonetheless, it has yet to be

exploited in the robotics field. In this chapter, we present a localiza-

tion method that leverages the textual information in the scene to

estimate the 2D pose in the environment. We utilize an off-the-shelf

text spotting technique to extract text labels from the surrounding

scene and employ a custom data association approach employing

lexical and string similarity methods to identify landmarks using

geo-referenced texts in public maps. Finally, we obtain the localiza-

tion estimate by applying a probabilistic localization method with

specific sensor models to integrate multiple observations. We eval-

uate our approach extensively on real-world data gathered from

three different cities and demonstrate substantial improvement us-

ing our proposed method over GPS.
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3.1 Introduction

Localization is one of the fundamental problems in the area of mobile robotics. The

accurate knowledge of the robot position enables a variety of tasks including navigation,

transportation, as well as search and rescue. Additionally, the exact information about

the position of a user gives the opportunity to offer so-called location-based services with

plenty of uses in social networking, health, guidance, entertainment and many others.

While several approaches exist for addressing the robot localization and mapping problem

in various environments using vision [85, 86, 87], the most popular and commercially

used approach for solving the localization problem in outdoor scenarios is GPS. Although

GPS can theoretically reach an accuracy of a few meters, it cannot always be achieved in

practice due to GPS outages, e.g. inside or near buildings.

In the classical approach, localization is performed after a previous visit of the environ-

ment during which a map has been built. Despite the accuracy produced from localizing

using self-built maps, employing this approach would require several subsequent visits of

the environment in order to continuously update the map reflecting any changes in the

environment. Recently, the continuous rise of large scale, and publicly available mapping

services, such as Google Maps and OpenStreetMap, has lead to an increased interest in

approaches utilizing the information provided by those maps for both robot localization

and navigation tasks [88, 89, 90, 91], with the majority focus on geo-tagged street-level

imagery. Unlike self-built maps, publicly available maps are constantly updated by the

service provider thus enabling life-long localization without the need of continuous map

updates on the client side. Furthermore, utilizing publicly available maps enables local-

ization in previously unseen environments as it alleviates the need of the robot to perform

the initial mapping step.

The use of vision-based approaches for localization has resulted in a variety of choices

for the types of features that can be used. Features directly computed from images of the

scene are most commonly selected, with growing effort in making the approach as robust

as possible to the challenges faced localizing in outdoor environments. Such challenges

include, but are not limited to, changes in lighting conditions e.g. day-time versus night-

time, varying weather conditions and seasonal changes e.g. sunny summer day versus

snowy winter afternoon, or structural scene changes e.g. as a result of construction sites in

urban environments. The most common approaches to deal with lighting artifacts involve

either developing special feature detectors to enable robustness [42, 92], or collecting

large amounts of data in different conditions, and attempting to localize at run-time using

the collected data [93, 94]. To handle structural variances in the environment, new data

must be collected to reflect the changes in the map structure. In this work, we present

an approach that is robust to environmental and structural changes. Moreover, as our

approach uses pre-existent information in maps that is stable features across various

environments and seasonal changes, it provides life-long localization capabilities and can
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Figure 3.1: Overview of our text-based localization approach: Standing at a certain position, we

capture images of the neighboring shops. Using text spotting, we extract the text

information to match the observation with geo-referenced texts from the map and

generate a pose estimate.

be used in different environments without necessary adaptations.

Observing human behavior allows us to gain a new perspective on which features to

select for localization. When identifying their location or describing a path to follow,

people tend to use names to guide the explanation, e.g, a name of a shop or a restaurant.

Our approach moves away from vision-based feature matching to use mid-level repre-

sentations for estimating the current geo-location of an image. We propose a method

that exploits the abundance of textual information in the environment in order to localize

either a robot or a user holding a mobile device. Our proposed approach is easy to deploy,

intuitive to use and takes advantage of the available resources. Furthermore, using textual

information gives us the ability to communicate information easily with the user via

speech-based systems.

We propose a solution to the localization problem using a standard RGB camera,

and publicly available map information without the use of any street-level imagery by

exploiting the rich textual meta-data content of maps, such as the street-level annotations

of shops and businesses, moving away from vision-based feature matching. Specifically,

we concentrate on extracting text “in the wild” from images that are cross-referenced

from the available annotated map. Accordingly, we present a new localization form with
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global-scale breadth, low bandwidth requirements (no images are transferred over the

network), and life-long capabilities (publicly available maps are continually updated).

Figure 3.1 shows an overview of our approach which is split into three main stages.

First, we extract text from the captured scene images. The extracted texts are then used to

identify landmarks in the vicinity of the camera. Finally, we employ a particle filter [69]

with a dedicated sensor model to obtain accurate location estimates. We propose two

variants of our method, a Single-Shot Localization method and a Pose Tracking Localiza-

tion method. Furthermore, as the accuracy of our localization method is dependent on

the quality of the extracted text from the scene, we propose multiple landmark selection

strategies. We perform extensive experiments evaluating the localization accuracy of our

method in three cities in Freiburg, Zurich and London and demonstrate an improvement

of 40% in translation using our proposed method over GPS-based localization.

In summary, the primary contributions of this chapter are as follows:

• A novel single shot global localization method using publicly available maps and

textual features from the scene.

• A pose tracking localization approach with adapted sensor models to integrate the

multiple observations.

• A probabilistic landmark selection strategy that utilizes both the lexical relations

and word similarity for data association.

• Finally, we perform extensive experimental evaluation on data from three cities,

comparing the localization accuracy of both methods as well as investigating the

effect of the landmark selection strategy on the pose error.

3.2 Text-Based Localization

In the following, we formalize the problem of localization in urban environments using

textual features in the scene. Our approach relies on RGB camera images and an IMU

sensor. Given a map of the environment and at least two images containing text, our

method extracts textual features from the images and employs a probabilistic data as-

sociation strategy to match them to landmarks in the environment. In order to obtain a

robust estimate of the pose, we adapt Monte Carlo methods accounting for the employed

text extraction approach. We propose two variants for our pose estimation approach, a

Single-Shot global Localization (SSL) method and a Pose Tracking Localization (PTL)

variant. In the remainder of this section, we first describe the map and state representation,

followed by the proposed pose estimation methods. Finally, we outline the text spotting

and data association strategies that we utilize.
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3.2.1 Map and State Representation

We represent the environment by a set of landmarks, each of which corresponds to a text

that could belong to a shop, restaurant, street name, etc. The only assumption that we

make is that the text is static, i.e., it is not scrolling over a display. Text signs which are

not present in the map, e.g. “Stop”, are not considered a part of our environment model,

and hence are not counted as landmarks for pose estimation. We assume that for each

landmark l in the map, we have the following set of features:

• the name, which is the text that appears on the sign,

• the geo-location coordinates (lx, ly) of the sign,

• the orientation angle (lo) of the sign (where 0 degrees is north), and

• the size (ls), from which we compute the maximum distance of observing the sign.

In principle, any publicly available map can be used for the described representation, as

the extra features required can be easily inferred from the map structure itself. Landmark

orientation can be computed from the street orientation, as text is placed either parallel or

orthogonal to the road. The map information provides knowledge about the orientation of

the streets with respect to north, which can be directly generalized to all landmarks within

that street. A consequence of localizing in an urban environment is that it is unlikely to be

able to observe a sign of a shop that is two streets or more away from our location due to

occlusions. Accordingly, we estimate the size of the landmark by the width of the nearest

street. Note that the size of the landmark is only used by our SSL method. In the PTL

variant, the size of the sign is not required due to the availability of motion information.

In addition to the RGB camera, we rely on IMU information to obtain the angle with

which a landmark is observed.

3.2.2 Pose Estimation

We propose two techniques for estimating the 2D pose of the robot: a SSL method

and a PTL method. Both of our proposed approaches build on top of the particle filter

method for robot localization [69] with a number of modifications. An overview of the

particle filter approach is presented in Section 2.3. In the SSL variant of our method, the

goal is to estimate the location of the robot in a single timestep using only information

available at this timestep. For the PTL method, on the other hand, utilizing the odometry

information from the IMU, we estimate the most likely position at each timestep by

sharing the information among the various poses. In the following, we elaborate on each

of the variants. The text spotting and data association approaches are discussed fully

in Section 3.2.3. For the time being, we assume that given an observation image zi, the
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text spotting method in Section 3.2.3 extracts a set of words Di. The extracted words are

then used by the data association approach to output a set of potential matching landmarks

Li. More precisely, the data association function Azi : D
i 7→ Li for observation zi takes

as input the set of extracted words Di and returns a potentially empty set of matching

landmarks Li from the map.

3.2.2.1 Single Shot Localization (SSL)

Given a set of observations Z := {z1, . . . zn | n ∈ N} and the map m, our goal is to find

the position of the robot x ∈ R
2 by estimating p(x | z1:n,m). First, we assume that

the individual measurements are independent given the position and the map, which by

applying Bayes’ theorem leads to

p(x | z1:n,m) =
p(z1:n | x,m)

p(z1:n | m)
p(x | m). (3.1)

Since we assume the individual measurements are independent given the position of the

robot and the map, the above equation simplifies to

p(x | z1:n,m) =

∏n

i=1 p(zi | x,m)

p(z1:n | m)
p(x | m). (3.2)

Given that the position of the robot is independent of the map and the individual mea-

surements are independent given the position and the map, we apply Bayes’ theorem to

get

p(x | z1:n,m) =

∏n

i=1 p(x | zi,m)p(zi | m)

p(z1:n | m)
p(x | m)

= η

n
∏

i=1

p(x | zi,m), (3.3)

for some constant η. To calculate p(x | zi,m) for observation zi, we integrate over all

possible landmark associations Li that are obtained from the data association function

Azi : D
i 7→ Li described in Section 3.2.3:

p(x | zi,m) =
∑

l∈Li

p(x, l | zi,m)

=
∑

l∈Li

p(x | l, zi,m) · p(l | zi,m). (3.4)

Since the belief computed by Equation (3.4) is multimodal with the number of modes

growing combinatorially with the possible data associations, we approximate it with a
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weighted sample set. To sample from it we resort to the importance sampling principle

and choose as proposal distribution

π(x) = p(x | zq,m)

=
p(zq | x,m) · p(x | m)

p(zq | m)
, (3.5)

where we chose the measurement zq uniformly at random from Z. According to the

importance sampling principle, we compute for each sample its importance weight

w(x) =
p(x | z1:n,m)

p(x | zq,m)

= p(z1:n | m)−1p(zq | m)
∏

i 6=q

p(zi | x,m)

∝
∏

i 6=q

p(zi | x,m). (3.6)

We model the individual likelihood for each landmark zi ∈ Z with a mixture distribution

over the latent data association variables. We assume the set of associations returned from

the text spotting phase to be equally likely. This results in:

p(zi|x,m) =
∑

l∈Li

1

|Li|
p(zi|l, x,m)

=
1

|Li|

∑

l∈Li

U(δi; 0, ls)N (βi; lo, σ
2), (3.7)

where |Li| denotes the size of the landmark set returned by the data association function

Azi . We denote the distance measurement by δi which can be computed as per Equa-

tion (3.8) and utilize the landmark size information ls from the map for the expected value.

Similarly for the angular measurement, we utilize the orientation information from the

IMU for obtaining lo for the expected value and compute the measurement βi as shown

in Equation (3.9).

δi = ‖

(

lx
ly

)

− x‖ (3.8)

βi = atan2 (ly − xy, lx − xx) , (3.9)

where (xx, xy) are the 2-D coordinates defining the robot position x. We employ a Gaus-

sian distribution to model the angular measurement and model the distance measurement
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using a Uniform distribution such that:

U(δi; 0, ls) =

{

1
ls
, if 0 ≤ δi ≤ ls

0, else.
(3.10)

In order to allow our method to be tolerant to outliers and false measurements from

the data association phase, we apply a robust method for computing the particle weights,

inspired by the trimmed estimator approach [95]. A trimmed estimator excludes extreme

values while computing the desired statistics. Extreme values can be either the low-

est/highest n percentile or the n-th maximum/minimum points. We discard the lowest 20

percentile of likelihood values to compute the weights.

3.2.2.2 Pose Tracking Localization (PTL)

While the approach presented in the previous section provides a localization estimate

within a single timestep, the accuracy of the results is highly dependent on the presence

of at least two text-containing signs in the scene. In order to overcome this limitation, we

propose a second variant of our method where we share information across timesteps and

utilize the odometry information from the IMU in order to gain probabilistic localization

estimates for each timestep.

We utilize a similar formulation as in the previous section, given a map of the environ-

ment m and observations Z1, . . . , Zt, our goal is to estimate the probability p(x1:t | Z1:t,m)

of being at locations x1:t at timesteps i ∈ 1, . . . , t. For the first timestep, we employ the

SSL approach (Section 3.2.2.1) to obtain an initial estimate of the position and spread all

particles at this position with equal weights. At each subsequent timestep, we utilize the

odometry information ut in order to update the position of particle j ∈ {1, . . . , J}; where

J is the number of particles as follows:

xt ∼ p(xt | xt−1, ut), (3.11)

We represent the target distribution as p(x1:t | Z1:t, u1:t) and sample from the proposal

p(x1:t | Z1:t−1, u1:t). Following the Markov assumption, we reformulate the proposal as

p(x1:t | Z1:t−1, u1:t) = p(xt | xt−1, ut) · p(x1:t−1 | Z1:t−1, u1:t−1). (3.12)

Using this formulation, the importance weight for each particle is then computed as

w
(

xj
1:t

)

=
p(xj

1:t | Z1:t, u1:t)

p(xj
1:t | Z1:t−1, u1:t)

=
p(xj

1:t | Z1:t, u1:t)

p(xj
t | xt−1, ut) · p(x

j
1:t−1 | Z1:t−1, u1:t−1)

∝ p(Zt | Z1:t−1, x
j
1:t, u1:t). (3.13)
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Similar to the SSL method, we assume all data associations to be equally likely and

employ a mixture of Gaussians distribution over the latent variables in order to model the

individual likelihood resulting in:

p(zti | x
j
1:t, Z1:t−1) =

∑

l∈Li

1

|Li|
p(zti | l, x

j
1:t, Z1:t−1)

=
1

|Li|

∑

l∈Li

N (βi; lo, σ
2), (3.14)

where lo represent the expected angular measurement and βi the actual measurement

computed as in Equation (3.9). Note that unlike the SSL approach, this method does not

utilize the distance measurement in the likelihood computation. However, similar to the

SSL variant of our method, we use a trimmed estimator to eliminate false measurements

resulting from the data association phase.

3.2.3 Text Spotting and Data Association

In this section, we elaborate the text spotting and data association methods employed

as well as any post-processing steps. While our approach is independent of the text

spotting method employed, we provide some heuristics which aim at reducing the noise

in the extracted text and enable correct data association regardless of any discrepancies

occurring between the map information and the scene.

3.2.3.1 Text Spotting

Text spotting refers to the combined action of text detection and text recognition from an

input image. In this thesis, we do not implement a text spotting method, as we consider

it outside the scope of our investigation. Instead, we treat the text spotting procedure

as a black-box method with an input image and an output consisting of a set of words

each with a confidence score. In order to recognize texts in natural scene images, we

employ the method from (author?) [96], which falls into the category of approaches that

use region groupings. In their work, the authors train a sequential classifier for character

detections to select extremal regions from the component tree of the image. They further

use a number of heuristic functions to effectively prune the selected regions. This allows

for a fast exhaustive search of the state space of character sequences before grouping

the regions into high level text blocks. We adopted this method in our work due to its

robustness, and relied on an open-source implementation by the authors. In principle, any

combination of text detection and recognition approaches can be used without affecting

our pipeline.

The text extraction method provides a list of the different detected words, each with

an associated confidence score. We perform two-phase post-processing spell correction
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on the extracted text. As a first step to reduce noise in the returned text, we threshold the

returned words based on the confidence score, thus reducing noise due to text detection

errors. Furthermore, we discard words with multiple repeated characters and single letter

words, e.g., “gaummmm”. The goal of the second stage is to fix any substitution errors

(e.g., the letter “l” and the number “1”). For this purpose, we create a custom dictionary

containing only words occurring in the map and use the GNU Aspell∗ spell checker to

find the closest matching dictionary word. In order to avoid incorrect matches, the spell

correction is only carried out if the minimum number of edits needed to convert the

extracted word to a dictionary word is less than half of the length of the extracted word.

As an example, given “volksl” as a detected word with the ground-truth text “volksbank”,

and the closest matching dictionary word “oska”. Since the edit distance score (4) is

greater than half the length of the word (3), the word does not get corrected and remains

as is for the data association phase. By employing this constraint, our spell correction

method can be regarded as lazy, wherein a correction is only performed if the number of

required changes does not exceed a certain word length-specific threshold. This in turn

adds flexibility at the landmark association phase by avoiding incorrect matches due to

overconfidence.

3.2.3.2 Data Association

After the post-processing stage, we use the extracted text to assign a set of landmarks

for each image by measuring the similarity score between the corrected text and each

landmark in the map. We use a function based on the similarity score to choose the top N

landmarks and select the landmarks with probability higher than that of random guessing.

We introduce three different measures for calculating the similarity score, namely: i)

Levenshtein distance, ii) WordNet Lin similarity, and iii) Combined weighted similarity.

The Levenshtein distance [97] measures the minimum number of operations to trans-

form one string of text to another. The allowed operations are insertion, deletion, substitu-

tion and transposition. Mathematically, the Levenshtein distance is defined as follows

leva,b(i, j) =























max (i, j), if min(i, j) = 0

min















leva,b(i− 1, j) + 1

leva,b(i− 1, j − 1),

leva,b(i, j − 1) + 1

otherwise
(3.15)

where a and b are the two strings we are trying to compute the similarity of, and i, j are

indices for a and b respectively, with an initial value equal to the length of each string.

WordNet [98] is a collection of English nouns, verbs, adjectives and adverbs arranged

into a lexical database. Words are grouped together into sets, dubbed synsets, expressing

∗K. Atkinson. GNU Aspell, 2003. http://aspell.net
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a unique concept. Synsets are connected with each other using semantic and lexical

relations. There exists a number of different similarity measures quantifying the semantic

and lexical relatedness of two words based on the WordNet database [99]. In this chapter,

we employ the Lin similarity measure [100] which calculates the similarity between two

words based on both thesaurus and probabilistic information. It is formally defined as

follows:

simwn(c1, c2) =
2 · IC (lso(c1, c2))

IC (c1) + IC (c2)
, (3.16)

where IC is the Information Content of the word, and lso is the Least Common Subsumer

(most specific ancestor node) of the two words. The Lin similarity thus takes into account

both the information shared between the two words and the difference, hence providing

a more accurate ranking of the similarity than the path-based similarity measures in

WordNet [101, 102].

In order to measure the similarity between the corrected text and the map landmarks,

we devise an approach that takes advantage of the uniqueness of named entities. A named

entity is a real world object that can be denoted by a proper name; for instance the name

of a person, the name of an organization, the name of a country, etc. Our approach is

divided into several stages, first the corrected text is split into a set of distinct words St.

This splitting is also performed for the text of each landmark li forming Sli . We remove

the named entities from each set and place them into two separate sets: StNE
and Sli

NE

.

For each named entity in StNE
, we check if it exists in Sli

NE

, if it does, then we compute

the Lin similarity between the words in St and Sli and assign that as the score to the

landmark. Otherwise, the landmark is assigned a score of 0. Since named entities are

unique identifiers for places, we use this idea to enable matching text to a landmark if

the name on the map differs from the street sign, e.g. “Café Lichtblick” and “Restaurant

Lichtblick”. At the same time, we want to avoid situations were we match two places

with different names, e.g. “Restaurant Lichtblick” and “Restaurant Wolfshole”.

Our combined weighted similarity uses the scores from both the Levenshtein distance

and the WordNet similarity methods described above. The final score is computed as a

weighted sum of both the similarity measures. In order to be able to combine both scores,

we first normalize their values by setting the scale to be between 0 and 1. However, as a

low Levenshtein distance means a high similarity score, we invert the computed distance

in order to compute the Levenshtein similarity measure as follows:

simlev(t1, t2) = 1.0− lev(t1, t2). (3.17)

Accordingly, we define the overall similarity score as:

sim(t1, t2) = α · simlev(t1, t2) + (1− α) · simwn(t1, t2), (3.18)

where α acts as a hyperparameter controlling the value of the final score. A higher value of

α places more importance on the Levenshtein score over the WordNet score and vice versa.
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Finally, as an extra step to reduce false positive matches, we only consider landmarks as

potential matches if they have non-zero scores from both the Levenshtein distance and the

WordNet similarity measures.

Each of the aforementioned similarity measures assigns a score to the landmarks within

the map. The landmarks are then ordered descendingly and the top N with a matching

score higher than that of random guessing are assigned to the observation. In the event that

the extracted text does not match any of the landmarks in the map, then this observation is

discarded. In Section 3.4.2, we evaluate the performance of the proposed data association

strategies and their effect on the localization accuracy.

3.3 Data Collection and Labeling

We collected data from three different cities: Freiburg, London and Zurich and use

OpenStreetMap as the source of information for creating our custom map. For each city,

we collected data from different regions covering suburbs, industrial and commercial

zones. We utilized Google Street View to collect the London and Zurich datasets, and

obtained the odometry data manually using the ground-truth pose information. In order to

mimic drift accumulation in real world data, we augmented the odometry with random

noise sampled from a Gaussian distribution.

Due to the unavailability of Google Street View in Freiburg however, we used a Google

Tango tablet for manually collecting images and odometry. Furthermore, we gathered the

GPS coordinates for each pose in order to compare the performance of our localization

method with that of GPS from a mobile device. For both the London and Zurich datasets

on the other hand, we were unable to obtain the raw GPS measurements from the Google

Street View interface and as such do not perform GPS comparisons.

In each city, the data is grouped into a number of paths. Each path consists of a

sequence of poses with a maximum distance of 100m between two consecutive poses.

For each pose, the observations were captured by standing in a particular location and

rotating in place. The Freiburg dataset contains a total of 60 poses and the corresponding

map contains 180 landmarks. We manually added a few annotations to the Freiburg map

in order to capture some unidentified shops and alterations due to construction sites which

were not captured in OpenStreetMaps. Figure 3.2(a-c) shows example images from the

Freiburg dataset. The captured images display a wide range of lighting conditions which

increase the difficulty of the text spotting and data association tasks.

The London dataset is comprised of 300 poses with an associated map containing

approximately 1,000 landmarks from different shops, restaurants and signs. Figure 3.2(d-

f) displays example images from the London dataset. Image stitching artifacts and parallax

errors further increase the difficulty of the text spotting and data association tasks on

this dataset. Similar to the London dataset, the Zurich dataset is comprised of 300 poses
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Figure 3.2: Example images from the data collected from Freiburg, London and Zurich. The

images show shop fronts, subway stations and street signs. The images were captured

in different areas of the cities and each contains at least one word from a shop front or

street sign.
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with an associated map containing 900 landmarks. The poses were captured from central,

industrial and rural regions. In Figure 3.2(g-i), we show sample images from the dataset.

Benchmarking the localization performance on this dataset is extremely challenging due

to the sparsity of text containing images which lead to an average of two observations

per pose, versus three observations per pose for the remaining datasets. Furthermore, the

dataset images cover a larger variety of text fonts in multiple different sizes and languages

which increase the difficulty of the text spotting task.

3.4 Experimental Evaluation

In this section, we perform experimental evaluations benchmarking the performance of our

proposed text-based localization approaches on the aforementioned dataset. We compare

the performance of both our SSL and PTL methods with GPS in Section 3.4.1. In order to

investigate the effect of the data association strategy on the localization performance, in

Section 3.4.2, we evaluate the performance of each localization approach by employing

the various data association strategies. In Section 3.4.3, we present a qualitative analysis

of our proposed approach along with an ablation study on the effect of the text spotting

method on the accuracy of the localization estimates.

In order to quantify the performance of the SSL method, at each timestep we estimate

the current position of the robot independent of the previous locations. Initially the

particles are distributed around one of the observed landmarks, selected at random.

The weight assigned to each particle is then computed by calculating the likelihood of

observing the remaining landmarks. The reported position is then the weighted average

over all the particles.

In the remainder of this chapter, we define localization failures as cases where the

text spotting method fails to extract any text for 50% or more of the captured im-

ages/observations. In such cases, our algorithm outputs a message signaling the lack of

sufficient data to accurately estimate a location. For the WordNet Lin similarity data

association method, we use the English version of WordNet. Moreover, for the Combined

weighted similarity, we use cross-validation on each dataset to determine the optimal

value to employ which provides the best balance between the comprising similarity scores.

3.4.1 Evaluation of the Localization Performance

We evaluate the performance of the proposed localization methods on each of the collected

datasets. Figure 3.3 shows the cumulative error plot on the Freiburg, London and Zurich

datasets. For each dataset, we compare the performance of both our Single Shot Localiza-

tion (SSL) and Pose Tracking Localization (PTL). For both of the proposed localization

methods, we also plot the performance employing the data association strategies proposed



3.4. Experimental Evaluation 39

0 20 40 60 80 100 120 140 160 180

Distance from Ground-truth (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 E

rr
o
r

0 20 40 60 80 100 120 140 160 180

Distance from Ground-truth (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 E

rr
o
r

(a) Freiburg (b) London

0 20 40 60 80 100 120 140 160 180

Distance from Ground-truth (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 E

r
ro

r

(c) Zurich

Figure 3.3: Cumulative error plots on all paths in the Freiburg, London and Zurich datasets.The

x-axis shows the distance from ground-truth position in meters, and the y-axis shows

the percentage of points with distance less than or equal to the x-value. For both our

Pose Tracking Localization (PTL) and Single Shot Localization (SSL) approaches,

localization failures occur with error values of 60.0m or higher as highlighted by the

red dashed line in each plot.

in Section 3.2.3.2. Furthermore, on the Freiburg dataset, we additionally compare the

performance of our proposed methods with GPS. However, for both the London and

Zurich datasets, we were unable to extract the raw GPS measurements from Google

Street View maps and thus do not provide GPS comparison on either dataset. On all three

datasets, we highlight the localization failures with a red dashed line in Figure 3.3.

In order to evaluate the performance of the localization approaches on the Freiburg

dataset, we split the data into 9 distinct paths. On this dataset, the value of α for which
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we achieve the lowest localization error is 0.8. Using this α value, more weight is put on

the results from the Levenshtein similarity approach than the WordNet similarity measure.

This is a consequence of using the English language WordNet for evaluating our method,

as a large number of the detected words are undefined within the English version for the

Freiburg dataset. Figure 3.3(a) shows the cumulative error plot on the Freiburg dataset.

Both the SSL and PTL methods achieve a mean localization error of 10.9m versus 27.0m

achieved by GPS excluding the localization failures. The results further show that both

our STL and PTL methods achieve a error between 0.0 and 40.0m for over 69.0% of

the localization poses, whereas the GPS achieves this error value for only 60.0% of the

given poses. Comparing the performance of the SSL method with the PTL method, we

observe that the former is more susceptible to localization failures (3.3%) due to the lack

of sufficient information. While employing the PTL method, no localization failures are

encountered as the odometry information substitutes lost/missing information due to text

spotting failures. We discuss the effect of the various data association strategies on the

localization performance in Section 3.4.2.

We split the London data into a total of 67 paths and set the value of α to 0.5. Unlike the

values selected for Freiburg and Zurich datasets, we did not perform any cross-validation

when selecting this value. Since this is the only dataset with text entirely in English, we

instead chose to select a value giving equal weights to each approach in order to evaluate

the performance of using the Combined weighted similarity measure. Figure 3.3(b) shows

the cumulative localization error plot of both the SSL and PTL methods, which shows a

stark difference in comparison to the Freiburg dataset. For 70.0% of the poses, the PTL

method achieves a localization accuracy between 0.0 and 40.0m. On the other hand, the

SSL approach is able to guarantee an error between 0.0 and 40.0m for only 39.5% of

the poses. Moreover, the results show that the PTL method achieves an accuracy near

1.0m for more than 20.0% of the poses without any localization failures. This further

validates the benefit of sharing information across multiple timestamps on the accuracy of

the predicted localization poses.

We divided the 300 poses of the Zurich dataset into 98 distinct paths. For the Combined

weighted similarity measure, we set α to 0.9 which was obtained through cross-validation.

Using this value, the Combined weighted similarity measure assigns more weight to the

score assigned by the Levenshtein distance measure than WordNet. We hypothesize this

occurs to account for the discrepancy between the language of the street signs and the

dictionary of WordNet.

We plot the cumulative error of all paths of the Zurich dataset in Figure 3.3(c). Investi-

gating the results shows that the PTL method achieves a localization accuracy of 1.0m

for 35.0% of the poses with an overall average accuracy of 25.3m excluding localization

failures. On the contrary, the SSL variant of our method is able to achieve an accuracy

between 0.0 and 40.0m for only 35.0% of the poses. Furthermore, the number of local-

ization failures due to text spotting errors increases by 50.0% in comparison to the PTL
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method. This further validates our hypothesis that by sharing information across the path,

we enable our localization method to be more robust to text spotting and data association

failures.

3.4.2 Text Spotting and Data Association Evaluation

In order to investigate the effect of the data association strategy on the localization

accuracy, we plot for both the SSL and PTL approaches the cumulative localization error

using each of the similarity measures proposed in Section 3.2.3.2. For each variant, we

plot the performance using both the extracted text from the text spotting method of [96]

and ground-truth text labels. Using ground-truth text labels enables us to evaluate the

performance of the similarity measures independent of the text spotting method employed.

Figure 3.4 and Figure 3.5 show the cumulative error plots for the SSL and PTL methods

respectively on all three datasets. Similar to Figure 3.3, we highlight on each figure the

localization failures using a red dashed line.

Investigating the results for the SSL method shown in Figure 3.4 shows that using the

ground-truth text labels significantly improves the localization accuracy on all datasets.

More precisely, the percentage of poses for which a localization error between 0.0 and

40.0m is guaranteed increases by at least 20.0% by using the ground-truth text labels.

This observation highlights the importance of the text spotting method used on the overall

performance and since the SSL method attempts to estimate the pose from a single

timestep without any prior information, its performance is highly dependent on the quality

of the extracted text from the scene. Furthermore, investigating the performance of the

proposed similarity measures shows that the best performance is using the Levenshtein

similarity matching and the worst by utilizing the WordNet Lin similarity measure for all

datasets. We attribute the suboptimal performance of the WordNet Lin similarly measure

to be a direct consequence of using the English language WordNet while having words

occurring in both German and English within our map for both the Freiburg and Zurich

datasets.

Figure 3.5 shows the average cumulative error plots for the PTL method on all datasets.

The results show that the performance of our PTL variant is neither affected by the text

spotting method employed nor the data association strategy employed. This validates our

hypothesis that sharing information across the timesteps in addition to using the odometry

information helps in boosting the performance. One interesting observation to make

in Figure 3.5(b) for the London dataset is that the localization accuracy is higher when

employing the WordNet Lin similarity measure over the Levenshtein distance measure

for data association. We hypothesize this occurs due to missed detections by the text

spotting method. Since the Levenshtein distance does not account for the lexical relations

between words, missed detections can result in incorrect matches and in turn a lower

localization accuracy. As an example, consider the following text as the output of the text
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Figure 3.4: Cumulative error plot comparing between the performance of the different data

association approaches for the Single-Shot Localization (SSL) approach on all datasets.

The x-axis shows the distance from ground-truth position in meters, while the y-axis

shows the percentage of sample-poses with a distance less than or equal to x.
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Figure 3.5: Cumulative error plot on the Freiburg, London and Zurich datasets. The plot compares

the performance of the different data association approaches and the best achievable

performance for the Pose Tracking Localization (PTL) approach. The x-axis shows

the distance from ground-truth position in meters, and the y-axis shows the percentage

of sample-poses with distance less than or equal to the x-value.
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spotting method: “insider”. The landmark with the highest probability match using the

Levenshtein distance similarity measure is “nuntee”, while the correct match chosen by

the WordNet Lin similarity is “insider dealings”. However, since “nuntee” has a smaller

Levenshtein distance than “insider dealings”, it gets selected as a top matching landmark.

3.4.3 Ablation Study

In the following, we provide additional results evaluating the performance of the various

parts of our localization framework. In order to gain an intuition into example scenarios

where our localization method is unable to estimate the pose, in Figure 3.6 we illustrate

three example scenarios from the London and Zurich datasets. Each column shows

observation images from a single pose with red rectangles highlighting the text detection

output. In Pose-1 (leftmost column), due to parallax error and text detection failures only

the third observation was successfully associated to a landmark, leading to a localization

error by our SSL method due to insufficient information. Similarly, for the remaining

two poses, motion blur in the images and incorrect text detections have lead to a data

association accuracy of 0% leading to unsuccessful localization.

Figure 3.7 illustrates successful localization runs from each of the benchmarking

datasets using our SSL method. Pose-1 depicts an example from the Freiburg dataset. In

each of the observation images, the text spotting method is able to accurately detect the text

leading to successful data association and consequently an accurate localization estimate.

For Pose-2 and Pose-3, despite the presence of noise in the text spotting output, during

data association we are able to match a minimum of two out of the three observations

leading to successful localization runs.

In order to qualitatively evaluate the accuracy of our proposed method for localization,

in Figure 3.8, Figure 3.9 and Figure 3.10 we present example poses from the Freiburg,

London and Zurich datasets respectively. For each pose, we show a segment of the

map using Google Maps for visualization, along with the camera images capturing the

observations. Moreover, for each observation we show the selected landmark assigned

during the data association phase. The green star shows the ground-truth position, while

the red shows the estimated location.

In Figure 3.8, despite correctly recognizing only two of the three landmarks, our SSL

method is still able to accurately estimate the location with an error of 8.0m. Moreover,

notice in Figure 3.9, despite the inability to detect the full text in all the observations,

our method is still able to achieve a data association success of 100%. Selecting for

each landmark the best N matches, enables our method to be robust to text spotting

failures. Furthermore, Figure 3.10 depicts an example with only two observations where

our localization method is able to accurately estimate the pose with an accuracy of 10.0m.

Despite the presence of false positive detections by the text spotting method, utilizing

the proposed post-processing spell correction technique enables us to discard most of
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Figure 3.6: Example localization poses from the London and Zurich datasets. Each column

depicts a single pose with the rows illustrating the captured observation images. Red

rectangles highlight the text detections from the text spotting phase of our pipeline.

For each of these poses, our Single-Shot Localization (SSL) method has been unable

to localize due to text detection or data association failures.
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Figure 3.7: Example localization poses from the Freiburg, London and Zurich datasets. Each

column depicts a single pose with the rows illustrating the captured observation

images. Red rectangles highlight the text detections from the text spotting phase of

our pipeline. For each of these poses, our Single-Shot Localization (SSL) method was

able to successfully estimate the position despite noise in the text spotting method.
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Figure 3.8: Example pose from the Freiburg dataset. The green star represents the ground-truth

position, the blue star shows the estimated pose from our approach. Lines connect the

pose with the observed landmarks. Red rectangles in the images show the output of

the text-spotting phase.

Figure 3.9: Example pose from the London dataset. The green star represents the ground-truth

position, the blue star shows the estimated pose from our approach. Lines connect the

pose with the observed landmarks. Red rectangles in the images show the output of

the text-spotting phase.
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Figure 3.10: Example pose from the Zurich dataset. The green star represents the ground-truth

position, the blue star shows the estimated pose from our approach. Lines connect

the pose with the observed landmarks. Red rectangles in the images show the output

of the text-spotting phase.

the false positives, and in turn reduces the amount of noise in the data association phase.

A video illustrating the PTL performance on a sample path in Freiburg can be found at:

http://goo.gl/YNKx3v.

3.5 Related Work

The use of visual information in localization and navigation tasks is becoming increasingly

common due to low sensor cost, and rich information content. Visual Simultaneous

Localization and Mapping (VSLAM) is an active research area, where visual sensors are

used as the only information source [103]. In [104], the authors use an approximated

Bayes network and a topological map of the environment for large-scale place recognition.

They present a probabilistic approach for place recognition to overcome the aliasing

problem. Furthermore, they use visual vocabulary along with Chow Liu tree for feature

learning. (author?) [105] present a solution to the visual SLAM problem, in which they

formulate the problem as a non-linear least squares optimization problem. They build a

skeleton graph for both map estimation and data association, ensuring small footprint,

long range tracking and both global and local registration.

Lothe et al. [106] use bundle adjustment combined with camera information and a

coarse 3D model of the environment to perform monocular SLAM. Their approach takes

advantage of road homography to reduce error accumulation, as it provides enough geo-

metrical constraints to allow proper fitting of the captured cloud data with the environment

http://goo.gl/YNKx3v
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model. Naseer et al. [107] present a solution to solving the visual SLAM problem across

seasons. They use a deep convolutional neural network for feature extraction. Extracted

features are used for building a similarity matrix between the different images from

the database. Finally, using the similarity matrix, they use a flow network to perform

sequence recognition. This information accompanied with odometry information is fed

into a graph-based SLAM approach to find the most likely trajectory.

Techniques for localization using vision can be categorized as optimization-based

techniques or retrieval-based techniques. Sattler et al. [42] introduce an approach for

image-based localization in a 3D environment. Both the query image and the 3D model

are represented by SIFT features from a visual vocabulary tree. Matching between an

image point and a 3D point is accepted if the nearest neighbors of the points pass a certain

correspondence ratio. Finally, they use RANSAC with 6-point DLT to estimate the pose.

Another example for localization formulated as an optimization problem is the work of

Qu et al. [92] in which they use local bundle adjustment and geo-referenced traffic signs.

Starting from a known location, using local bundle adjustment, an estimate of the camera

pose in relation to the start position is computed. Once a traffic sign is encountered,

they run a traffic sign detection algorithm, where the detected signs are matched to the

landmark database generating ground control points for the bundle adjustment process.

Torii et al. [108] aim to estimate the geo-coordinates of a query image from a large

image dataset with known geo-coordinates. For a query image, they use a regression-

based approach to search for nearby images using linear combinations of features. Once

neighboring images have been selected, they apply an interpolation approach to estimate

the final pose, where the nearest neighbor information is stored in a graph with nodes as

images and edges as visual similarity between the nodes. An example of the retrieval-

based techniques for localization is the work of Schindler et al. [109]. In their work, they

acquire a large image dataset by driving in the city and collecting data with a camera.

They build a vocabulary tree using visual features from the images using a hierarchical

clustering approach. Given a query image, they use a voting scheme to find the closest

matching database image that maximizes the information gain.

The use of publicly available information for localization is an active research area,

where a number of techniques exist to utilize the abundance of information, in the

form of images, for learning purposes. The work of (author?) [94] is an example of

such approaches, where the authors build a database from geo-tagged Flickr images.

They extract features from the images and using a clustering approach, quantify the

similarity between a query image and the database images using a probability density

function. Similarly, Crandall et al. [93] exploit Flickr’s database for large-scale image

localization. In their work, they build a database of geo-tagged and textual-tagged images

of popular touristy locations. Using a clustering approach, they are able to obtain an

estimate of the location of a query image, and build a map of popular photo destinations.

Similarly, Google’s Street View Maps provides a rich information source for localization.
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(author?) [89] build a database from Google’s Street View images, and using SIFT for

feature extraction on a query image, they compute “interest points”. Nearest neighbors

from the database images are found using a voting scheme, and the final location is

returned based on the localization confidence of the image.

Geo-tagged Street View panoramas are used by Agarwal et al. [88] for global localiza-

tion, using a stream of captured images, they formulate the problem as a non-linear least

squares estimation. First they find a transformation of the tracked feature points in the

captured image series, then they compute a rigid body transformation between the points

and the Street View panoramas. Features are computed using SIFT and clustered into a

codebook, and image similarity is measured using cosine similarity. Majdik et al. [90]

explore the problem of global localization for a micro aerial vehicle by utilizing Google

Street View data. They generate virtual views from the Street View images exploiting the

geometry of the system. Using a histogram-voting scheme, they select the highest voted

image. Another approach using publicly available map information from OpenStreetMap

is the work of Brubaker et al. [110], where they extract the map information into a simpli-

fied graph, and using visual odometry measurements along with a mixture of Gaussians

model estimate the position and orientation of the vehicle.

Text features are being recently exploited in the computer vision and robotics fields.

Schroth et al. [111] perform image retrieval using text-features from a query image. They

apply a text detection method to detect text areas, which are later used as features for

approximate string matching on an image database to retrieve image related to the query

image. Similarly, Tsai et al. [112] use text-based content search for image retrieval, using

word-HOG descriptors as features. They perform feature matching and return the best

corresponding images from the database such that both the query image and the retrieved

images share textual content.

In the robotics field, Schreiber et al. [113] present an approach to detect road side

signs and markings using an Optical Character Recognition (OCR) system. The extracted

information can be used for localization and planning tasks, and was left as future work.

Posner et al. [114] extract text from natural scene images to retrieve images semantically

relevant to a query. They use a generative probabilistic model to relate the extracted text

to terms during run-time. Unlike the previously mentioned methods, in this chapter we

present an approach for metric localization using textual information. To the best of our

knowledge, this is the first localization method capable of providing localization estimates

relying solely on the textual information in natural scene images. Through utilizing the

textual information in the scene in addition to the publicly available maps, our proposed

localization approach has low bandwidth requirements, global-scale breadth and life-long

capabilities.
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3.6 Conclusion

In this chapter, we presented a novel approach to the global localization problem that

exploits the abundance of textual information in urban environments. Our method first

extracts texts from the natural scene images, associates it to a map consisting of land-

marks and corresponding text labels and then estimates the pose of the camera using the

observation angle.

We proposed two variants of our localization approach: a single-shot variant (SSL)

which estimates the position using only information from the current timestep and a

pose tracking variant (PTL) which shares information across the different poses in order

to obtain a localization estimate that is tolerant to the amount of textual information

available. We use an off-the-shelf text detection and recognition framework to extract

textual information from the captured camera images. In order to remove noise from

the extracted text, we use a probabilistic spell correction approach. Furthermore, we

proposed three methods for measuring the similarity between the extracted text and

landmarks by utilizing both distance metrics and linguistic features of the text. Utilizing

our proposed data association method, we select for each observation a set of potential

matching landmarks and utilize a particle filter-based approach with a dedicated sensor

model to estimate the pose.

We evaluated our proposed approach on data captured from three different cities

in Europe: Freiburg, London and Zurich by comparing the performance with GPS.

Furthermore, we evaluated the performance of the proposed landmark selection methods

and the effect of the text spotting method on the localization pose accuracy. The results

demonstrate that our proposed single-shot global localization (SSL) method achieves a

localization accuracy of up to 1m, which corresponds to a 40% improvement over GPS

poses obtained with a mobile device. Moreover, by sharing information across the various

poses, our approach is more tolerant to text detection failures and guarantees a maximum

localization error of 23.0m for 60% of the poses. Unlike feature-based visual localization

approaches, our proposed method is robust to scene and environmental changes. Our

proposed method only requires a stream of camera images and any publicly available map

of the area, making our approach both efficient for systems with constrained resources

and easy to deploy. The obtained results demonstrate the efficacy of using text as a source

of information for localization in urban environments.





Chapter 4

Multitask Learning for Geometry and

Semantics-Aware Pose Regression

Semantic scene understanding and localization are indispensable

components of the robot’s autonomy stack and natural precursors

for any action execution or planning task. Despite the shared in-

terdependencies between semantic scene understanding and local-

ization, they have been for the most part tackled as disjoint prob-

lems. In this chapter, we propose a multitask learning architec-

ture for learning semantics, visual localization and odometry es-

timation. We utilize the VLocNet++ architecture which employs

multitask learning to jointly predict the semantic structure of the

scene as well as regress the 6-DoF global pose and ego-motion. We

propose a novel loss function that employs auxiliary learning to

leverage the relative pose information during training, thereby em-

bedding geometric knowledge of the world into the pose regression

network. In order to aggregate motion-specific temporal informa-

tion and incorporate semantic features into the localization net-

work stream, we use a novel adaptive weighted fusion layer based

on region activations. Furthermore, we propose a self-supervised

warping technique that uses the relative motion to warp intermedi-

ate network representations in the segmentation stream for learn-

ing consistent semantics. Finally, we introduce a first-of-a-kind

urban outdoor localization dataset with pixel-level semantic labels

and multiple loops. Extensive experiments on the challenging Mi-

crosoft 7-Scenes benchmark and our DeepLoc and DeepLocCross

datasets demonstrate that our network surpasses the state-of-the-

art, outperforming local feature-based methods while simultane-

ously performing multiple tasks and exhibiting substantial robust-

ness in challenging scenarios.



54 Chapter 4. Multitask Learning for Pose Regression

4.1 Introduction

In Chapter 3, we proposed a localization approach targeted towards outdoor urban envi-

ronments which utilizes the textual features in the scene. In order to identify the location,

our method extracted textual features corresponding to shop fronts and street signs from

captured RGB images of the scene, and leveraged the information in a probabilistic

manner with the use of publicly available maps to produce a location estimate. While

the accuracy of the pose estimate from the method proposed in Chapter 3 outperforms

GPS in urban areas, it is constrained to regions containing textual features. However, as

robots often navigate in different areas of the environment, they can encounter locations

with sparse or no textual features. In such scenarios, the lack of textual information

would restrict the application of our text-based localization method. In order to address

this limitation, in this chapter we propose a visual localization method that incorporates

geometric and semantic information of the scene into the pose regression pipeline.

Visual localization is a crucial component for various robotics and computer vision

systems such as Simultaneous Localization and Mapping (SLAM) [17], Augmented

Reality (AR) [115], and autonomous navigation [116]. In order to satisfy the goal

of reliable robotic deployment in various environments, localization systems need to

be robust to changes in the scene resulting from illumination and seasonal variation,

dynamic objects such as people or vehicles, and structural variation such as demolition

and construction of buildings.

Visual localization techniques can be classified as either topological [117] or metric-

based [88] methods. Topological localization methods usually divide the environment

into a discrete set of locations and provide coarse estimates of the position within those

discretized cells by employing image retrieval techniques [118, 119, 120]. On the one

hand, employing topological localization approaches enables robust localization in large

environments. On the other hand, the localization accuracy is bounded by the size of the

discrete set. Metric-based localization approaches produce a 6-DoF estimate of the robot

pose within the environment. For the most part, feature-based approaches that employ SfM

information achieve state-of-the-art performance on several benchmarking datasets [121,

122]. However, the run-time and complexity of finding feature correspondences using

such methods grows with the size of the environment. Moreover, failures often occur

with drastic changes in the viewpoint, motion blur or occlusions due to the requirement of

having a minimum number of matches to produce pose estimates.

The recent success of convolutional neural networks in numerous tasks has lead to

a surge in the number of approaches employing deep learning for estimating the robot

pose [44, 123, 124]. Although convolutional neural networks are more robust to appear-

ance variations than local feature-based methods, their performance remains an order of

magnitude worse in comparison. Since a majority of the deep learning-based approaches

attempt to directly regress the 6-DoF pose using a single image of the scene, they are
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unable to accurately model the 3D structure of the scene which subsequently leads to

the inferior performance. To address this shortcoming, we propose a novel loss function

that enables embedding the geometric knowledge of the scene by leveraging auxiliary

learning to jointly estimate the ego-motion of the robot. We then utilize the relative motion

information in our Geometric Consistency loss function to constrain the search space

during training.

In order to ensure the learning of the inter-task correlation between the visual odom-

etry estimation and global pose regression tasks, we employ the VLocNet architecture

(Section 2.6) for simultaneously predicting the ego-motion and the global pose of the

robot. We further employ our novel Geometric Consistency loss function which enables

the learning of consistent global poses by incorporating the relative motion information

from earlier timesteps. Utilizing the VLocNet architecture with the proposed loss function

enables the network to learn a more accurate representation of the scene, while allowing

it to be robust to appearance changes in the scene.

Inspired by our work in Chapter 3, and how humans often describe their location with

respect to surrounding landmarks, we further explore incorporating semantic knowledge

of the scene into our pose regression network. To this end, we propose the VLocNet++

architecture [57] to jointly learn semantic segmentation, global localization and visual

odometry estimation by reformulating the problem from the multitask learning perspective.

Simultaneously learning tasks across a wide variety of domains is, however, challenging

due to the difference in units and scales of the various loss functions. Nonetheless,

utilizing a joint formulation promotes inter-task learning which in turn improves the

generalization capabilities of the network. Furthermore, as labeled real-world data is hard

to obtain in the robotics domain, simultaneously learning multiple tasks mitigates the

problem of requiring vast amounts of task-specific training data. Additionally, deploying

a single joint model is more efficient in enabling online performance capabilities which is

crucial for robots with limited resources operating in the real world.

We believe that jointly learning semantics of the scene enables the pose regression

network to learn a more stable structural representation of the environment by drawing

the attention of the network towards more informative regions within the scene. Similarly,

incorporating location-specific information from the pose regression network can help

improve the accuracy of the predicted segmentation masks. Current approaches for

semantics-aware visual localization rely on predefined structures in the scene and either

extract features from the structures, emphasize the stable features [125] or combine

them with local features [126]. However, the absence of the predefined structures due to

scenarios such as occlusions, results in a substantial degradation in the performance of

these methods. As a solution to this problem, we employ a novel layer for aggregating

information from multiple sources. Our proposed adaptive weighted fusion layer [57] is

able to fuse relevant features from the semantic segmentation stream into the localization

stream based on both the semantic category and region activations.
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Input Images (It-1, It)

VLocNet++

Δpt-1,t

Global Pose
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Odometry
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Segmented Output Mt

Figure 4.1: Given a pair of consecutive monocular images (It−1, It), our proposed VLocNet++

architecture [57] predict the 6-DoF global pose pt, the ego-motion ∆pt−1,t and

semantics of the scene Mt. The results are shown for the second testing sequence

of the DeepLoc dataset. VLocNet++ achieves accurate pose estimates by leveraging

semantic and geometric knowledge from the environment, as well as aggregating

information from the previous timestep.

A critical prerequisite for the task of semantic visual localization is the ability to predict

consistent semantics. Early cognitive studies demonstrated that learning self-motion

is crucial for humans to acquire basic perceptual skills [127]. Taking inspiration from

this work, we propose a novel semantic context aggregation technique that leverages the

predicted ego-motion of the robot to improve the temporal consistency of the semantic

segmentation predictions. We propose the novel adaptive weighted fusion layer that

employs differential warping to intermediate representations of the network, transforming

the features from the previous timestep to the current timestep using pixel-wise depth

predictions as an external input [128] and the relative poses from the odometry stream of

our network. This in turn improves the performance of our semantic predictions as well

as leads to faster convergence times as the network learns to aggregate more scene-level

information. Figure 4.1 depicts the output of our proposed VLocNet++ architecture given

two input images.

In order to facilitate training the proposed multitask models, and due to the lack



4.1. Introduction 57

of publicly available datasets with labels for relocalization, ego-motion and semantic

segmentation, we introduce two new datasets: DeepLoc and DeepLocCross. The datasets

were captured using our robotic platform presented in Section 2.1 in varying outdoor

environments. The DeepLoc dataset is comprised of multiple trajectories traversed on a

university campus and contains RGB-D images with pixel-level semantic and 6-DoF pose

labels. The dataset contains repetitive, reflective and multiple weakly textured regions

which in turn make it extremely challenging for the tasks at hand. The DeepLocCross

dataset, on the other hand, was captured in a highly dynamic road environment covering

multiple road intersections and pedestrian crossings. For this dataset, we provide the

RGB-D images with 6-DoF pose labels as well as the trajectories of all dynamic objects

in the scene and the intervals at which the pedestrian crossings are safe for crossing.

The highly dynamic nature of the dataset and the presence of occlusions render this

dataset challenging for relocalization and pose estimation tasks, as well as behavior

and motion prediction tasks. In addition to the aforementioned datasets, we further

benchmark our methods on the Microsoft 7-Scenes dataset [39]. Extensive experimental

evaluations demonstrate that employing our proposed loss function and self-supervised

context aggregation technique enables the network to learn accurate representations of

the environment, thereby setting the new state of the art while simultaneously predicting

multiple tasks. In summary, the primary contributions of this chapter are as follows:

• We introduce the novel Geometric Consistency loss function (Section 4.2.1) that

enables the network to encode geometric and temporal motion information by

exploiting the relative motion information.

• We propose the novel self-supervised warping layer (Section 4.2.2.3) that enables

temporal semantic context aggregation, thereby improving the accuracy of the

semantic predictions and reducing the training time.

• We introduce the DeepLocCross dataset (Section 4.3.3) captured in an outdoor

dynamic environment for localization, ego-motion estimation, motion and behavior

prediction tasks. The dataset consists of multiple loop traversals in a highly dynamic

environment with multiple weakly textured and low-light regions, thereby rendering

it extremely challenging for a number of computer vision and robotics tasks.

• We present extensive evaluation of the proposed contributions on multiple indoor

and outdoor datasets. The results demonstrate the accuracy and robustness of

employing our proposed techniques to the tasks of visual localization and semantic

segmentation.

Furthermore, we include the following contributions which are an outcome of joint

work with Abhinav Valada [56, 57]:



58 Chapter 4. Multitask Learning for Pose Regression

• We introduce a novel multitask learning VLocNet++ architecture (Section 4.2.2)

for simultaneously predicting the global pose, ego-motion and semantics from

consecutive monocular images.

• We propose a novel adaptive weighted fusion layer (Section 4.2.2.4) for element-

wise fusion of feature maps based on region activations to exploit inter- and intra-

task dependencies.

• We introduce the DeepLoc dataset (Section 4.3.2) consisting of multiple loops with

pixel-level semantic labels and localization ground-truth. It contains repetitive,

translucent and reflective surfaces, thereby making it extremely challenging for

benchmarking a variety of tasks.

• We present comprehensive quantitative comparisons on the performance of our

task-specific networks as well as our multitask networks with deep learning-based

approaches and state-of-the-art local feature-based techniques on publicly available

benchmarking datasets.

4.2 Technical Approach

In the following section, we formalize the problem of estimating geometrically consistent

poses. We begin by introducing our proposed Geometric Consistency (GC) loss function

that enables the network to predict poses consistent with the motion model. Subsequently,

we present the multitask VLocNet++ architecture [57] for simultaneously predicting the

semantic segmentation, visual localization and ego-motion given a pair of consecutive

monocular images. Note that while the presented architecture focuses on multitask

learning, each of the constituting task-specific models can be deployed independently

during inference.

4.2.1 Geometric Consistency Loss

While the majority of existing deep learning-based approaches for global pose regres-

sion [44, 123, 124] directly minimize the Euclidean loss function between the ground-truth

and predicted poses, their performance is suboptimal in comparison to sparse feature-

based localization approaches. This comes as a direct consequence of attempting to learn

the full 3D structure of the scene using only a single monocular image at a time. In

this chapter, as opposed to naively minimizing the Euclidean loss function, we propose

the novel GC loss function in order to learn accurate global pose estimates, which in

addition to minimizing the Euclidean loss, adds another loss term to constrain the current

pose prediction by minimizing the relative motion error between the ground-truth and

the estimated motion from the odometry stream. Utilizing the predictions of the network
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from the current and the previous timesteps, the relative motion loss term LRel (f (θ | It)),

defined in Equation (4.1), can be computed as a weighted sum of the translational and ro-

tational errors between the ground-truth relative motion and the relative motion computed

from the aforementioned predictions; where θ is defined to be the internal parameters

of the network, and f(θ | It) denotes the predicted output of the network for image It.

Learning both translational and rotational pose components within the same loss function

is inherently challenging due to the difference in scale and units between both quantities.

Although initial works [43, 129] have employed an external hyperparameter β to counter-

act this problem, this nonetheless adds the extra prerequisite of manually tuning the value

of β for each new scene to achieve reasonable results. We replace this β term with two

learnable weighting variables ŝx and ŝq for the translational and rotational components of

the loss, respectively. As the variables are learnable, their values get updated during the

optimization process and consequently do not require manual tuning. In order to formalize

our proposed loss function, we first define the global and relative pose terms. We define

the global pose for image It as pt = (xt,qt) with x ∈ R
3 denoting the position and

q ∈ R
4 denoting the orientation in quaternion representation. The relative motion between

the image pair (It−1, It) is then denoted by ∆pt−1,t = (∆xt−1,t,∆qt−1,t), which can be

computed from the global poses pt−1 and pt using transformation geometry such that

pt = pt−1 ⊕∆pt−1,t, where ⊕ denotes the concatenation of transforms. Equation (4.1)

details the relative motion loss term, in which we assume that the quaternion output of the

network has been normalized a priori for ease of notation.

LRel (f (θ | It)) = exp(−ŝxRel
)LxRel

(f (θ | It)) + ŝxRel
(4.1)

+ exp(−ŝqRel
)LqRel

(f (θ | It)) + ŝqRel

LxRel
(f (θ | It)) := ‖∆xt−1,t −∆x̂t−1,t‖2

LqRel
(f (θ | It)) :=

∥

∥∆(qt−1,t)
−1 ∆q̂t−1,t

∥

∥

2
.

The terms x̂, q̂ denote the predicted position and rotation of the network, and ŝxRel
, ŝqRel

denote the learnable weighting parameters for the relative motion loss term LRel. Following

the aforementioned notation, the Euclidean loss term can be defined as

LEuc (f (θ | It)) = exp(−ŝx)Lx (f (θ | It)) + ŝx (4.2)

+ exp(−ŝq)Lq (f (θ | It)) + ŝq

Lx (f (θ | It)) := ‖xt − x̂t‖2

Lq (f (θ | It)) :=
∥

∥(qt)
−1

q̂t

∥

∥

2
.

The final GC loss term to be minimized is

LGC (f (θ | It)) := LEuc (f (θ | It)) + LRel (f (θ | It)) . (4.3)

By minimizing the aforementioned loss function, our network learns a model that is

geometrically consistent with respect to the motion.
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4.2.2 Semantic Visual Localization and Odometry

In this section, we describe the proposed VLocNet++ architecture [57] for jointly estimat-

ing the global pose, odometry and semantic segmentation from consecutive monocular

camera images. Similar to the VLocNet architecture (Section 2.6), each of the task-specific

models can be deployed independently during test time. In order to encode geometric

and structural constraints into the pose regression network, we propose to employ our

adaptive weighted fusion layer to incorporate information from the previous timestep,

thereby accumulating motion-specific information based on the region activations. In

order to reinforce the geometric constraints in the pose regression network, we employ

the GC loss function (Section 4.2.1) which constrains the search space using the relative

motion between two consecutive frames. As predicting robust and consistent semantics

is an essential requirement for the proposed fusion framework, we present a new self-

supervised warping technique which aggregates scene-level context information into the

semantic segmentation stream. Our architecture depicted in Figure 4.2 consists of four

convolutional neural network streams: a global pose regression stream, a Siamese-type

double stream for visual odometry estimation and a semantic segmentation stream.

Given a pair of consecutive monocular images It−1, It ∈ R
ρ, where ρ = H×W denotes

the number of pixels in an input image, the global pose regression stream uses the current

image It as input to predict the pose pt, the odometry stream predicts the relative motion

∆pt−1,t resulting from the input frames (It−1, It), and the semantic segmentation stream

predicts a segmentation mask Mt mapping each pixel u to one of the C semantic classes.

In the remainder of this work, we denote feature maps from layer l of a particular stream

using zl. In the following, we describe the various components of our network and the

underlying multitask learning framework.

4.2.2.1 Geometry-Aware Visual Localization

Our architecture for estimating the global pose is built upon the ResNet-50 architec-

ture [81] with pre-activation residual units truncated before the last average pooling layer.

Apart from utilizing pre-activation residual units, it follows the same structure as the

VLocNet architecture. However, as opposed to employing inner product layers to directly

fuse the previous predicted pose as in VLocNet, we adopt a more methodological ap-

proach to provide the network with this prior. Directly fusing the previous pose prediction

as opposed to intermediate network representations from the previous timestep prevents

the network from learning to correlate the underlying motion-specific temporal spatial

relations. In order to enable our network to learn the geometric and spatial relations of

the environment, we propose integrating the intermediate representation z5at−1 from the

last downsampling stage (Res5a) of the previous timestep using our proposed adaptive

weighted fusion layer detailed in Section 4.2.2.4. Our fusion scheme enables the network

to learn the most favorable element-wise weighting for each component, and when trained
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Figure 4.2: Schematic representation of our proposed VLocNet++ architecture [57]. The network

takes two consecutive monocular images (It−1, It) as input and simultaneously pre-

dicts the global 6-DoF pose pt, odometry ∆pt−1,t and semantics Mt of the scene.

The term zlt−1 denotes the feature maps of layer l from the previous timestep and Dt

denotes an externally predicted depth map used for representational warping in the se-

mantic stream. The legend enclosed in gray shows the building blocks of the streams.

end-to-end with the GC loss, enables it to leverage the motion-specific feature cues across

the temporal dimension. In Appendix A.4, we evaluate the performance of our fusion

technique in comparison to standard methods for feature sharing. We denote the afore-

mentioned architecture for global pose regression with the adaptive weighted fusion layer

as VLocNet++STL. Similar to our VLocNet architecture (Section 2.6), we employ the GC

loss function during training to enable the network to learn geometrically and temporally

consistent poses. Moreover, by employing a mechanism to aggregate motion-specific

features temporally, we are able to efficiently leverage this information.

4.2.2.2 Visual Odometry Estimation

We use the same Siamese-type network architecture from VLocNet (Section 2.6) for

visual odometry estimation. However, contrary to VLocNet, we use the full pre-activation

ResNet architecture [81] instead of the standard residual units (Section 2.5.2). Given

a pair of consecutive input images (It−1, It), the network predicts the relative motion
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∆pt−1,t by minimizing the Euclidean loss between the ground-truth and the predicted

relative poses during training as follows:

Lvo (f (θ | It−1, It)) := exp(−ŝxvo
)Lx (f (θ | It−1, It)) + ŝxvo

(4.4)

+ exp(−ŝqvo)Lq (f (θ | It−1, It)) + ŝqvo

Lx (f (θ | It−1, It)) := ‖∆xt−1,t −∆x̂t−1,t‖2
Lq (f (θ | It−1, It)) :=

∥

∥(∆qt−1,t)
−1 ∆q̂t−1,t

∥

∥

2
.

Similar to the GC loss function, we employ learnable weighting parameters (ŝxvo
, ŝqvo)

to balance the scale between the translational and rotational components in the loss term.

4.2.2.3 Temporally-Consistent Semantic Segmentation

We propose two variants of our semantic segmentation network: a single-task base ar-

chitecture that takes as input a monocular image and outputs a predicted pixel-wise

segmentation mask of the image and a multitask variant built upon the single-task model

that incorporates our proposed self-supervised warping and adaptive weighted fusion

layers (represented by the yellow and red blocks in Figure 4.2). In the following, we

present the single-task base architecture followed by the proposed self-supervised warping

layer.

Network Architecture

For our base network model, we employ the AdapNet [130] architecture which consists

of a contractive and an expansive segment. Similar to both the global pose and visual

odometry networks, the encoder segment of the network is based on the ResNet-50 ar-

chitecture [84]. The encoder learns highly discriminative features and yields an output

16-times downsampled with respect to the input dimensions. Furthermore, the encoder

incorporates multi-scale blocks to enable the generation of features at multiple scales

throughout the network without increasing the number of parameters. This is achieved by

replacing the 3×3 convolution inside the residual block with two parallel 3×3 convolu-

tions with half the number of feature maps followed by an element-wise concatenation of

the outputs resulting in the same number of channels as in the original block. In addition

to enabling the network to learn features from different scales, the element-wise concate-

nation employed within the multi-scale blocks preserves the features thus enabling the

network to learn combining features that are generated on different scales. The decoder

consists of two deconvolution layers and a skip convolution from the encoder which fuses

the high resolution feature maps as well as upsamples the downscaled feature maps back

to the input resolution.

We define the set of training images T := {(In,Mn) | n = 1, . . . , N}, where In =

{ur | r = 1, . . . , ρ} denotes the input frame and ρ denotes the number of pixels. The
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corresponding ground-truth mask is denoted by Mn = {mn
r | r = 1, . . . , ρ}, where

mn
r ∈ {1, . . . , C} represents the set of semantic classes. Using θ to denote the internal

parameters of the network, sj(ur, θ) denotes the score assigned to labeling pixel ur with

label j. We obtain the probabilities p = (p1, . . . , pC) for all the semantic classes using

the softmax function σ [131] as follows:

pj(ur | θ, In) = σ (sj (ur, θ)) =
exp (sj (ur, θ))

∑C

k=1 exp (sk (ur, θ))
(4.5)

The optimal network parameters are then estimated by minimizing the cross-entropy loss

function (see Section 2.5.3).

Self-Supervised Warping

In order to aggregate scene-level context for learning consistent semantics, we employ the

representational warping concept from multi-view geometry. By incorporating feature

maps from multiple views and resolutions, we enable our model to be robust to camera

angle deviations, object scale and frame-level distortions. We thereby also implicitly

introduce feature augmentation hence facilitating faster convergence. We leverage the

estimated relative pose from the odometry stream to warp the feature maps of the previous

timestep into the current view using a predicted depth map of the image. We utilize

DispNet [128] to obtain the depth map Dt for the current image It and fuse the warped

features with the intermediate network representations of the current timestep as described

in Section 4.2.2.4. The yellow and red blocks in Figure 4.2 represent the warping and

fusion layers respectively at Res4f and Res5c that are used to first warp then fuse the

feature maps z
4f
t−1 and z5ct−1 from the previous timestep into the network.

Utilizing the relative pose ∆pt−1,t, the estimated depth map Dt and the projection

function π, we formulate the warping as

ûr := π
(

T (∆pt−1,t) π
−1 (ur, Dt (ur))

)

, (4.6)

where the warped pixel ûr is obtained from pixel ur using the depth information Dt(ur)

and the relative motion between the images ∆pt−1,t. The function T (∆pt−1,t) denotes

the homogenous transformation matrix representing ∆pt−1,t, π denotes the projection

function transforming from world to camera coordinates such that π : R3 7→ R
2 and π−1

denotes the transformation from camera to world coordinates using a depth map Dt (ur).

In order to facilitate the computation of the gradients necessary for back-propagation,

we use bilinear interpolation as a sampling mechanism for warping. As the warping

method is fully differentiable, our approach does not require any pre-computation for

training and runs online. Furthermore, our self-supervised warping procedure adds

minimal overhead as we only calculate the warping grid once at the input resolution in

terms of pixels ur and employ average pooling to apply the grid at multiple scales for

transforming the feature maps zt−1 to their warped counterparts ẑt−1. In Section 4.4.4.2,
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we investigate the effect of warping feature maps at different stages of the network on the

accuracy of the predicted segmentation mask.

4.2.2.4 Multitask Learning

Our main motivation towards jointly learning to estimate the global pose, ego-motion and

semantics of the scene is to enable the inductive transfer of domain specific knowledge

across the different task-specific networks while simultaneously exploiting complemen-

tary features. Furthermore, it enables the inherent encoding of geometric and semantic

knowledge in the global pose regression network during training, resulting in pose predic-

tions that are semantically and geometrically consistent with the scene information. The

multitask network framework is thus structured such that the network is interdependent

on the intermediate representations and outputs of each of the learned tasks. As shown

in Figure 4.2, we employ hard parameter feature sharing between the global pose regres-

sion stream and the visual odometry stream receiving the image from the current timestep

until the end of the Res3 block. This has the effect of both exploiting the task-specific

similarities among both sub-tasks, and influencing the shared weights from the localiza-

tion network to incorporate motion-specific features caused by the inductive bias due the

relative motion estimation. Furthermore, it effectuates implicit attention on regions of

the image that are more informative for relative motion estimation. In Appendix A.3, we

evaluate the impact of the number of layers shared between the global pose regression

and the odometry stream on the accuracy of the estimated poses.

Combining features from different layers or networks is most commonly performed

through tensor concatenation and element-wise addition/multiplication. Such an approach

is effective in cases where both tensors contain sufficient relevant information. However,

the results are often suboptimal as the resulting tensor tends to accumulate irrelevant

feature maps and the effectiveness of the combination becomes highly dependent on

the stages at which the fusion is performed. Among the indispensable components

of the proposed multitask learning framework is the novel adaptive weighted fusion

layer [57]. The proposed fusion layer is comprised of an element-wise weighting of the

input tensors based on the region activations, followed by non-linear feature pooling.

Pooling across feature space as opposed to spatial pooling is regarded as a coordinate-

dependent transformation that yields the same number of filters as the input tensor.

Moreover, using region activations to weigh the tensors enables the framework to learn

the most favorable weighting while discarding irrelevant information.

We formulate the mathematical representation of the adaptive weighted fusion layer [57]

with respect to two input feature maps za and zb from layers a and b, where both layers can

belong to the same network or different task-specific networks. The following notation,

nonetheless, can be extended to multiple maps in a straightforward manner. The output of
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the fusion layer can be represented as

ẑfuse = max
(

W ∗
(

(wa ⊙ za)⊕
(

wb ⊙ zb
))

+ b, 0
)

, (4.7)

where wa and wb are learned weights having the same dimensions as za and zb, W

and b are parameters of the non-linear feature pooling, ⊙ and ⊕ denote the per-channel

scalar multiplication and concatenation respectively, and ∗ denotes the convolution op-

eration [57]. The above formulation entails the following steps: (i) each channel of the

input feature maps is weighted using learnable weights, (ii) the output weighted maps

are linearly combined together, (iii) non-linear feature pooling is applied on the resulting

tensor. Non-linear feature pooling in this case can be realized using existing layers in the

form of a 1×1 convolution followed by a non-linear activation function such as ReLU.

The adaptive weighted fusion layer is incorporated at Res4c to fuse semantic features into

the localization stream, and at the end of Res3 and Res4 blocks of the segmentation stream

to fuse warped semantic features from the previous timestep into the current timestep.

We denote our multitask architecture as VLocNet++MTL in the remainder of this chapter.

In Appendix A.5, we demonstrate the effectiveness of our proposed fusion over simple

concatenation for both inter and intra-task fusion.

Jointly learning all tasks is a challenging problem due to the diversity of the tasks

which in turn results in varying units and scales for each loss term. Naively combining the

task-specific losses through simple addition would result in no substantial benefit for any

of the tasks as the task with the highest scale would dominate the training. As a solution to

this problem, we use learnable scalar weights ŝloc, ŝvo, ŝseg to balance the scale of each of

the global pose regression, odometry and semantic segmentation loss terms respectively.

In order to train our multitask framework, we minimize the following loss function:

Lmulti := exp(−ŝloc)LGC + ŝloc (4.8)

+ exp(−ŝvo)Lvo + ŝvo

+ exp(−ŝseg)Lseg + ŝseg.

In Section 4.4.4.3, we investigate the effect of employing different optimization strategies

as well as weighting techniques on the accuracy of the learned tasks and demonstrate the

utility of our proposed learnable weighting method.

4.3 Datasets and Augmentation

Training supervised deep learning methods necessitates the availability of a large enough

training data with corresponding ground-truth annotations. However, as previously stated,

acquiring such data is laborious for real-world robotic scenarios. Moreover, the problem

becomes more pronounced for multitask learning frameworks which require a large
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enough training dataset containing individual task-specific labels. Although a number

of datasets exist that are commonly used for benchmarking semantic segmentation and

visual localization tasks, to the best of our knowledge, there does not exist a large enough

dataset containing both semantic and global localization ground-truth labels with multiple

loop closures. As a solution to this problem, we introduce the challenging DeepLoc

dataset which is captured at an outdoor urban environment. The dataset contains RGB-D

images tagged with 6-DoF global poses and pixel-level semantic labels. Furthermore, we

introduce the DeepLocCross dataset captured at a dynamic urban environment containing

RGB-D images tagged with 6-DoF poses. Both DeepLoc and DeepLocCross are made

publicly available [57]. In addition to the aforementioned datasets, we evaluate the

performance of our localization architecture on the challenging Microsoft 7-Scenes

benchmark [39]. Evaluating our multitask architecture on the aforementioned datasets

demonstrates the robustness of our approach to scene structure, presence of dynamic

objects as well as the capturing medium.

We experimented with augmenting the training images using pose synthesis [124] and

synthetic view generation [44], however, employing them did not yield any performance

improvement, but rather in some cases negatively impacted the pose accuracy. For learning

semantics, we randomly apply image augmentations in the form of rotation, translation,

scaling, skewing, cropping, flipping, contrast and brightness modulation.

4.3.1 Microsoft 7-Scenes

The Microsoft 7-Scenes dataset [39] is a commonly employed benchmark for camera

relocalization and tracking. It is comprised of RGB-D images captured from seven

different scenes in an indoor office environment: Chess, Fire, Heads, Office, Pumpkin,

RedKitchen and Stairs. The images were captured with a handheld Kinect RGB-D cam-

era at a resolution of 640×480 pixels and the ground-truth poses were generated using

KinectFusion [39]. Each scene contains multiple sequences recorded in a room with

different camera motions. Each of the sequences contains about 500 to 1,000 frames.

Figure 4.3 shows challenging images from each of the scenes and illustrates the various

difficulties encountered benchmarking on this dataset. The challenges range from motion

blur due to the camera movement, as shown in Figure 4.3(a, d), presence of repetitive struc-

tures such as in Figure 4.3(g), which increase the difficulty of the estimating the feature

correspondences, and the presence of highly reflective surfaces as in Figure 4.3(e, f).

4.3.2 DeepLoc

We introduce a challenging urban outdoor localization dataset collected using our robotic

platform presented in Section 2.1. We captured the data around a university campus

spanning an area of 110m×130m, that the robot traversed multiple times with different
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(a) Chess (b) Fire

(c) Office (d) Heads

(e) Pumpkin (f) Redkitchen

(g) Stairs

Figure 4.3: Challenging images from the Microsoft 7-Scenes benchmark, exhibiting significant

motion blur (a, d), repetitive structures (g), highly reflective surfaces (e, f) and low-

texture regions (b, c).
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(a) (b)

(c) (d)

Figure 4.4: Example images from our DeepLoc dataset that show challenging scenarios for global

pose regression, visual odometry estimation and semantic segmentation. Several

sections of the traversed area contain buildings with repetitive patterns (a) and few

distinctive features (b). The traversed trajectory contains multiple structures made

solely of glass (c), buildings with large reflective glass surfaces (d), as well as partially

occluded structures such as bikes attached to bike-stands (d). Note that the images are

artificially brightened to facilitate viewing.

driving patterns such that there is minimum overlap in the trajectories. The dataset

contains RGB-D stereo images captured at a resolution of 1,280×720 pixels at 20Hz.

Note that while the dataset contains stereo image pairs, we however use monocular images

for localization. We use the LiDAR-based SLAM system from Kümmerle et al. [67]

to generate the ground-truth pose labels. Furthermore, we provide pixel-level semantic

segmentation annotations for ten categories: Background, Sky, Road, Sidewalk, Grass,

Vegetation, Building, Poles & Fences, Dynamic and Other.

The dataset contains a total of ten sequences: seven of which were used for training

with a total of 2,737 images and the remaining three for testing containing 1,173 images.

We captured the data at varying times of the day which is reflected in the appearance

of the images in terms of lighting conditions, glare, shadows and orange dawn sky.

Additionally, a number of images contain significant motion blur caused by the motion

of the robotic platform. The environment in which the dataset was collected further

increases the difficulty of perception related tasks as it contains buildings with similar

facades and repetitive structures (Figure 4.4(a, b), and translucent and reflective glass

buildings (Figure 4.4(c, d)). Overall, the dataset can be very challenging for vision-based
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applications such as 6-DoF pose estimation, camera relocalization, semantic segmentation,

ego-motion estimation and loop closure detection. We are convinced that this dataset

enables future research in multitask and multimodal learning.

4.3.3 DeepLocCross

In addition to the DeepLoc dataset, we introduce the challenging DeepLocCross dataset

which we captured using our robotic platform presented in Section 2.1. We collected

the data around a highly dynamic road segment spanning an area of 158m×90m which

contains a tram line as well as multiple pedestrian crossings and road intersections. Like

the DeepLoc dataset, the DeepLocCross dataset contains RGB-D stereo images captured

at 1,280×720 pixels at a rate of 20Hz. The ground-truth pose labels are generated using

the LiDAR-based SLAM system from Kümmerle et al. [67]. In addition to the 6-DoF

localization poses of the robot, the dataset additionally contains tracked detections of

the observable dynamic objects. Each tracked object is identified using a unique track

ID, spatial coordinates, velocity and orientation angle. Furthermore, as the dataset

contains multiple pedestrian crossings, we provide labels at each intersection indicating

its safety for crossing. Note that in this chapter, we only utilize the RGB-D images

and localization poses for evaluating our proposed multitask architecture. The dynamic

tracking information and intersection safety labels are used in the context of motion

prediction and intersection safety prediction in Chapter 5.

The dataset consists of seven training sequences with a total of 2,264 images, and three

testing sequences with a total of 930 images. The dynamic nature of the environment

in which the dataset was captured, renders the tasks of localization and visual odometry

estimation extremely challenging due to the varying weather conditions, presence of

shadows and motion blur caused by the movement of the robot platform. Figure 4.5(a, b)

show example images from the dataset depicting the presence of pedestrians, cars, trams

and cyclists, each of which exhibiting different motion behavior than the ego-motion of the

robot thereby rendering the visual odometry estimation rather challenging. Furthermore,

the presence of multiple dynamic objects often results in partial and full occlusions of the

informative regions of the image (Figure 4.5(c)), and the presence of repeated structures

(Figure 4.5(d)) further increase the difficulty of the challenging task of pose estimation.

Overall this dataset covers a wide range of perception related tasks such as loop closure

detection, semantic segmentation, visual odometry estimation, global localization, scene

flow estimation and behavior prediction. We make both the DeepLoc and DeepLocCross

datasets publicly available∗ [57] to facilitate further progress in the field of multitask

learning for robotics.

∗VLocNet++ live demo and dataset are publicly available at:

http://deeploc.cs.uni-freiburg.de

http://deeploc.cs.uni-freiburg.de
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(a) (b)

(c) (d)

Figure 4.5: Example images from our DeepLocCross dataset depicting challenging scenarios.

The presence of multiple dynamic objects in the scene (a, b) such as cars, bicycles and

tram cars render benchmarking on this dataset challenging. Additionally, the images

exhibit significant occlusion of stable features by dynamic objects (c) and presence

of repetitive structures (d) rendering the localization and visual odometry estimation

tasks challenging. Note that the images are artificially brightened to facilitate viewing.

4.4 Experimental Evaluation

In this section, we evaluate our proposed multitask learning framework for the tasks of

global pose regression, visual odometry estimation and semantic scene segmentation. We

first quantify the performance of each of the single-task models by comparing against

deep learning methods for each corresponding task, followed by an extensive evaluation of

our multitask framework. Moreover, we compare against the VLocNet architecture with

employing our proposed GC loss function in order to gain perspective on the effect of the

architecture topology on the localization performance. Furthermore, we present extensive

ablation studies and qualitative analysis demonstrating the efficacy of our approach in

different scenarios as well as providing insights on the various architectural design choices

and the representations learned by the network. Additional ablation studies can be found

in Appendix A. In the following, we begin by detailing the training procedure employed.

4.4.1 Network Training

We train our models on all datasets using random crops of the image and test on the

center crop. We found that using random crops acts as a better regularization method
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in comparison to synthetic augmentation techniques. We initialize the residual blocks

of each task-specific network using the weights from the ResNet-50 model trained on

the ImageNet dataset [83] and the remaining layers with Xavier initialization [132]. We

employ the Adam solver [133] for optimization with parameter values β1 = 0.9, β2 =

0.999 and ǫ = 1−10. In order to train each multitask network, we follow a multi-stage

procedure by initially training each task-specific model individually with a learning rate

of λ = 10−3 and mini-batch size of 32.

Training deep networks with limited labeled data is a challenging problem that is

most commonly overcome through transfer learning approaches. However, in order to

apply such methods, one must rely on initializing the network with pre-trained weights

from a large-enough dataset on a semantically similar task. The approach proposed in

this chapter is the first to address such a wide range of tasks, and as such pre-existing

trained models cannot be employed to accelerate training. To this end, we evaluate the

effect of various weight initializations and bootstrapping methods on the accuracy of

our method in Section 4.4.4.3. Furthermore, the optimization strategy employed during

training has a direct effect on the learned representations, with the most common strategies

employed being alternate and joint training. In alternate training, we utilize a separate

optimizer for each task and randomly alternate between executing each optimizer on

the task-specific function. This has the advantage of allowing synchronized transfer of

information among the tasks, thereby enforcing commonality between them. Alternate

optimization strategies, however, have the disadvantage of introducing task-specific bias in

the parameters towards the task that was selected first for optimization. On the other hand,

joint optimization strategies entail the combination of all task-specific loss functions into a

single loss function and using a single optimizer to train all network streams concurrently.

While this has the advantage of maintaining the individuality of the tasks during training,

weighting mechanisms need to be applied to prohibit the task with the largest scale from

dominating the training. For the tasks at hand, we found that a joint optimization strategy

with learnable weighting variables is most suitable. We further evaluate the performance

gain over alternate optimization approaches in Section 4.4.4.3. Both multitask models of

VLocNet and VLocNet++ are trained using an Adam optimizer with parameter values

β1 = 0.9, β2 = 0.999 and ǫ = 1−10 and a learning rate of λ = 10−4 for a maximum of

200,000 iterations. We use the Tensorflow library [134] for the implementation and train

the network on a single NVIDIA Titan X GPU.

4.4.2 Comparison with the State-of-the-Art

In the following, we show empirical evaluations comparing the performance of each

of the single-task models VLocNetSTL and VLocNet++STL using the proposed GC loss

function with deep learning-based approaches for the tasks of global pose regression

and visual odometry estimation. Note that we do not present results for the semantic
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scene segmentation task with the single-task model as that corresponds to the AdapNet

architecture [130], rather we show the performance gain from incorporating the self-

supervised warping layer to the network in Section 4.4.4.5.

4.4.2.1 Evaluation of Visual Localization

As a primary evaluation criterion, we report the localization performance in comparison to

deep learning-based approaches on the Microsoft 7-Scenes, DeepLoc and DeepLocCross

datasets. We analyze the performance in terms of the median translational and rotational

errors for each scene using the training and test splits provided by the datasets. Table 4.1

shows the results on the Microsoft 7-Scenes dataset. Our proposed VLocNetSTL consis-

tently reduces the localization error for all scenes by an average of 77.14% in translation

and 59.14% in rotation in comparison to the best performing model NNet [135]. Further-

more, by employing the adaptive weighted fusion layer to fuse previous pose information

into the current network stream, VLocNet++STL achieves a further improvement of 54.1%

and 63.4% in the translational and rotational components, respectively over VLocNetSTL.

The performance improvements are most apparent in the perceptually hardest scenes

that contain textureless and reflective surfaces such as Fire (Figure 4.3(b)), Pumpkin

(Figure 4.3(e)) and scenes containing repetitive structures such as Stairs (Figure 4.3(g)).

Table 4.2 shows the results of our proposed single-task architecture on the DeepLoc

dataset. On this dataset, our proposed VLocNetSTL architecture outperforms the state-of-

the-art deep learning-based methods, achieving a localization accuracy of 0.68m, 3.43◦.

Despite the presence of perceptual aliasing in the scene, by incorporating the previous

pose information and utilizing the GC loss, the network is able to learn a geometrically

consistent model of the environment. Furthermore, by employing the proposed adaptive

weighted fusion layer to incorporate the previous predicted pose, VLocNet++STL achieves

a localization error almost half of that achieved by VLocNetSTL. This further demonstrates

the utility of employing an adaptive method to fuse information as opposed to naive

concatenation. Furthermore, it demonstrates that VLocNet++STL performs equally well

in outdoor environments with significant perceptual aliasing as well as indoor textureless

environments.

Table 4.3 shows the median translation and orientation error on the DeepLocCross

dataset. VLocNetSTL outperforms the baseline deep learning-based methods achieving a

localization accuracy of 0.80m, 4.51◦. This further validates the impact of utilizing the

previous pose and the relative motion information on the accuracy of the pose predictions.

Furthermore, by incorporating our proposed fusion layer to adaptively weigh the feature

maps from the previous pose, VLocNet++STL further improves on the localization ac-

curacy by 13.5% in rotation despite the challenges faced in the dataset due to the large

number of dynamic objects, occlusions and varying illumination conditions (Figure 4.5).

This further corroborates the efficacy of our network in accurately estimating the visual
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Table 4.2: Median localization error for the task of visual localization on the DeepLoc dataset [57].

PoseNet [43] Bayesian

PoseNet [137]

SVS-Pose

[44]

VLocNetSTL

(Ours)

VLocNet++STL

(Ours)

2.42m, 3.66◦ 2.24m, 4.31◦ 1.61m, 3.52◦ 0.68m, 3.43◦ 0.37m, 1.93◦

Table 4.3: Median localization error for the task of visual localization on the DeepLocCross

dataset.

PoseNet [43] Bayesian

PoseNet [137]

SVS-Pose

[44]

VLocNetSTL

(Ours)

VLocNet++STL

(Ours)

5.40m, 6.65◦ 3.43m, 5.39◦ 1.22m, 4.24◦ 0.80m, 4.51◦ 1.21m, 3.90◦

localization in multiple varying environments ranging from indoor static with distinct

features to outdoor dynamic with textureless repetitive features.

4.4.2.2 Evaluation of Visual Odometry

In order to evaluate the performance of our single-task architecture on the task of visual

odometry estimation, we report the average translational and rotational errors relative to

the sequence length on each of the datasets. Since odometry has the problem of drifting

over the distance traveled, reporting the pose errors per sequence length helps in providing

an unbiased estimate facilitating the comparison of the various methods. Similar to

the global pose regression task, we use the same train and test splits provided by the

Table 4.4: Average translational and rotational error for the task of visual odometry on the Mi-

crosoft 7-Scenes dataset [%, deg/m] [57].

Scene LBO [139] DeepVO

[140]

cnnBspp

[141]

VLocNetSTL

(Ours)

VLocNet++STL

(Ours)

Chess 1.69, 1.13 2.10, 1.15 1.38, 1.12 1.14, 0.75 0.99, 0.66

Fire 3.56, 1.42 5.08, 1.56 2.08, 1.76 1.81, 1.92 0.99, 0.78

Heads 14.43, 2.39 13.91, 2.44 3.89, 2.70 1.82, 2.28 0.58, 1.59

Office 3.12, 1.92 4.49, 1.74 1.98, 1.52 1.71, 1.09 1.32, 1.01

Pumpkin 3.12, 1.60 3.91, 1.61 1.29, 1.62 1.26, 1.11 1.16, 0.98

RedKitchen 3.71, 1.47 3.98, 1.50 1.53, 1.62 1.46, 1.28 1.26, 1.52

Stairs 3.64, 2.62 5.99, 1.66 2.34, 1.86 1.28, 1.17 1.55, 1.10

Average 4.75, 1.79 5.64, 1.67 2.07, 1.74 1.51, 1.45 1.12, 1.09
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Table 4.5: Average translational and rotational error on the DeepLoc dataset for the task of visual

odometry [%, deg/m] [57].

LBO [139] DeepVO

[140]

cnnBspp

[141]

VLocNetSTL

(Ours)

VLocNet++STL

(Ours)

0.41, 0.053 0.33, 0.052 0.35, 0.049 0.15, 0.040 0.12, 0.024

Table 4.6: Average error per sequence length for the task of visual odometry on the DeepLocCross

dataset [%, deg/m].

LBO [139] DeepVO

[140]

cnnBspp

[141]

VLocNetSTL

(Ours)

VLocNet++STL

(Ours)

1.02, 0.032 0.99, 0.029 0.79, 0.054 0.20, 0.033 0.18, 0.038

datasets for each scene. In Table 4.4, we show the results on the Microsoft 7-Scenes

dataset where our VLocNetSTL outperforms the compared methods achieving an error

of 1.51%, 1.45deg/m per sequence length. Employing the full pre-activation ResNet as

the base of our architecture in VLocNet++STL further improves the results achieving a

translational error of 1.12% and rotational error of 1.09deg/m. Similarly on the DeepLoc

dataset shown in Table 4.5, despite the textureless environment and varying lighting

conditions, both our proposed VLocNetSTL and VLocNet++STL architectures surpass the

accuracy of the compared methods with a translational error of 0.12% and a rotational

error of 0.024deg/m.

Table 4.6 shows the average translational and rotational error as a function of the

sequence length on the DeepLocCross dataset. On this dataset, VLocNetSTL outperforms

the compared approaches reducing the error by at least 1.6-times. Moreover, employing

VLocNet++STL further reduces the translational error reaching 0.18%. This improvement

over the compared architectures can be attributed to employing the pre-activated ResNet

as a base architecture which enables our network to learn more general representations of

the environment while being tolerant to noise. The presence of multiple dynamic objects

in motion in the DeepLocCross dataset (see Figure 4.5) renders the visual odometry

estimation task quite challenging due to the presence of significant motion parallax.

Benchmarking on this dataset validates the suitability as well as efficacy of our proposed

architecture to be deployed in highly dynamic environments.
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4.4.3 Evaluation of the Multitask Learning

Following the evaluation of our single-task architectures, in this section we present

quantitative evaluations of our proposed multitask learning framework for the global

pose regression, visual odometry estimation and semantic scene segmentation tasks.

The goal of this experiment is to investigate the contribution of jointly learning the

aforementioned tasks in the same settings to the overall performance. We compare the

performance of both VLocNetMTL and VLocNet++MTL with state-of-the-art methods on

each of the tasks on the Microsoft 7-Scenes, DeepLoc and DeepLocCross datasets. On the

Microsoft 7-Scenes dataset, we provide empirical results for only the visual localization

and odometry estimation tasks as no semantic labels are provided for this dataset. We

further provide a qualitative evaluation of the generalization capabilities of our proposed

self-supervised warping scheme on the DeepLocCross dataset in Section 4.4.4.5.

4.4.3.1 Evaluation of Visual Localization

We follow the evaluation procedure of the single-task models by utilizing the same train-

ing and test splits provided by each dataset, and reporting the median translational and

rotational error for each scene. We benchmark the performance of our single-task architec-

tures VLocNetSTL and VLocNet++STL as well as the multitask variants VLocNet++MTL,

VLocNetMTL on the Microsoft 7-Scenes dataset by comparing against both local feature-

based pipelines and learning-based techniques. Table 4.7 shows the median localization

pose error. The results show that our architecture VLocNetMTL is the first deep learning-

based approach to perform comparably with local feature-based learning methods achiev-

ing a median localization error of 0.04m and 3.09◦. By jointly learning to regress the

relative motion in addition to the global pose, the network is able to efficiently incorporate

motion-specific features that are necessary for accurate pose predictions. This in turn

enables our network to achieve sub-centimeter and sub-degree accuracy for the majority

of the scenes. Furthermore, incorporating the proposed adaptive weighted fusion for the

previous pose further reduces the localization error by approximately 50% in compar-

ison to VLocNetMTL. Moreover, unlike local feature-based approaches, our proposed

VLocNet++MTL is able to accurately estimate the global pose in environments containing

repetitive and textureless structures.

In Figure 4.6, we present the median localization error metric and percentage of poses

for which the error is below 5cm and 5◦. While VLocNetMTL is able to outperform SCoRe

Forests [39] in terms of the number of images with pose error below 5cm and 5◦, it is

still outperformed by DSAC2 [143]. However, by employing VLocNet++ as the base

architecture and utilizing the proposed GC loss function, VLocNet++STL is able to achieve

a localization accuracy of 96.4%. This amounts to an improvement of 20.3% over the

previous state-of-the-art approach DSAC2 [143], and an order of magnitude compared to

other deep learning methods [123, 135]. Furthermore, employing the proposed multitask
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Figure 4.6: Benchmarking the visual localization performance on the Microsoft 7-Scenes dataset

in terms of median localization errors (left) and percentage of test images with a pose

error below 5cm and 5◦ (right) [57]. We compare against state-of-the-art methods

utilizing the 3D model, depth data and RGB images. Our proposed approach uses

only RGB images as input.

learning framework VLocNet++MTL results in a further improvement in the localization

accuracy, thus setting the new state of the art on this benchmark, at the time of writing

this thesis, with an accuracy of 99.2%. Note that aside from VLocNet and VLocNet++,

the methods shown in Figure 4.6 require a 3D model of the scene through RGB-D

data, whereas both VLocNet and VLocNet++ require only monocular images as input.

Furthermore, note that both variants of DSAC [142] and DSAC2 [143] that utilize only

RGB images demonstrate a lower performance as shown in Table 4.7. The performance

achieved by VLocNet++ demonstrates the efficacy of utilizing the proposed GC loss

function in combination with the adaptive weighted fusion layer in enabling the network

to leverage the motion-specific features, thereby learning a geometrically and temporally

consistent motion model of the scene.

Table 4.8 shows the median localization error on the DeepLoc dataset. While our

single-task architecture VLocNetSTL outperforms the compared approaches, the results

show that jointly learning the ego-motion as an auxiliary task in VLocNetMTL improves

the localization accuracy by 30.9% in translation and 30.6% in rotation in comparison to

the single-task variant. Furthermore, employing our proposed adaptive weighted fusion

layer to incorporate the previous pose information, as well as semantic knowledge of

the environment, results in further reduction of the localization error achieving 0.32m

and 1.48◦. In Table 4.9, we present the median localization error on the DeepLocCross

dataset. Jointly learning the localization and ego-motion estimation tasks improves upon

the single-task VLocNetSTL by 21.2% in the translational component of the pose. This

improvement, however, comes at the cost of the rotational accuracy which decreases by
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5.3%. Utilizing our adaptive weighted fusion layer to dynamically weigh the feature maps

from the previous pose in VLocNet++STL is able to mitigate this imbalance and improve

the rotational pose accuracy by 13.5%. Furthermore, by jointly learning both tasks in

VLocNet++MTL, the rotational pose accuracy improves by 52.6% over the single-task

variant, thus achieving an overall localization accuracy of 1.69m, 1.85◦. This corroborates

the synergy between the global localization and ego-motion estimation tasks especially in

dynamic environments. Through learning to estimate the visual odometry task, the pose

regression network is able to better estimate the location as the attention of the network is

drawn to the more informative parts of the image, thus enabling it to better leverage the

temporal motion features for a more accurate localization estimate.

4.4.3.2 Evaluation of Visual Odometry

Following the evaluation procedure from the single-task architecture, we report the

average translation and orientation error as a function of the trajectory length for each

scene. Table 4.10 shows the visual odometry pose error on the Microsoft 7-Scenes dataset.

We observe that jointly learning the global location in VLocNetMTL further improves the

ego-motion estimation achieving an error of 1.46%, 1.31deg/m in translation and rotation

respectively. This validates our hypothesis that employing parameter sharing between the

global pose stream and the visual odometry stream results in mutual benefit for both tasks,

specifically in scenes with significant motion blur and low textures such as Chess and Fire.

Furthermore, by utilizing the pre-activated ResNet as a base architecture and utilizing

the adaptive weighted fusion layer to incorporate previous poses into the pose regression

network, VLocNet++MTL further outperforms VLocNetMTL with an average error of

1.08% and 1.03deg/m in translation and orientation respectively. We present the results

on the DeepLoc dataset in Table 4.11. We observe that employing the multitask version

of VLocNet does not result in significant performance improvements on this dataset,

which can be attributed to the difficult nature of this dataset caused by the presence of

multiple repetitive structures and low texture regions. Nonetheless, VLocNet++MTL is

able to outperform all of the compared methods as well as improve upon the performance

of its task-specific variant, achieving a final error of 0.10%, 0.002deg/m in translation

and rotation. Moreover, Table 4.12 shows the average odometry pose error on the

DeepLocCross dataset. Similar to the DeepLoc dataset, while VLocNetMTL performs

comparatively similar to its single-task variant, VLocNet++MTL is able to not only

learn a balance between the translational and rotational components of the motion, but

also learns temporally invariant feature maps that are tolerant to high dynamic noise in

the environment caused by the presence of multiple objects in motion. Furthermore, by

employing the adaptive weighted fusion layer to incorporate the previous pose information

into the global pose regression network, the network is able to better capture the temporal

information which in turn improves the ego-motion estimation through the parameter
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Table 4.13: Comparison of semantic segmentation performance in terms of IoU score with state-

of-the-art approaches on our DeepLoc dataset [57].

Approach Sky Road Sidew. Grass Veg. Build. Poles Dyn. Other Mean

IoU

FCN-8s [144] 94.65 98.98 64.97 82.14 84.47 87.68 45.78 66.39 47.27 69.53

SegNet [145] 93.42 98.57 54.43 78.79 81.63 84.38 18.37 51.57 33.29 66.05

UpNet [146] 95.07 98.05 63.34 81.56 84.79 88.22 31.75 68.32 45.21 72.92

ParseNet [147] 92.85 98.94 62.87 81.61 82.74 86.28 27.35 65.44 45.12 71.47

DeepLab v2 [148]93.39 98.66 76.81 84.64 88.54 93.07 20.72 66.84 52.70 67.54

DeepLab v3 [149]93.51 98.80 77.63 85.78 88.62 93.56 24.66 67.75 53.86 76.02

AdapNet [130] 94.65 98.98 64.97 82.14 84.48 87.68 45.78 66.40 47.27 78.59

VLocNet++MTL

(Ours)
95.84 98.99 80.85 88.15 91.28 94.72 45.79 69.83 58.59 80.44

sharing scheme employed.

4.4.3.3 Evaluation of Semantic Segmentation

In this section, we evaluate the performance of VLocNet++MTL for semantic scene

segmentation on the DeepLoc dataset. We benchmark our performance against several

state-of-the-art deep learning-based methods: FCN-8s [144], SegNet [145], UpNet [146],

ParseNet [147], DeepLab v2 [148], DeepLab v3 [149] and AdapNet [130]. We use the

Jaccard index, also known as Intersection over Union (IoU) as the metric for evaluating

the performance of the models. Table 4.13 shows the individual category IoU as well as

the mean IoU for our network in comparison to state-of-the-art methods. VLocNet++

achieves a mean IoU of 80.44%, consistently outperforming the baselines in all categories.

This improvement can be attributed to both the self-supervised warping as well the

inductive transfer that occurs from the training signals of the localization network, as

the AdapNet model, which we build upon, achieves a lower performance without our

proposed improvements. In addition, this enables the model to converge in about 26,000

iterations, whereas AdapNet requires 120,000 iterations to converge.

Analyzing the individual class IoU shows that the largest improvement is in the class

Sidewalk with 15.9% over the AdapNet baseline. The ability of the network to accurately

distinguish narrow structures such as sidewalks further corroborates the significance of

incorporating the self-supervised warping into our architecture. Similarly, both the Grass

and Vegetation classes receive a significant improvement over the AdapNet baseline which

can be attributed to fusing learned representations from the localization network using

our adaptive weighted fusion layer, thereby enabling our model to learn a more accurate

disambiguation between the different categories. Employing the self-supervised warping
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procedure enables the network to accurately distinguish the Dynamic objects within the

scene image despite their shape irregularity. In Section 4.4.4.5, we present an extended

qualitative analysis on the segmentation masks produced by the network.

4.4.4 Ablation Study

In this section, we present an extensive ablation study investigating the different design

choices as well as providing qualitative and generalization analysis of the representations

learned by the network. We begin with an evaluation of the proposed loss function,

followed by in-depth evaluations of the initialization and optimization strategies. Finally,

we conclude with a qualitative evaluation of the representations learned by the network

and the generalization capabilities of the network to new data. Additional experiments

detailing the various multitask learning design choices of VLocNet++MTL are presented

in Appendix A.

4.4.4.1 Evaluation of the Loss Function

In the following, we investigate the effect of the loss function on the visual localization

accuracy. We employ the Pre-activation ResNet-50 as the base architecture, and show the

improvements for the following variants:

• M1: Pre-activation ResNet-50 base architecture with ReLUs, Euclidean loss for

translation and rotation with β = 1

• M2: Pre-activation ResNet-50 base architecture with ELUs, Euclidean loss for

translation and rotation with β = 1

• M3: Pre-activation ResNet-50 base architecture with ELUs and previous pose

fusion using LGC loss with β = 1

• M4: Pre-activation ResNet-50 base architecture with ELUs and previous pose fusion

using LGC loss with ŝx, ŝq, which corresponds to our single-task VLocNet++STL

architecture.

Table 4.14 shows the median error in global pose estimation of the aforementioned

variants on the DeepLoc dataset. Employing ELU as an activation function results in

an improvement of 12.3% in the rotational pose component. This, however, comes at

the cost of the translational component of the pose whose accuracy reduces by a factor

of two. Replacing the standard Euclidean loss function with our proposed GC loss

enables the M3 model to improve the translational accuracy while further improving the

rotational accuracy. Finally the most notable improvement is achieved by replacing the

weighting parameter from a constant value β to learnable parameters ŝx, ŝq. Our final
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Table 4.14: Comparative analysis of the loss function and weighting parameters on the median

localization error of VLocNet++STL on the DeepLoc dataset [56].

Model Activation Loss Func-

tion

Weighting

Parameter

Median Error

M1 ReLU LEuc β 0.57m, 2.44◦

M2 ELU LEuc β 1.71m, 2.14◦

M3 ELU LGC β 0.56m, 2.06◦

M4 (VLocNet++STL) ELU LGC ŝx, ŝq 0.37m, 1.93◦

M4 (VLocNet++STL) model achieves a localization error reduction of 35.1%, 20.9% in

the translational and rotational pose components, respectively in comparison to the M1

model. This validates our hypothesis that utilizing the GC loss function to constrain the

search space and incorporating the relative pose information during training, enables the

network to learn a model that is more representative of the environment and thus provides

more accurate estimates. Furthermore, by utilizing learnable parameters for weighting the

translational and rotational components of the pose, the network learns a more favorable

weighting without increasing the number of tunable hyperparameters.

4.4.4.2 Evaluation of the Self-Supervised Warping

In the following, we investigate the effect of the self-supervised warping method on the

accuracy of the semantic segmentation task. We conduct experiments to determine the

stage at which the warping is most effective. There exist several aspects to this problem

which we examine. The first is whether warping should be applied at the end of a residual

block or at the beginning. We hypothesize that warping the feature maps at the end of a

residual block before the next downsampling stage would be more effective and beneficial

when compared to warping at the beginning immediately after the downsampling. The

second aspect we wish to investigate is the impact of introducing the warping procedure

at multiple downsampling stages. Our hypothesis is that warping the feature maps at

multiple stages enables the network to better generalize to the different scales of the

objects present in the scene.

Table 4.15 shows the mean IoU achieved by different warping positions in

VLocNet++MTL on the DeepLoc dataset. In order to determine whether the warping

should be conducted at the beginning or end of a residual block, we experiment with

adding the self-supervised warping layer at both Res3a and Res3d layers. The results

validate our hypothesis that performing the warping at the end of the residual block is

more beneficial with an improvement of 0.13% in the mean IoU over warping at the

beginning of the block. Following this, we experiment with including multiple warping
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Table 4.15: Improvement in the semantic segmentation performance due to warping feature maps

from the previous timestep. The warping layer denotes where the warping is performed

in the segmentation stream. The results are shown for the DeepLoc dataset [136].

Warping Layer mIoU

No warping 78.59%

Res3a 80.03%

Res3d 80.19%

Res2c, Res3d 80.09%

Res3d, Res5c 80.34%

Res4f, Res5c 80.44%

Res3d, Res4f, Res5c 80.31%

layers at the end of different residual blocks: (Res2c, Res3d), (Res3d, Res5c), (Res4f,

Res5c) and (Res3d, Res4f, Res5c). We observe that warping feature maps at later stages

results in more improvement of the mean IoU. This can be attributed to the fact that

the features learned at earlier stages of the network are more abstract in comparison to

the end, thus warping at (Res2c, Res3d) results in a lower mean IoU than warping at

(Res3d, Res5c). The highest mean IoU is achieved by warping at (Res4f, Res5c) with an

improvement of 1.85% over the base AdapNet model.

4.4.4.3 Evaluation of Initialization and Optimization Strategies

In order to evaluate the effect of the optimization strategy and different initializations on

the accuracy of the trained model, in this section we conduct experimental evaluations

targeting each of the aforementioned design choices. We measure the performance of each

choice by evaluating the visual localization task, while we consider the remaining tasks

as auxiliary. As described in Section 4.4.1, the training procedure can follow either a joint

or alternate optimization scheme. In order to determine the most suitable optimization

procedure, we explore using either scheme to minimize the loss function. Furthermore, for

joint optimization, we experiment with the weighting parameters employed for balancing

the scales between the different loss terms. More precisely, we compare the performance

of utilizing constant equal weighting terms for each of the loss terms against learnable

weighting parameters. Table 4.16 shows the median localization error of the various

optimization strategies on the Microsoft 7-Scenes dataset. The results show that using an

alternate optimization strategy, the average localization error is 28.8% and 18.5% lower

in translation and rotation, respectively, when compared to the joint optimization with

constant equal weight terms. The lower performance of the joint optimization scheme
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Table 4.16: Comparative analysis of the optimization strategy on the median localization error of

VLocNet++MTL on the Microsoft 7-Scenes dataset [56].

Optimization Strategy Median Median

Translational Error Rotational Error

Alternate 0.042m 3.09◦

Joint Constant Weighting 0.059m 3.79◦

Joint Learnable Weighting 0.022m 1.39◦

with equal weights can be attributed to the difference in scales of the loss values for each

task, which in turn results in the optimization procedure becoming more biased towards

minimizing the global pose regression error at the cost of having suboptimal relative

pose estimates. This, however, results in worse accuracy for both tasks. Employing

the learnable weights in the joint optimization strategy achieves the best localization

accuracy with an improvement of 47.6% in the translational components and 55.0% in

the rotational components of the pose over the alternate optimization strategy. Using

learnable weighting parameters enables the network to maintain the individuality of each

task during training while prohibiting the task with the largest scale from dominating the

training.

The first training phase of our multitask learning framework includes training each

of the task-specific sub-networks separately. During this phase, each network alters the

weights of its convolutional layers in a manner that best minimizes the loss function. In

the later phases, in order to effectively combine each of the task-specific sub-networks, we

require an initialization strategy that enables efficient feature sharing. Towards this goal,

we evaluate various initialization strategies using the single-task global pose sub-network

VLocNetSTL as a baseline. We report the effect of the various initializations of the joint

model on the localization accuracy. More precisely, we compare the effect of the following

variants:

• MTL-GLoc: initializing the global pose regression stream from the task-specific

VLocNetSTL and the remaining layers with Xavier initialization.

• MTL-VO: initializing the visual odometry stream using the task-specific weights

from VLocNetSTL and using the Xavier initialization for the remaining layers.

• MTL-Dual: utilizing the combined weights from each task-specific network to

initialize the overall model.

Figure 4.7 shows the median localization error of the aforementioned initialization

strategies for VLocNetMTL on the Microsoft 7-Scenes dataset. Jointly learning both
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Figure 4.7: Performance of our single-task model in comparison to the multitask model with

different weight initializations, on the Microsoft 7-Scenes dataset. The terms (x) and

(q) denote the translation and orientation components [56].

localization and odometry tasks results in a higher localization accuracy in comparison to

the task-specific sub-network, thereby validating the efficacy of employing a joint learning

procedure. Examining the results shows that the best performance is achieved by the

dual initialization procedure, as opposed to initializing only one of the sub-networks and

learning the other from scratch. This effect can be attributed to the limited amount of data

available for training. Furthermore, we observe that initializing only the visual localization

stream (MTL-GLoc) yields the lowest improvement in pose accuracy compared to the

single-task model. When utilizing this initialization strategy, the visual odometry stream

needs to be trained from scratch. During the early training epochs, the predicted relative

motion by the network is often inaccurate. However, as the localization sub-network relies

on the predicted relative motion information concurrently during the joint training, the

incorrect predictions at the early stages inadvertently result in worse performance for the

localization as the network can no longer benefit from the motion-specific features.

4.4.4.4 Evaluations of the Learned Representations

The high dimensionality of the representations learned by deep learning approaches

deters the capability to fully understand the behavior and choices made by the network.

In an attempt to counteract this issue, we employ various approaches that facilitate
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(a) PoseNet [43] (b) VLocNet++MTL

Figure 4.8: Plot of the features learned by PoseNet [43] and VLocNet++MTL on the DeepLoc

dataset using 3D multi-dimensional scaling (MDS) [150]. Inputs are images from the

testing seq-01 loop and the points shown are chronologically colored. Features learned

by VLocNet++MTL show precise correlation with the trajectory (Figure 4.10(h)),

whereas PoseNet fails to capture the distribution especially for the poses near the glass

buildings [57].

the evaluation of the learned representations, thereby enabling us to better interpret

the achieved results. Feature visualization and dimensionality reduction techniques are

most commonly employed with the goal of facilitating the evaluation of the learned

representations. Such techniques transform the data from high dimensional spaces to ones

of lower dimensions by decomposing the data along a set of principal axes. For the task

of localization, preserving the global geometry of the features is of higher importance

over finding clusters and sub-clusters in the data. Therefore, we apply 3D metric Multi-

Dimensional Scaling (MDS) [150] to the features learned by the penultimate layer of our

VLocNet++MTL to visualize the underlying distribution.

Figure 4.8 shows the down-projected features after applying MDS to the features

learned by VLocNet++MTL on the DeepLoc dataset in comparison to the features learned

by PoseNet [43]. Inspecting the results shows a direct correspondence between the

features learned by VLocNet++MTL and the ground-truth trajectory in Figure 4.10(h).

On the other hand, the features learned by PoseNet fail to capture the ground-truth pose

distribution in several areas of the trajectory. In the upcoming section, we provide further

qualitative results depicting the accuracy of the poses learned by our model.

We further investigate the effect of encoding semantic feature maps into the localization

sub-network by visualizing the activation maps of the network for both the single-task

and multitask variants of VLocNet++ using using Grad-CAM++ [151]. Grad-CAM++

employs a weighted combination of the positive partial derivatives of the feature maps at

the penultimate layer of the network to produce an activation map that acts as a visual

explanation of the network predictions. In Figure 4.9, we depict two sample images from
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(a) Input Image (b) Semantic Output (c) STL Activation (d) MTL Activation

Figure 4.9: Qualitative analysis of the predicted segmentation output along with a visualization

of the regression activation maps [151] for both the single-task (STL), and multi-

task (MTL) variant of VLocNet++ on the DeepLoc dataset [57].

the DeepLoc dataset that contain glass facades and optical glare. For each of the images,

we further depict the segmentation output and regression activation masks produced by

Grad-CAM++ for both VLocNet++STL and VLocNet++MTL. Despite the challenging

nature of both images, our model is able to segment both scenes with high granularity.

The activation maps generated from VLocNet++MTL show less noisy activations when

compared to the masks from VLocNet++STL. Further examination of the activation

masks produced by VLocNet++MTL shows that the network places more attention on

static distinguishable features of the scene that can facilitate the pose regression task such

as the pole in the top image, and the glass building in the bottom.

4.4.4.5 Qualitative Evaluation

Our experiments have thus far demonstrated the capability of VLocNet++ in terms of the

performance metrics. In this section, however, we present a qualitative analysis of our

proposed architecture for the various tasks, in addition to the run-time capabilities of our

method. While achieving accurate pose estimates is crucial for any localization approach,

the run-time requirements and complexity deploying the model play important roles in its

ease of use on various robotic systems. In order to evaluate the feasibility of deploying our

VLocNet++MTL on robotic platforms, we compare the run-time, pose accuracy, median

localization error and input requirements of our approach with the previous state-of-the-art

local feature-based method on the Microsoft 7-Scenes benchmark in Table 4.17.
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Table 4.17: Comparison with the state of the art on the Microsoft 7-Scenes dataset. We evaluate

the performance in terms of pose accuracy, run-time and input requirements [136].

Method Input Median Median Pose Run-time

Translational

Error

Rotational

Error

Accuracy

DSAC2 [143] w/ 3D 0.04m 1.04◦ 76.1% 200ms

VLocNet++MTL

(Ours)

Monocular 0.013m 0.77◦ 99.2% 79ms

While DSAC2 [143] is currently considered the state of the art on the Microsoft

7-Scenes dataset, the results in Table 4.17 demonstrate that our VLocNet++MTL exceeds

the state-of-the-art localization accuracy by 67.5% in the translational and 25.9% in the

rotational components of the pose. Furthermore, unlike DSAC2 [143], our proposed

method does not require a 3D model of the scene. This in turn facilitates ease of de-

ployment, in addition to occupying less space for the model. Moreover, the run-time

of VLocNet++MTL is 60.5% faster (run on a single consumer grade GPU) than that of

DSAC2 [143], rendering our method well suited for real-time deployment in an online

manner, as well as on resource restricted platforms [57].

We further analyze the localization accuracy of the poses predicted by VLocNet++MTL

by depicting visual representations of the predicted poses and the ground-truth poses

on the three benchmarking datasets; Microsoft 7-Scenes, DeepLoc and DeepLocCross.

Results from this experiment are shown in Figure 4.10, where the predicted poses are

shown in yellow and the ground-truth poses in red. Note that for each of the scenes,

we depict the 3D scene for visualization purposes solely, as our framework takes only

monocular images of the scene as an input. We show only the first test loop for both the

DeepLoc and DeepLocCross datasets, as visualizing all test loops in one scene results in

an intertwined output that is visually difficult to analyze. Interactive visualizations of the

3D scene models, depicting the ground-truth and predicted trajectories can be found at

http://deeploc.cs.uni-freiburg.de.

VLocNet++MTL accurately estimates the global pose in both indoor (a-g) and outdoor

(h, i) environments while being robust to textureless regions (Figure 4.3(b, c)), dynamic

objects (Figure 4.5), repetitive as well as reflective structures (Figure 4.3(e, f, g)) and

motion blur (Figure 4.3(a, d)). Our proposed multitask learning framework is able to

accurately predict the poses regardless of the aforementioned challenges. Furthermore,

through employing the proposed adaptive weighted fusion layer for fusing features across

multiple timesteps and tasks, VLocNet++ is able to accurately correlate the motion-

specific spatial features crucial for the localization task using only monocular input

images of the scene.

http://deeploc.cs.uni-freiburg.de
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(a) Chess (b) Fire

(c) Office (d) Heads

(e) Pumpkin (f) RedKitchen

Figure 4.10: Qualitative results depicting the predicted global pose (yellow trajectory) versus the

ground-truth pose (red trajectory) plotted with respect to the 3D scene model for

visualization on the Microsoft 7-Scenes, DeepLoc and DeepLocCross datasets [57].

Interactive visualizations: http://deeploc.cs.uni-freiburg.de.

http://deeploc.cs.uni-freiburg.de
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(g) Stairs (h) DeepLoc

(i) DeepLocCross

Figure 4.10: Qualitative results depicting the predicted global pose (yellow trajectory) versus the

ground-truth pose (red) plotted with respect to the 3D scene model for visualization

on the Microsoft 7-Scenes, DeepLoc and DeepLocCross datasets (continued) [57].

Interactive visualizations: http://deeploc.cs.uni-freiburg.de.

http://deeploc.cs.uni-freiburg.de
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We further provide a qualitative analysis to examine the improvement in the segmenta-

tion predictions of the network due to the incorporation of the proposed self-supervised

warping technique. Figure 4.11 shows the output segmentation masks of VLocNet++MTL

in comparison to AdapNet [130] on the DeepLoc dataset. Figure 4.11(a, c) show distant

sidewalk paths in the middle of the grass and structures partially occluded by vegetation

which are quite challenging to detect given the small size of the input image. While

the segmentation mask produced by AdapNet [130] often fails to capture the entire

path/structure, VLocNet++ is able to precisely capture the boundary between between

grass and sidewalk.

Figure 4.11(b, d) contain multiple thin structures such as poles and bike stands, which

are either completely absent or only partially detected in the output of AdapNet [130].

Our proposed method is, however, able to accurately and precisely segment thin pole-like

structures by aggregating the previous observations using the proposed self-supervised

warping scheme. Figure 4.11(d) shows another challenging example, wherein a dark

image is produced by the camera due to direct sunlight. While AdapNet [130] incorrectly

classifies grass as a bench due to this artifact, VLocNet++ is able to reliably distinguish

between the distinct categories while being tolerant to the various weather and illumination

conditions.

We present additional qualitative segmentation results of our VLocNet++MTL in various

challenging scenarios from the DeepLoc dataset in Figure 4.12. Figure 4.12(a, b, e, g)

show various illumination conditions causing shadows, glare, over- and underexposure

due to the sunlight. Nonetheless, in all these cases, VLocNet++ yields an accurate

representation of the scene overcoming the disturbances. Furthermore, despite the small

size of the input image and the abundance of thin pole-like structures such as lamp posts,

signs and fences in the dataset, which contribute major challenges for any segmentation

network, VLocNet++ is still able to detect the entire structure of the objects as can be

seen in Figure 4.12(b, c, d, g). We attribute this to the ability of the network to aggregate

information from previous observations using the dynamic warping scheme.

Among the challenging aspects of our DeepLoc dataset is the presence of reflective and

translucent glass buildings as in Figure 4.12(d, e, f, h). Despite the presence of multiple

glass-constructs, our method is able assign to them the correct semantic class. The ability

to identify the boundary between grass and vegetation is a difficult problem even for

humans. Figure 4.12(a, g) depict examples where our network was able to accurately

predict such boundaries. Moreover, Figure 4.12(e, g) show images containing narrow

paths surrounded by vegetation which are difficult to observe as the distance from the

path increases. Inspecting the segmentation outputs of VLocNet++ for those cases shows

the capability of our model to capture such distant thin passages.
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4.4.4.6 Generalization Capabilities

In order to further demonstrate the benefit of utilizing the self-supervised warping for

the segmentation accuracy, we provide qualitative analysis of the performance of our

multitask model on the DeepLocCross dataset in comparison to AdapNet [130]. As we

do not provide pixel-wise semantic annotations for this dataset, we train our model on the

Cityscapes dataset [153] and evaluate the performance of the model on the DeepLocCross

dataset due to the similarities in the object classes between both datasets. We train our

VLocNet++MTL model for 12 categories of the Cityscapes dataset: Background, Sky,

Building, Road, Sidewalk, Fence, Vegetation, Pole, Car, Sign, Person and Cyclist. We pro-

vide a qualitative evaluation of the performance of our VLocNet++MTL in comparison to

several state-of-the-art methods for semantic segmentation: FCN-8s [144], SegNet [145],

FastNet [146], ParseNet [147], DeconvNet [152], DeepLab v2 [148], DeepLab v3 [149]

and AdapNet [130]. Table 4.18 shows the per-class and mean IoU for each of the afore-

mentioned methods on the Cityscapes dataset.

Our proposed VLocNet++MTL outperforms state-of-the-art methods achieving a mean

IoU of 79.29%. We observe the biggest improvement over the base AdapNet architec-

ture [130] in some of the more difficult classes: the Pole category improves by 2.75%,

the Sign class improves by 1.08% and similarly the Cyclist category improves by 0.51%.

This further corroborates our hypothesis that by incorporating the self-supervised warping

layer, our network is able to better distinguish narrow structures such as Pole as well as

distinguish between semantically difficult categories such as Person and Cyclist.

Figure 4.13 shows the output segmentation masks of VLocNet++MTL in comparison

to AdapNet [130] on the Cityscapes dataset. Figure 4.13(a) shows a complex scene image

with multiple pedestrians and cyclists, which are particularly difficult to differentiate due

to the small size of the image, the far distance at which they were observed and the partial

occlusions within the image. Unlike AdapNet, our proposed VLocNet++MTL is able to

accurately distinguish between the two categories despite the aforementioned challenges

as can be seen from the image. Figure 4.13(b, c) show multiple poles and signs which

are either entirely missing or only partially detected in the output of AdapNet. However,

VLocNet++MTL is able to precisely capture the structure of these objects by aggregating

the previous temporal features using the self-supervised warping layer. Figure 4.13(d)

contains multiple short pole-like structures on the side of a building which are only

partially segmented in the output of AdapNet. However, despite the dark image quality, by

incorporating the temporal features using our proposed self-supervised warping scheme,

VLocNet++MTL is able to accurately and precisely classify both the pole-like structures

and the boundary between the building and sidewalk.

Finally, we evaluate the generalization capabilities of our proposed warping scheme

by testing our VLocNet++MTL architecture trained on the Cityscapes dataset on images

from the test sequence of the DeepLocCross dataset. Despite the similarity in the object
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classes observed in both datasets, the perspective from which the images were captured

is completely different. The Cityscapes dataset was captured with a camera mounted

to a moving vehicle as it traversed the streets of various cities. On the other hand, the

DeepLocCross dataset captures data from a pedestrian perspective as the robot traverses

on the sidewalk. We expect this change in perspective to affect the segmentation output

of the network. Figure 4.14 shows four sample images from the DeepLocCross dataset.

For each image, we show the segmentation mask predicted by AdapNet [130] and our

VLocNet++MTL. Figure 4.14(a, d) show scenes with multiple poles, cars and signs.

VLocNet++MTL is able to accurately segment the poles and remaining structures in the

scene while showing better generalization capabilities in comparison to AdapNet.

Figure 4.14(b, c) show challenging images where the robot is traversing the sidewalk,

however, due to the variance between the Cityscapes dataset and the images from the

DeepLocCross dataset, the sidewalk is misclassified as road. This occurs as the training

images did not contain any examples where the car is traversing over the sidewalk. We

believe, however, that the inclusion of training images containing different perspectives

should remedy this issue. Nonetheless, we observe that the classes Poles, Signs and

Person are more accurately and precisely segmented by our proposed self-supervised

warping scheme. Overall, we observe that despite the perspective differences, utilizing

our proposed warping scheme enables the network to better generalize to different envi-

ronments as can be seen from the predicted segmentation masks when compared to the

predictions of AdapNet.

4.5 Related Work

Over the past decade there has been a gradual shift from employing traditional handcrafted

pipelines to learning-based methods particularly for perception related tasks. In this

section, we discuss some of the recent learning-based approaches for multitask learning,

pose regression and semantic segmentation.

Multitask Learning is becoming more popular over the years, with applications cover-

ing a wide range of tasks including mage understanding [154], sentiment prediction [155],

semantic segmentation [156] and recently even on learning from demonstration [157].

Multitask learning can be defined as an inductive transfer mechanism that improves gen-

eralization by leveraging domain specific information from related tasks [158]. In [159],

Bilen et al. propose the use of an instance normalization network to train a network

that recognizes objects across multiple visual domains including digits, signs and faces.

In [160], the authors introduce a model with a sparsely-gated mixture of experts layer

containing thousands of feed-forward sub-networks for the task of language modeling

and machine translation. For combining different loss functions in a multitask model,
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Kendall et al. [161] propose a loss function based on maximizing the Gaussian likelihood

using a homoscedastic task uncertainty. While in most of the aforementioned approaches,

the parts of the network that learn low-level features are shared among the different

tasks, followed by separate task-specific branches, our proposed method employs a novel

weighted fusion layer to inductively share representations across streams through learning

a favorable weighting among the feature maps for the mutual benefit of the tasks.

Visual Localization methods are commonly classified as either metric or appearance-

based approaches. Appearance-based localization methods [162, 163] employ image

retrieval techniques to find closely matching images to the query image from an im-

age/feature database, thereby providing a coarse estimate of the location of the query

image. On the contrary, metric-based localization approaches estimate correspondences

between local features in the image, with the goal of estimating the full 6-DoF pose. Once

the correspondences are found, Structure-from-Motion (SfM) or Simultaneous Localiza-

tion and Mapping (SLAM) [41, 42] is applied to estimate the geometric relation between

the input image and the 3D model or map of the scene. In this chapter, we primarily

focused on metric-based localization methods. While the predominant metric-based

localization approaches rely on local sparse feature correspondences, the success of deep

convolutional neural networks in classification and semantic segmentation has led to a

surge in the number of deep learning-based methods adapted for pose regression.

Sparse feature-based localization approaches learn a set of feature descriptors from

the training images. The learned features are then employed to learn a codebook of 3D

descriptors against which a query image can be matched [121, 164]. In order to efficiently

find feature correspondences within the codebook, Shotton et al. [39] and Valentin et

al. [122] train regression forests on 3D scene data and employ RANSAC [165] to infer

the final location of the query image. Donoser et al. [166] propose a discriminative

classification approach using random ferns, which improves the pose accuracy while

allowing for faster run-time. While sparse feature-based localization methods are able to

provide accurate pose estimates, the overall run-time of such approaches depends on the

size of the 3D model and number of feature correspondences found. This in turn results in

suboptimal performance in textureless environments and scenes with repetitive structures.

The first deep learning-based localization approach was proposed by Kendall et al. [43].

The authors introduced PoseNet, a CNN architecture that given a monocular input image

estimated the 6-DoF pose. The emergence of PoseNet has led to a subsequent surge in deep

learning-based localization methods. Subsequent improvements included using Dropout

units to act as a regularizer for estimating the uncertainty of the network predictions [137],

incorporating Long-Short Term Memory (LSTM) units for dimensionality reduction [129],

supervising the representations learned by the network through using an encoder-decoder

architecture during training [138], and proposing loss functions that leverage the scene

geometry [123]. Laskar et al. [135] propose a CNN approach that combines both metric
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and appearance-based localization methods. The authors train a network on relative

camera pose estimation, and utilize the features learned by the network to identify closely

matching images from a database. Brachmann et al. [142] propose a differentiable

version of RANSAC, dubbed DSAC. Their proposed approach modifies upon the standard

RANSAC by replacing the deterministic pose hypothesis either a soft argmax selection

or a probabilistic selection, thereby rendering the method differentiable and suitable

for online learning through back-propagation. In subsequent work [143], the authors

introduce a second version of the method that employs an entropy controlled soft inlier

count for scoring the pose hypotheses predicted by the network.

A majority of the deep learning-based localization methods utilize pre-trained classifi-

cation networks as an architecture backbone, and modify the network through the addition

of inner product layers coupled with a Euclidean loss function for pose regression. On the

one hand, the features learned by the networks are, unlike local feature-based methods,

robust to motion blur and perceptual aliasing. However, the accuracy of the CNN-based

methods remains substantially lower than local feature-based localization methods. In

this chapter, we proposed adaptively fusing the previous motion information into the pose

regression network to enable the network to learn poses that are consistent with the motion

model. Furthermore, we employed a novel loss function that enables the aggregation of

motion-specific features across the temporal domain, thereby enabling the network to

learn a model that is globally consistent.

Visual Odometry: Estimating the motion of the camera due to the robot motion, or

ego-motion estimation, is a closely related task to that of visual localization. Among

the earlier approaches to tackle this problem is that of Konda et al. [167], in which the

authors employ a CNN with a softmax layer to infer the relative transformation between

the input images. In their work, the authors treat the task as a classification problem,

and attempt to infer the transformation from a prior discretized set of velocities and

directions. Using inputs as both images and LiDAR data, Nicolai et al. [139] proposed

a Siamese architecture with alternating convolutional and pooling layers to estimate the

transformations from consecutive point clouds. Their proposed approach projects the

point cloud data on the 2D image and subsequently feeds this information to a neural

network which estimates the visual odometry.

Mohanty et al. [140] propose an AlexNet-based [75] Siamese architecture called

DeepVO for odometry estimation from monocular images and their corresponding FAST

features [168]. Their architecture employs a Euclidean loss function during training

with equal weight values to regress the translational and rotational pose components. In

similar work, Melekhov et al. [141] add a weighting term to balance the translational and

rotational components of the loss, yielding an improvement to the predicted pose. In order

to render their approach robust to varying image resolutions, their network architecture

incorporates a spatial pyramid pooling layer. Taking inspiration from the aforementioned
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works, and the success of residual networks in various vision-based tasks, we proposed

a Siamese-type dual stream architecture built upon the ResNet-50 [81] model for visual

odometry estimation.

Semantic Segmentation: Fully Convolutional Neural Networks (FCNs) [144] was the

first approach to propose the encoder-decoder model replacing inner product layers in

classification networks with convolutional layers to enable pixel-wise classification. This

lead to a tremendous increase in the performance of various scene parsing tasks, with

several networks building upon FCNs by introducing more refinement stages to improve

the granularity of the segmentation [146], employing efficient non-linear upsampling

schemes [145], adding global context [147] and pyramid pooling for context aggrega-

tion [169]. Yu et al. [77] proposed a context module utilizing dilated convolutions in

order to enlarge the receptive field. DeepLab [148] proposed the use of multiple parallel

dilated convolutions with different sampling rates for multi-scale learning in addition to

employing Conditional Random Fields for post-processing the predictions of the network.

Valada et al. [130] introduced the AdapNet architecture built on ResNet, in which they

introduce multi-scale residual blocks containing dilated parallel convolutions, thereby

enabling faster inference times without compromising on the performance.

Ma et al. [170] proposed an RGB-D semantic mapping method which incorporates

a warping procedure for warping frames with no ground-truth into nearby frames with

ground-truth annotation. For learning consistent semantics in VLocNet++, we build

upon AdapNet’s model and fuse feature maps from the preceding frame into the current

frame through warping by utilizing the predictive relative pose from the odometry stream.

Unlike the approach of Ma et al. [170] which incorporates the warped feature maps to

aid in calculating the supervised loss for frames without ground-truth information, in this

chapter, we warp the feature maps of the preceding frame into the current frame at multiple

downsampling stages in order to enable multi-view aggregation which subsequently leads

to improved accuracy and faster convergence time.

In this chapter, we proposed a multitask deep convolutional neural network architecture

for 6-DoF visual localization, visual odometry estimation and semantic scene segmen-

tation from consecutive monocular camera images. In order to leverage the inherent

interdependencies between the three tasks, we proposed an adaptive weighted fusion layer

that learns a favorable weighted combination of the feature maps by utilizing the region

activations. Furthermore, we proposed a loss function that enables the network to regress

poses consistent with the true motion model. We additionally proposed a self-supervised

warping method to enable the multi-view aggregation of features at different downsam-

pling stages thereby enabling the network to predict more accurate segmentation masks

while reducing the training time.
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4.6 Conclusion

In this chapter, we introduced an end-to-end trainable multitask convolutional neural

network that addresses the problem of visual pose regression. We built upon the VLocNet

architecture, which employs auxiliary learning techniques to jointly regress the 6-DoF

visual localization and 6-DoF visual odometry from consecutive monocular images. Using

an efficient sharing scheme and a joint optimization strategy, we enabled the network to

exploit the inter-task correlations for the mutual benefit of both tasks. We introduced the

VLocNet++ architecture for simultaneously learning 6-DoF visual localization, semantic

segmentation and odometry estimation, with the goal of exploiting the interdependencies

within these tasks for their mutual benefit. We proposed an approach for incorporating

geometric and structural priors into the visual localization network through aggregating

semantic and motion-specific features learned through a joint optimization strategy and an

efficient sharing scheme. In order to efficiently and adaptively share features, we proposed

an adaptive weighted fusion layer that learns the most favorable weighting for fusion

based on the region activations. We further presented a self-supervised warping technique

for scene-level context aggregation in semantic segmentation networks that improves

the segmentation accuracy, decreases the convergence time while adding minimal com-

putational overhead. In order to enable the efficient encoding of the geometric features

into the pose regression network, we introduced the Geometric Consistency loss function.

By minimizing this loss function, in combination with incorporating the previous pose

information using our adaptive weighted fusion layer, we enable the model to efficiently

leverage the pose information and thus learn a model that is geometrically consistent with

respect to the motion.

In order to evaluate the performance of our proposed model, we introduced two large-

scale outdoor localization datasets with multiple loops captured in different settings,

which we make publicly available. Both datasets contain challenging scenarios for

perception related tasks ranging from motion blur, substantial illumination changes,

perceptual aliasing, thin/translucent structures and presence of multiple dynamic objects.

Using extensive experimental evaluations on an indoor benchmark dataset, in addition

to both outdoor datasets, we show that both our single-task as well as multitask models

achieve state-of-the-art performance compared to existing deep learning-based approaches.

Furthermore, on the challenging Microsoft 7-Scenes dataset, our method outperforms

the previous state-of-the-art by 67.5%, 25.9% in the translational and rotational pose

components, while being 2.5-times faster. Thereby, our method does not only close

the gap between local feature-based and deep learning-based methods, but is also the

first method to outperform the state of the art while simultaneously predicting multiple

tasks. We presented extensive ablation and qualitative studies justifying the various design

choices as well as visualizing the representations learned by the network.
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Mutlimodal Interaction-Aware Motion

Prediction

The ability to safely cross street intersections is essential for mo-

bile robots navigating on sidewalks. Most existing approaches rely

on the recognition of the traffic light signal to make an informed

crossing decision. Although these approaches have been crucial en-

ablers for urban navigation, the capabilities of robots employing

such approaches are still limited to navigating only on streets that

contain signalized intersections. In this chapter, we address this

challenge and propose a multimodal convolutional neural network

framework to predict the safety of a street intersection for cross-

ing. Our architecture consists of two sub-networks: an interaction-

aware trajectory estimation stream (IA-TCNN), that predicts the

future states of all observed traffic participants in the scene, and

a traffic light recognition stream (AtteNet). Learned representa-

tions from the traffic light recognition stream are fused with the

estimated trajectories from the motion prediction stream to learn

a crossing decision that is invariant to the type of the intersection.

Moreover, incorporating the uncertainty information from both

modules enables our architecture to learn a likelihood function that

is robust to noise and mispredictions from either sub-network. We

further introduce the Freiburg Street Crossing dataset which con-

tains sequences captured at multiple intersections of varying types,

demonstrating complex interactions among the traffic participants

as well as various weather conditions. Extensive experimental eval-

uations on public benchmark datasets and our Freiburg Street

Crossing dataset demonstrate that our network achieves state-of-

the-art performance for each of the sub-tasks, as well as for the

street crossing safety prediction.
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5.1 Introduction

Thus far in this thesis, we proposed various approaches for mobile robots operating in

urban environments to robustly localize themselves, thereby facilitating their deployment

for day-to-day tasks whether as navigational aids, autonomous driving vehicles or last-

mile delivery agents. In most of these applications, as mobile robots navigate closely

around humans, it is essential that they follow our navigational conventions while also

being robust to unexpected situations. In this context, the ability to autonomously navigate

across street intersections is one of the main situations that robots should be able to handle

safely.

In order to decide if a street intersection is safe for crossing, humans are taught from an

early age to follow a rigorous decision making process which is comprised of checking

and waiting for the traffic light signal, followed by looking in both directions to ensure the

safety of the intersection for crossing. Hence, solely relying on the traffic light information

to make the crossing decision is suboptimal as not only is the traffic light recognition

task challenging in itself, the signal alone does not ensure the intersection safety for

crossing. For example, when a speeding vehicle such as an ambulance or a firetruck

approaches an intersection, it has the right of way as it does not necessarily follow the

traffic regulations. Traffic participants such as pedestrians and vehicles are required to

wait until the intersection becomes clear. This problem becomes even more challenging

with the varying types of intersections and the associated rules on how to cross each

variant. For instance, the standard convention at zebra crossings is that the pedestrian has

the priority for crossing the intersection, whereas the oncoming traffic slows down and

stops until they have crossed. On the other hand, at unmarked intersections such as a side

street merging into a main road, there is neither a traffic light to regulate the crossing nor

does the pedestrian have the right of way. Further complicating the problem, the topology

of the road such as street width, presence of a middle island and direction of traffic play

an important role in determining the crossing procedure. Hence, hard-coding a set of

behavioral rules for a mobile robot to abide by at intersections is not only infeasible, but

also requires constant upkeep and tailoring to suit varying scenarios that change with each

region or city.

In this chapter, we propose a convolutional neural network framework to address the

problem of autonomous street crossing while considering the dynamicity of the scene

as well as factors that influence the crossing decision such as the presence of a traffic

light. Our network consists of two streams, an interaction-aware motion prediction stream

to estimate the future states of all traffic participants in the vicinity and a traffic light

recognition stream to predict the state of the traffic light. Our framework fuses feature

maps from both network streams to learn the crossing decision in an end-to-end manner,

rendering it tolerant to noise and mispredictions by either sub-network, as well as making

it inherently agnostic to the type of intersection.
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Figure 5.1: Schematic representation of our proposed system for autonomous street crossing. Our

approach is comprised of two main modules: a traffic light recognition network and

an interaction-aware motion prediction network. Feature map outputs of both modules

are utilized to predict the safety of the intersection for crossing.

Predicting and modeling the behavior of agents, whether pedestrians or vehicles, is an

extremely challenging problem that requires understanding the navigation conventions

as well as the complex interactions among the various agents. For humans, identifying

and following these conventions during navigation is a skill learned over several years

that often needs readjustment depending on the environment. Hence, formalizing a set

of behavioral rules for a mobile robot to uphold is both complex and taxing, requiring

constant maintenance for each new environment. Recently, learning based motion predic-

tion approaches [171, 172] have shown considerable robustness in modeling interactions

among agents in real-world scenarios. However, as the density of the scene increases,

their run-time and representational capabilities decrease, as they rely on modeling each

agent separately by considering only their local neighborhood.

In order to address these problems, we propose the novel Interaction-aware Temporal

Convolutional Neural Network (IA-TCNN) architecture for interaction-aware motion

prediction to jointly estimate the future trajectories of all observed agents in the scene. By

utilizing a data driven method to represent the behavior of the different agents, we enable

our approach to leverage the inherent interdependencies in their motion, thereby learning

interactions without manually specifying a set of behavioral rules [47, 173]. While,

sequence modeling problems such as trajectory estimation have been mostly tackled using

recurrent neural networks, recent studies have shown that temporal convolutional neural
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networks are able to more effectively model such tasks [174].

We propose the novel AtteNet architecture for traffic light recognition that is robust to

varying weather and lighting conditions. Our architecture incorporates Squeeze-Excitation

blocks [175], thereby enabling it to learn a robust feature recalibration method that explic-

itly models the complex interdependencies between the channels of the various feature

maps. This allows the network to actively suppress irrelevant features in the scene and

highlight the most relevant features, which in turn enables it to learn representations

that are robust to noise. Our aim by learning the traffic light signal is to incorporate the

information into the street crossing predictor, thereby enabling our method to learn a

model that acts in accordance with the navigational norms.

We introduce a real-world dataset captured at different intersections in Freiburg, which

we also make publicly available. The data contains over 1, 200 annotated scenes of

crossing scenarios, tracked detections for nearby traffic participants, and RGB images of

pedestrian traffic lights in challenging weather conditions.

Figure 5.1 depicts the proposed architecture for intersection safety prediction along with

the constituting sub-networks. The input to our network is an RGB image of the scene

and the trajectories for all observed dynamic agents over an interval of time. Our network

simultaneously predicts the traffic light signal, the future states of all traffic participants

over a prediction window and the safety of the intersection for crossing during this interval.

As our method does not rely on structural knowledge of the environment or any form of

communication with the surrounding traffic participants, it can be applied independently

of the intersection type. We benchmark our IA-TCNN architecture on several publicly

available datasets, namely ETH [173], UCY [50] and L-CAS [176], in addition to our

own Freiburg Street Crossing (FSC) dataset. For the traffic light recognition task, we

benchmark on the Nexar [177] and Bosch [178] datasets as well as the Freiburg Street

Crossing dataset. While for the autonomous crossing prediction, we perform extensive

experimental evaluations on the Freiburg Street Crossing dataset. The results demonstrate

that our architecture achieves state-of-the-art performance on each of the tasks.

In summary, our key contributions are:

• A novel multimodal convolutional neural network architecture for intersection

crossing safety prediction that jointly predicts the state of the traffic light and the

future trajectories of all traffic participants in the vicinity. Our network then utilizes

information from both sub-networks to learn a crossing decision that is invariant to

the intersection types as well as the underlying road topologies.

• The novel IA-TCNN architecture for interaction-aware motion prediction which

employs causal convolutions to model the complex behavior and interactions among

all observed agents in a scene while maintaining a fast inference time and being

efficiently deployable in robots with limited resources.
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• The novel AtteNet architecture for traffic light recognition that utilizes Squeeze-

Excitation blocks to learn robust representations by leveraging global information

to adaptively select relevant features from the input data.

• The Freiburg Street Crossing dataset captured at various intersections with anno-

tations for the traffic light state, trajectory annotations for the tracked dynamic

objects and labels for the intersection safety for crossing which we make publicly

available to encourage future research in interaction-aware motion prediction and

autonomous street crossing.

• We present extensive qualitative and quantitative analysis on each of the proposed

modules on various publicly available benchmarks, in addition to our real-world

dataset, demonstrating their efficacy in challenging real-world scenarios.

5.2 Technical Approach

In this section, we detail our proposed system for predicting the safety of the intersec-

tion for crossing by jointly learning to predict the future motion of the observed traffic

participants and simultaneously recognizing the traffic light state. Our framework fuses

the predicted future states as well as the uncertainties in the trajectories of the traffic

participants from the motion prediction stream with feature maps from the traffic light

recognition stream in order to predict the safety of the intersection for crossing. Note that

the proposed networks for interaction-aware motion prediction and traffic light recognition

can be deployed separately for their respective tasks.

Our proposed architecture, depicted in Figure 5.1, consists of two convolutional neural

network streams: an interaction-aware motion prediction stream IA-TCNN and a traffic

light recognition stream AtteNet. The learned representations from both streams are

concatenated channel-wise and passed to the road crossing module, which in turn produces

a likelihood over the crossing decision. Given an RGB image at the current timestep and

the trajectory information for each dynamic object over a window of time, the output

of our model is the traffic light state, the predicted trajectory for each object over the

prediction interval and the crossing decision. We define dynamic objects as objects that

have non-zero velocity during the observation interval. In the following sections, we will

first detail each of the networks, followed by the fusion procedure for predicting the safety

of the intersection for crossing.

5.2.1 Interaction-Aware Motion Prediction

Given the trajectory information for each dynamic object over a certain time period, the

output of our model is the corresponding trajectory for each dynamic object over the
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prediction interval. We define the trajectory Oi for object i during an observation interval

Tobs = {1, . . . , tobs} as:

Oi =
{(

xt
i, y

t
i , v

t
i , qw

t
i , qz

t
i

)

∈ R
5 | t ∈ Tobs

}

, (5.1)

where each trajectory point is represented by the spatial coordinates (xt
i, y

t
i), the velocity

vti and the yaw angle in the velocity direction in normalized quaternion representation qt
i.

Since we do not utilize the roll and pitch angles, we drop their respective components

in the quaternion representation leading to qt
i = (qwt

i , qz
t
i). Our network produces the

predicted trajectory Wi over the interval Tpred = {tobs + 1, . . . , tpred} such that:

Wi =
{(

xt
i, y

t
i , v

t
i , qw

t
i , qz

t
i

)

∈ R
5 | t ∈ Tpred

}

. (5.2)

In order to represent this problem as a sequence-to-sequence modeling task, the pre-

dicted output at timestep t ∈ Tpred can only depend on inputs from t′ ∈ Tobs. In other

words, predictions cannot depend on future states of traffic participants. Moreover, we

predict the future trajectories for an interval greater than or equal to the observation

interval, as estimating the trajectories for an interval shorter than the observation interval

is comparatively trivial. Instead we strive to accurately predict the future states of dynamic

agents for an interval longer than the observation interval.

We propose the IA-TCNN architecture depicted in Figure 5.2(a), which fulfills the

above criteria. Our network consists of three causal blocks, where each block contains

zero-padding followed by n dilated causal convolutions, cropping and a tanh activation

function. In each block, we employ zero padding and cropping layers to fulfill the

requirement of predicting a trajectory with length greater than or equal to the observed

trajectory. We utilize causal convolutions where the output at each timestep is convolved

with elements from earlier timesteps, thereby preventing information leak across different

layers.

Although the amount of previous information utilized by causal convolutions is linear

to the network depth, increasing the depth or using extremely large filter sizes increases

the inference time as well as the training complexity. We overcome this problem by

employing dilated causal convolutions to increase the size of the receptive field without

increasing the depth of the network. We use a constant kernel size of 30×30 for each

of the convolutional layers with filter sizes of 128 each and increase the dilation rate

by 1 for each following convolution. We model the predicted spatial coordinates and

velocity of each traffic participant using a multivariate Gaussian distribution in order

to obtain a measure of confidence over the output of the network. We do not include

the yaw angle in the multivariate distribution due to wrap-around issues. Obtaining a

confidence measure over the angular prediction can be, however, addressed by using a

von Mises distribution. In this work, we adopt the approach of estimating the yaw angle

separately using the quaternion components. The output of the last block is passed to a
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Figure 5.2: Illustration of the proposed network architecture for interaction-aware motion predic-

tion. We propose two variants of our architecture (a)IA-TCNN and (b) IA-DResTCNN.

The legend enclosed in red dashed lines shows the constituting layers for each block.

time-distributed fully connected layer of size 9 to produce temporal predictions for each

timestep of the prediction interval, where for each dynamic object the network predicts

the mean µ
t
i = (µx, µy, µv)

t

i
, standard deviation σ

t
i = (σx, σy, σv)

t

i
, correlation coefficient

ρ
t
i = (ρxy, ρxv, ρyv)

t

i
and quaternion components (qwt

i , qz
t
i).

We propose two variants of our method depicted in Figure 5.2 to further investigate

the suitability of the proposed architecture for the sequence modeling task. IA-LinConv

closely resembles the IA-TCNN architecture with the exception of setting the dilation

rate r = 1 and the number of dilated convolutions n = 1, thus obtaining a single standard

convolution per causal block. We propose this variant to investigate the effect of adding

a dilation factor on improving the representational learning ability of the network. In

the second variant IA-DResTCNN, we replace the middle causal block with a residual

causal block and the tanh activation function with a ReLU [73]. By introducing residual

connections in the network, we investigate if the current depth, filter size and dilation

factor affect the stability of the architecture.

We train our model by minimizing the weighted combination of the negative log

likelihood loss of the ground-truth position (xt
i, y

t
i , v

t
i) under the predicted Gaussian

distribution parameters (µ̂t
i, σ̂

t
i , ρ̂

t
i) and the L2 loss of the orientation in normalized
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quaternion representation q̂t
i as follows:

Lγ(i, t) =
∥

∥

∥

(

qt
i

)−1
q̂t
i

∥

∥

∥

2

Lp(i, t) = − log
(

P
(

xt
i, y

t
i , v

t
i | µ̂

t
i, σ̂

t
i , ρ̂

t
i

))

(5.3)

LMP(i, t) = ŝp + ŝγ +
N
∑

i

tpred
∑

t

exp(−ŝp)Lp(i, t) + exp(−ŝγ)Lγ(i, t),

where N is the number of dynamic agents, and ŝp, ŝγ are learnable weighting variables

for balancing the translational and rotational components of the predicted pose.

In real world data, the trajectories of different dynamic agents have varying lengths due

to the limited sensor range which potentially restricts the amount of information available

during training. In order to enable our method to leverage all trajectory information

available, we train our proposed IA-TCNN with dynamic sequence lengths by using

binary activation masks predicted by the network to signify the end of a trajectory. This

in turn implicitly enables the network to learn when a pedestrian or vehicle exits the

field-of-view of the sensor as well as enables it to learn a more realistic model of the

trajectories. The predicted trajectory is then first multiplied by the activation mask before

computing the prediction error. Moreover, as opposed to explicitly selecting the set of

dynamic agents likely to affect the behavior of an agent, our proposed model utilizes

information from all agents during the observation interval to predict the trajectory for

each of the observed agents. This has the advantage of eliminating the need for creating

handcrafted definitions which attempt to explicitly model how the behavior of a dynamic

agent is affected by the surrounding agents. Furthermore, it expedites the information flow

throughout the various layers of the network, hence facilitating fast trajectory estimation

for all the dynamic agents in the scene.

5.2.2 Traffic Light Recognition

In this section, we describe the architecture of our traffic light recognition sub-network,

which given an input RGB image It predicts the state of the traffic light St ∈ S =

{Red,Green, Yellow,No Light}. We build upon the ResNet-50 architecture [81] with

pre-activation residual units which allow unimpeded information flow throughout the

network thus enabling the construction of more complex models that are easily trainable

(Section 2.5.2). Our proposed AtteNet consists of five bottleneck residual blocks with

multiple pre-activation residual units. We replace the traditional ReLU activation function

in the residual unit with ELUs which enable our network to be more robust to noise

in the training data while achieving shorter convergence time. Note that unlike the IA-

DResTCNN architecture for interaction-aware motion prediction, we utilize the bottleneck
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Figure 5.3: Illustration of a Squeeze-Excitation (SE) residual block. The output of the residual

block is first passed through a squeeze operation to aggregate the feature maps

across the spatial dimensions, then through an excitation operation to emphasize the

informative features and suppress the irrelevant features.

residual units as the building block of our network due to their ability to aid in training

deeper architectures without significantly increasing the number of parameters.

In order to improve the representational learning abilities of our network, we introduce

Squeeze-Excitation (SE) blocks into our network [175]. Using SE blocks enables the

network to perform feature recalibration, which in turn allows the network to utilize the

global information in the images to selectively emphasize and suppress features depending

on their usefulness for the task at hand. Instead of equally weighting all channels while

creating the output feature maps, each SE block employs a content aware mechanism

which learns an adaptive weighting for each channel with a minimum computational

cost. A SE block, depicted in Figure 5.3 is comprised of two operations: squeeze and

excite. During the squeeze operation feature maps from the previous layer are aggregated

across the spatial dimension. Thus embedding the global distribution of the features to be

leveraged by upcoming layers in the network. The excitation operation emphasizes the

informative features and suppresses the irrelevant ones thus aiding in learning sample-

specific activations for each channel. We replace the fully connected layers in the SE

blocks with 1×1 convolutional layers and add a global average pooling layer after the

fifth residual block, followed by a fully connected layer of size 4 which produces the

prediction of the network. Our final architecture is shown in Figure 5.4. During training,

we minimize the softmax cross entropy loss between the labels and the predicted logits.
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Figure 5.4: Schematic depiction of our proposed AtteNet architecture for traffic light recognition.

Given an RGB image It, our network predicts the state of the traffic light St by

aggregating the interdependencies between the different channels across the layers.

5.2.3 Learning To Cross The Road

In the following, we present the proposed method for learning to predict the safety of a

street intersection for crossing. Before delving into the details of our approach, we first

present a baseline approach to better analyze the performance of our proposed method.

5.2.3.1 Baseline

We formulate the problem of safe autonomous street crossing as a binary classification task.

The input to the classifier is the sensor data from the most recent k-second interval, while

the output is a binary value as to whether it is safe to cross the street. The trajectory Oi of

each tracked dynamic object i is represented using the features stated in Equation (5.1),

namely the spatial coordinates, velocity and yaw angle in the velocity direction for the

length of the interval.

We create a feature vector for each time interval with a size of m×5 · k, where m is the

number of observed dynamic objects and k is the interval length. Dynamic objects are

arranged in the feature vector with respect to their detection time, followed by distance to

the robot with the closest object first. Under this representation, the final feature vector

has the following format:

F =
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We pass each feature vector as a training/testing sample to the classifier, along with

the label {Cross,Don’t Cross} representing the safety of the intersection for crossing. In

order to learn the decision of when to safely cross the street intersection, we propose to
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utilize a Random Forest classifier [179] as well as a Naive Crossing Predictor as baseline

approaches. The Naive Crossing Predictor iterates over all detected objects within an

interval, and independent of their temporal behavior decides if it is safe to cross by

utilizing the spatial coordinates of the object and its detected velocity to compute the time

to collision assuming the velocity of the object remains constant. If the computed time is

below a certain threshold for any of the objects throughout the time interval, the entire

interval is considered unsafe.

5.2.3.2 Autonomous Street Crossing Predictor

In order to learn a crossing strategy that is robust to the type of intersection, we propose

fusing the output predictions from the trajectory estimation sub-network and the traffic

light recognition sub-network. Incorporating the traffic light recognition information is

crucial at signalized intersections as the robot is expected to act within the behavioral

norms obeying the intersection crossing rules such as crossing only when the traffic light

is green. At the same time, in certain situations, one cannot rely solely on the traffic light

information to cross such as when an ambulance or police car is speeding towards an

intersection. In such cases, despite the green pedestrian traffic light, the robot is expected

to wait at the sidewalk until the intersection becomes safe for crossing. Similarly at

unsignalized intersections, the robot is expected to identify safe crossing intervals from

unsafe intervals.

In these situations, utilizing the information from the trajectory estimation module is

crucial to ensure safe crossing prediction. To achieve this goal, we perform element-wise

concatenation of the feature maps from the traffic light recognition stream and the motion

prediction stream. More specifically, the predicted Gaussian distribution parameters from

IA-TCNN are first passed to a fully connected layer of dimension D, the output of which

is reshaped to H×W×C which corresponds in shape to the output of layer Res5c of

AtteNet. Both tensors are then concatenated and fed to a fully connected layer fc1 with N

units. This is then followed by another fully connected layer fc2 with softmax activation

and two output units signalizing the intersection safety state {Cross,Don’t Cross}.

Utilizing the Gaussian distribution parameters and orientation to model the trajectories,

enables our model to incorporate the confidence information regarding the likelihood of

the predictions, which in turn improves the robustness of our method to the prediction

accuracy. We train the model by minimizing the softmax cross entropy loss function.

In Section 5.4.5.2, we evaluate the impact of incorporating information from each of the

streams and the number of units in fc1 on the accuracy of the learned crossing decision.
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5.3 Freiburg Street Crossing Dataset

We introduce a large-scale dataset captured at different intersections in Freiburg, Germany

which we make publicly available∗ [60]. We captured the dataset using our robotic

platform presented in Section 2.1. During capturing this dataset, we relied only on three

laser scanners: the Velodyne HDL-32E, the tilting Hokuyo and the vertically mounted

SICK scanner, in addition to two Delphi ESR radar sensors which are mounted to the left

and right sides of the robot. In order to collect the data, we placed the robot on the side of

the road facing the street, and recorded live traffic data from both sides of the road.

Figure 5.5 shows birds-eye-view images of the different intersections captured in this

dataset. The dataset consists of tracked detections of cars, cyclists and pedestrians recorded

at different intersections over the course of two weeks and it is divided into 18 different

sequences containing approximately over 2,000 tracked objects. Each object is identified

by a unique track ID, spatial coordinates, velocity and orientation angle. Additionally

we provide annotation information in the form of intervals indicating the safety of the

intersection for crossing as well as annotations of the camera images regarding the state

of the pedestrian traffic light signal {Red, Green, No Light}.

Annotating the data to indicate intervals in which the intersection is safe for crossing

proved to be a challenging problem. First, the decision to cross or not must be made

using only the information from this time interval without any knowledge of future or past

intervals in order to prevent bias and ensure the generalizability of the behavior. Second,

the time period for which an individual observes oncoming traffic before making a decision

varies from one person to the other, rendering it difficult to assign a predetermined fixed

value. In addition, depending on the traffic flow people often change their decision of

crossing on the spot. Finally, different individuals have different crossing behaviors; in

the same situation at an intersection, some might decide to cross while others choose a

more conservative approach and wait for the next opportunity. Adding more difficulty

to the problem, the crossing behavior varies within the same person depending on the

type of intersection and the width of the street. These factors combined made the labeling

procedure a rather tedious task, where we attempted to eliminate as much non-determinism

as possible in order to enable our classifier to learn a meaningful classification strategy as

close to human behavior as possible.

In order to facilitate the process of annotation, during capturing the dataset we mounted

two GoPro cameras on the left and right sides of the robot above the radars which in

addition to the Bumblebee camera captured images of oncoming traffic. We developed a

graphical user interface that displayed the synchronized images from all three cameras to

aid in labeling the data. Figure 5.6 presents a screenshot from the interface, where the user

∗The dataset is publicly available at:

http://aisdatasets.cs.uni-freiburg.de/streetcrossing/

http://aisdatasets.cs.uni-freiburg.de/streetcrossing/
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Figure 5.5: Birds-eye-view images from some of the road intersections included in the FSC

dataset. The dataset covers a wide range of intersections including signalized, zebra

crossings and crossings with middle islands, as well as different road curvature and

streets merging.

can replay each interval several times before submitting the labeling decision. The replay

button was added in order to accommodate for the short length of the decision interval

and the randomness with which data samples are presented to the annotator. The data was

labeled by five human annotators. For each data sample, the decision to cross is made at

the end of the interval. In case of disagreement between the annotators, we chose majority

voting over their decision. In order to quantify the agreement between the annotators, we

employed Cohen’s Kappa [180] which is one of the frequently used metrics for measuring

inter-rater agreements. Within this metric, a value of 0 indicates no agreement between

the raters, 1 means full agreement and negative values indicate agreement worse than

random guessing. Using Cohen’s Kappa, we found the inter-annotator agreement to be

0.47, showing moderate agreement between the annotators.

The Freiburg Street Crossing dataset can be used for intersection safety prediction

for crossing, traffic light recognition or motion prediction tasks. Several factors make

benchmarking on this dataset extremely challenging including large number of traffic par-

ticipants, varying motion dependencies among different dynamic objects (Figure 5.8(d)),

motion blur in the images, presence of reflecting surfaces and varying lighting conditions

as shown in Figure 5.7(e,f). In order to train our network for the motion prediction task

on this dataset, we apply a leave-one-out procedure by randomly selecting trajectories
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Figure 5.6: The graphical user interface used for labeling the FSC dataset. Each image shows

the view from one of the cameras mounted on either the left, right or front side of

the robot. Each sample interval can be replayed multiple times before making the

decision of the safety of the intersection for crossing.

from all sequences except the testing sequence. For the traffic light recognition task, we

divide the data into a 4:1 split, and apply random brightness and contrast modulations as

an augmentation procedure for the training images. Similarly, for the street intersection

safety prediction task, we use 10 sequences for training and test on the remaining 8

sequences.

5.4 Experimental Evaluation

In order to evaluate our proposed system for predicting the safety of the intersection

for crossing, we first evaluate each of the constituting subtasks followed by detailed

results on the performance of the combined model. We evaluate our approach on multiple

publicly available datasets and provide comprehensive details of our evaluation protocol

to facilitate comparison and benchmarking. In the following section, we discuss in detail

each of the datasets used for evaluation as well as any pre-processing or augmentation

procedure applied.

5.4.1 Datasets and Augmentation

Apart from the FSC dataset and the DeepLocCross dataset Section 4.3.3, we evaluate our

approach on the following standard benchmarks:

Nexar Traffic Lights dataset consists of over 18,000 RGB images captured in varying

weather and lighting conditions. The dataset was released as part of a challenge to

recognize the traffic light state in images taken by drivers using the Nexar app [177]. Each

image is labeled with the state of the traffic light signal in the driving direction, between

{Red, Green, No Light}. Several factors make benchmarking on this dataset extremely

challenging such as the varying light conditions, the presence of substantial motion blur
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and the presence of multiple traffic lights in the image. Figure 5.7(a, b) shows sample

images from the dataset. In addition to the aforementioned challenges, the evaluation

criteria for this dataset was selected to be the classification accuracy and model size, with

a minimum success criteria of 95.0% in terms of accuracy for submission acceptance. In

order to train our method, we split the data into a training and a validation set using a

split ratio of 4:1 and perform augmentations on the training split in the form of random

applications of brightness and contrast modulations.

Bosch Small Traffic Lights dataset contains RGB images at a resolution of 1,280×720

pixels captured in the San Francisco Bay Area and Palo Alto, California [178]. The

training set consists of over 5,000 images which are annotated at a 2 second interval,

while the test set consists of over 8,000 images annotated at a frame rate of 15 fps. Each

image contains multiple labeled traffic lights amounting to a total of over 10,000 annotated

traffic lights in the training set and 13,000 in the test set, with a median traffic light width

of 8.6 pixels. For each image, the label file includes the bounding box coordinates of

the traffic light, the status of the light {Red, Green, Yellow, No Light}, and whether the

light is occluded by any object. This dataset is among the challenging benchmarks for

detecting and recognizing traffic lights due to the small size of the lights in the image as

well as the varying lighting conditions, presence of shadows and occlusions. We show

example images from this dataset in Figure 5.7(c, d). We use the same training and test

split provided by the authors and apply augmentations on the training set in the form of

random brightness and contrast modulations. As our approach only predicts the status of

the traffic light and not its position, we pre-process each image by masking out all but one

traffic light using the bounding box information from the label file. To learn identifying

when no traffic light is present in the image, we additionally mask out all the traffic lights,

thereby creating from each image N + 1 images where N is the number of non-occluded

traffic lights.

L-CAS dataset is a recently proposed benchmark for pedestrian motion prediction [176].

The data was captured using a 3D LiDAR scanner mounted on top of a Pioneer robot

placed inside a university building. It consists of over 900 pedestrian tracks, each with

an average length of 13.5 seconds and is divided into a training and testing split. Each

pedestrian is identified by a unique ID, a time frame at which they are detected, the spatial

coordinates, and their orientation angle. Some of the interesting scenarios captured in this

dataset which make benchmarking challenging include people pushing trolleys, children

running and groups dispersing. Figure 5.8(c) shows an example scan from the dataset,

where pedestrians are marked by bounding boxes with arrows showing their trajectories

for a sample interval. We use the same training and test splits provided by the authors for

this dataset to facilitate comparison with other approaches.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Example images from the traffic light benchmark datasets used for evaluation namely:

the Bosch Traffic Light dataset, the Nexar Challenge dataset and the FSC dataset.

The datasets cover a wide range of challenges for the task of traffic light recognition

including occlusions, varying lighting and weather conditions, presence of multiple

traffic lights in the image and motion blur.

ETH crowd set dataset consists of two scenes: Univ and Hotel, containing a total of

approximately 750 pedestrians exhibiting complex interactions [173]. For each scene,

the dataset contains an obstacle map file providing the static map information of the

surroundings, and an annotations file which provides the trajectory information for each

pedestrian. Each tracked pedestrian is identified by a pedestrian ID, the frame number

at which they were observed, the spatial coordinates and velocity with which they were

traveling. The dataset additionally provides a groups file that provides information on

pedestrians forming a group and a destinations file reporting the assumed destinations

of all subjects in the scene. The dataset is one of the widely used benchmarks for

pedestrian tracking and motion prediction as it represents real world crowded scenarios

with multiple non linear trajectories, covering a wide range of group behavior such as

crossings, dispersing and forming of groups. We show an example image from the Hotel

sequence in Figure 5.8(a), where arrows represent the trajectories of the pedestrians for a

sample interval. The sequence is recorded near a public transport stop. It captures the

complex behavior of pedestrians as they enter/exit the vehicle as well as surrounding

pedestrians navigating the scene. For this dataset, we utilize only the information from the

annotations file, keeping track of the spatial coordinates of each pedestrian at each time

frame. Furthermore, we assume no knowledge of the destination of each pedestrian, nor do
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(a) ETH-Hotel (b) UCY-Uni

(c) L-CAS (d) Freiburg Street Crossing (FSC)

Figure 5.8: Sample trajectories from the various datasets employed for benchmarking the

interaction-aware motion prediction sub-network. The benchmarking datasets in-

clude both camera captured sequences (ETH, UCY datasets) and LiDAR and radar

captured sequences (L-CAS and FSC datasets). Overall, the datasets cover a wide

range of motions among the various participants such as group behavior, trolley

pushing and crowd navigation.
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we utilize any information regarding group behavior or the structure of the environment.

UCY dataset consists of three scenes: Zara01, Zara02 and Uni, with a total of approx-

imately 780 pedestrians [50]. For each scene, the dataset provides an annotations file

comprised of a series of splines each describing the trajectory of a pedestrian using the

spatial coordinates, frame number and the viewing direction of the pedestrian. This dataset

in addition to the ETH dataset are widely used in conjunction as benchmarks for motion

prediction and pedestrian tracking due to the wide range of non linear trajectories and

pedestrian interactions exhibited including group behavior and pedestrians idling nearby

shop fronts. Figure 5.8(b) shows a sample image from the Uni sequence, where pedestrian

trajectories are represented by arrows. This particular sequence is the most challenging

among the three sequences forming this dataset due to the large number of pedestrians

observed concurrently, in addition to the complex crowd behavior demonstrated. We com-

bine both this dataset with the ETH dataset similar to previous works [48, 172] and apply a

leave-one-out procedure during training by randomly selecting trajectories from all scenes

except the scenes used for testing. Furthermore, in order to facilitate the combination of

the datasets, we predict only the 2D spatial coordinates for each pedestrian.

5.4.2 Training Schedule

In the following, we describe the training procedure used for each of the motion prediction,

traffic light recognition and intersection safety prediction tasks. In order to train our

IA-TCNN model such that it is robust to the varying number of pedestrians observable

in each interval, we introduce a variable to represent the maximum number of distinct

trajectories observed within an interval and initially set it to the maximum observed

in all the datasets. During training and testing, we use an activation mask to encode

the positions of valid trajectories and discard all remaining information. We train our

model for 100 epochs with a mini-batch size of 12. We employ the Adam solver [133]

for optimization, with a learning rate of 5× 10−4 and apply gradient clipping. Details

regarding the sequence length used for training, as well as the observation and prediction

lengths used for testing are covered in Section 5.4.3.2.

We train our AtteNet model for traffic light recognition on random crops of size

224×224 and test on the center crop which we found adds more regularization to the

network and helps learning a more generalized model. We use the SGD solver with

momentum to optimize our AtteNet model, using an initial learning rate of 4× 10−3 and

a polynomial weight decay of 2× 10−4. We train our approach for 100 epochs using a

mini-batch size of 32 and dropout probability of 0.2. In order to learn the final model

for predicting the intersection safety for crossing, we initially bootstrap the training of

both IA-TCNN and AtteNet using transfer learning from each of the aforementioned

optimization procedures. We combine each of the task-specific loss functions using
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learnable weighting parameters and use a single optimizer to train all sub-networks

concurrently. Training all tasks jointly aims at finding optimal weights that satisfy the

constraints of each task as well as their interdependencies. Moreover, employing learnable

weighting parameters ensures the proper balancing between the distinct tasks. We set

the number of units in fc1 of the Autonomous Street Crossing Predictor to 512. We

employ the Adam optimizer with an initial learning rate of 5× 10−5. The final model is

trained for 100 epochs with a mini-batch size of 10. In order to determine the parameters

of the Random Forest Classifier baseline, we evaluated different configurations using a

leave-one-out cross validation approach on the training data and opted for a maximum tree

depth of 100, a minimum sample size of 50 and an active variable size of 100. As for the

Naive Crossing Predictor baseline classifier, the minimum time to collision threshold was

set to the same value as the sequence length employed for training the motion prediction

task. All experiments are conducted using the Tensorflow library [134] on a single Nvidia

Titan X GPU.

5.4.3 Evaluation of the Motion Prediction

In this section, we present extensive experimental evaluation of our IA-TCNN on the

motion prediction task. We provide quantitative results comparing the performance of our

proposed architecture with state-of-the-art methods on multiple publicly available datasets.

In the following section, we provide a qualitative analysis of the predicted trajectories in

addition to ablation studies on the impact of the various parameters on the accuracy of the

predicted trajectories.

5.4.3.1 Comparison with the State of the Art

We benchmark the performance of our approach against several state-of-the-art meth-

ods for motion prediction including Social-LSTM [172], Social-Attention [48], Pose-

LSTM [49], SGAN [51] and SoPhie [181]. Furthermore, we compare against the Social

Forces model [47] and a basic LSTM implementation as baselines. Note that for each of

the methods, we report the numbers directly from the corresponding manuscripts, with

the exception of the Social Forces model for which we report the numbers from [172] as

the original manuscript does not report evaluations using the metrics employed by the

aforementioned methods. Furthermore, we use our own implementation for the LSTM

baseline. We evaluate the accuracy of our motion prediction model by reporting the

following metrics:

• Average Displacement Error: mean squared error over all predicted and ground-

truth points in the trajectory.

• Final Displacement Error: distance between the predicted and ground-truth poses

at the end of the prediction interval.
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Table 5.1: Average displacement error of IA-TCNN on the task of motion prediction in comparison

to existing methods on the L-CAS dataset.

Dataset Social-

LSTM [172]

Pose-

LSTM [49]

IA-

LinConv

IA-

DResTCNN

IA-TCNN

(Ours)

L-CAS 1.19m, NAN 0.95m, 35.0◦ 0.34m, 23.8◦ 0.46m, 33.1◦ 0.11m, 21.7◦

On the L-CAS, ETH and UCY datasets, we follow the standard evaluation proce-

dure [49, 172] of training using a sequence length of 20 frames and using observation

and prediction lengths of 8 frames (3.2s) and 12 frames (4.8s) respectively during testing.

Table 5.1 shows the average displacement error of our approach on the L-CAS dataset. As

demonstrated by the results, both our proposed variants, IA-LinConv and IA-DResTCNN

are able to outperform the standard recurrent-based approaches by 64.2% and 32.0% in

the translational and rotational components respectively. This in turn corroborates the

advantage of utilizing a causal convolutional architecture over the standard recurrent

methods. Moreover, by utilizing our proposed IA-TCNN, we achieve an average displace-

ment error of 0.11m and 21.7◦ further improving upon the results by 67.6% and 8.8%

in translation and rotation respectively. The improvement over the results achieved by

IA-LinConv is attributed to employing dilated convolutions which increase the size of

the receptive field, thereby increasing the content captured in each layer. However, we

observe that adding a residual block to our network to improve the feature discriminability,

as in IA-DResTCNN, does not help in improving the prediction accuracy despite it being

helpful for other sequence modeling tasks such as language modeling [174].

In Table 5.2, we present the average displacement error of our proposed methods in

comparison to state-of-the-art approaches on different sequences from the ETH and UCY

crowd set datasets. Due to the complexity of the pedestrian interactions demonstrated in

this dataset, employing the IA-LinConv model does not yield significant improvement over

recurrent-based approaches due to the small receptive field at each layer. By employing

dilated convolutions in our IA-TCNN architecture, the network is able to better capture

the interactions across the various pedestrians, thereby achieving an improvement of

29.6% in comparison to the previous state of the art. Similar to IA-LinConv, the accuracy

of IA-DResTCNN is comparable to that of recurrent-based approaches. However, the

convergence time of the network is 5-times more than IA-LinConv and IA-TCNN.

We report the final displacement error of our proposed IA-TCNN on the various

sequences of the ETH and UCY datasets in Table 5.3. Despite the sparse amount of

sequences available for each dataset and the complexity of the pedestrian interactions

demonstrated, our method is able to achieve the lowest final displacement error on

all sequences of the ETH and UCY datasets with an average improvement of 55.7%
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in comparison to previous methods. It is worth noting that while other approaches

incorporate information about nearby pedestrians or the surrounding environment to

predict the trajectories, our proposed method is able to accurately infer the trajectories,

surpassing the performance of state-of-the-art methods, without leveraging information

about the structure of the scene or performing any pre/post-processing on the trajectory

data.

We benchmark on the Freiburg Street Crossing (FSC) dataset largely due to the variety

of motion trajectories and complex interactions. Furthermore, unlike the ETH, UCY and

L-CAS datasets, the FSC dataset includes trajectories and interactions among various types

of dynamic objects such as cyclists, vehicles and pedestrians which in turn both increases

the difficulty of the prediction task, as well as renders the data more representative of

real-world scenarios. On the FSC dataset, we train using a sequence length of 10s and use

observation and prediction lengths of 5s. As the radar sensor has a larger field-of-view

than the LiDAR, and in order to observe the traffic participants in both sensors, we

experimentally identified that a time window of 10s is appropriate for correlating objects

in both sensors on this dataset. We report the average displacement error of our proposed

method in Table 5.4. The results show an improvement in employing IA-LinConv and

IA-DResTCNN over the LSTM baseline, specifically in terms of rotation and velocity

estimation. We attribute this to the increased complexity of the interactions demonstrated

in this dataset, in addition to the presence of multiple types of dynamic objects which

exhibit different interaction and motion behavior. Furthermore, we observe that by

employing the IA-DResTCNN architecture, the rotational accuracy of the pose is further

improved in comparison to the IA-LinConv architecture. We attribute this improvement

partially to the bigger receptive field at each layer due to the dilation factor employed. The

best performance is achieved by leveraging the proposed IA-TCNN architecture which is

able to balance the motion-specific pose components for each dynamic object independent

of their type, yielding an average displacement error of 0.20m, 6.71◦ and 0.84m/s.

5.4.3.2 Ablation Study & Qualitative Evaluation

In this section, we perform detailed studies on the influences of various components of our

proposed architecture. Table 5.5 shows the effect of varying the observation and prediction

lengths on the average displacement error of IA-TCNN on the Uni sequence of the UCY

crowd set dataset. For short observation lengths (2− 4) frames, the error in the predicted

trajectory linearly increases with the increase in the prediction length, with the lowest

error achieved using a prediction interval smaller than or equal to the observation interval.

This accounts for the increased difficulty of making accurate predictions given short

trajectory information as future interactions cannot be reliably predicted. Concurrently,

by increasing the observation length, the prediction accuracy gradually increases with

small improvements between (6− 8) observation frames. This can be attributed to the
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Figure 5.9: Qualitative analysis of our interaction-aware motion prediction IA-TCNN network on

four example sequences from the UCY-UNI data. The top figures show the observed

trajectories for all the pedestrians, along with the current pedestrian position marked

by the colored circle. The bottom figures show the ground-truth (solid lines) and

predicted (dashed lines) trajectories for each corresponding figure. Our approach is

able to accurately model the pedestrian interactions and group behavior in each of the

different scenarios presented.

reduction in the amount of significant information over time due to the short interaction

times between the pedestrians and the low likelihood of abrupt changes in the behavior of

one or more pedestrians.

We further evaluate the effect of the sequence length on the accuracy of our proposed

IA-TCNN on the FSC dataset. Table 5.6 displays the average displacement error on

Seq.-6 of the dataset, where we train our approach using sequence lengths between 10s

and 35s. The results show that increasing the prediction length results in a decrease in

the accuracy of the prediction which is consistent with the results in Table 5.5. The best

accuracy is achieved using observation and prediction lengths of 5s as dynamic objects

can be correlated better across the various sensors.

In order to evaluate the performance of our proposed model in various types of inter-
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actions, we visualize four example scenes from the Uni sequence of the UCY dataset

in Figure 5.9. The top row shows the observation sequence for each pedestrian represented

by a solid line with the current position of the pedestrian depicted by a circle. In the

bottom row, we plot the ground-truth trajectory (solid line) and the predicted trajectory of

the network (dashed line). Figure 5.9(a) presents a scenario with collision avoidance for

two individuals. In this scenario, our IA-TCNN method is able to predict the temporary

change in direction for both individuals to avoid collision. Our proposed model is also

able to represent group behavior as shown in Figure 5.9(b), where it predicts a common

change of direction for all members of the group. Figure 5.9(c) shows a more complex

scene with collision avoidance and overtaking maneuvers. The pedestrians depicted in

red, blue and black display an example of the overtaking maneuver, where the red colored

pedestrian is walking with a slightly lower velocity. Our model predicts that the blue

colored pedestrian will adjust their trajectory to the right while increasing their velocity in

order to overtake the red colored pedestrian. In order to avoid potential collision with the

blue colored pedestrian, the model predicts a trajectory for the black colored pedestrian

that is slightly deviated to the right. As for the purple and olive colored individuals, the

model incorrectly predicts a trajectory where the olive colored pedestrian attempts to

overtake the purple colored pedestrian. Whereas a more socially acceptable behavior, as

shown by the ground-truth trajectory in this example would be to halt and wait for the

purple colored pedestrian to pass.

Figure 5.9(d) shows another complex scenario with one static pedestrian in the middle,

and a crossing maneuver between the red and blue colored pedestrians. In this example,

our model predicts a trajectory where the red colored pedestrian follows the blue one.

Note that although our approach incorporates the rotational information of the various

dynamic objects into the prediction, we do not utilize the information about the heading of

each individual on the ETH and UCY datasets, as this information is only available for one

of the datasets, which further hinders it from being combined with the others. Nonetheless,

we believe in such scenarios that information about the heading of each individual can

significantly reduce the error in the predictions as shown by the results in Table 5.1, since

sudden changes in direction are uncommon in the behavior of pedestrians.

We further compare the run-time and model size of our approach with various recurrent

based approaches in Table 5.7. While the lowest average displacement error is achieved

by the Social-LSTM approach [172], both the run-time and model size render it infeasible

to be deployed in real-world scenarios. Similarly, while the SGAN method [51] achieves

fast run-time, it has the lowest average and final displacement accuracies among all

methods. The results show that using our proposed IA-TCNN, we improve upon the final

displacement error by 40.3% while achieving analogous average displacement error in

comparison with the best performing model with a competitive run-time of 0.06s on a

single NVIDIA Titan X GPU. Moreover, our model requires only 7.0MB of storage space,

thereby making it efficiently deployable in resource limited systems, while achieving
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Table 5.7: Comparison of the performance of our interaction-aware motion prediction network

with the state of the art on UCY-UNI.

Method Avg. Disp.

Error (m)

Final Disp.

Error (m)

Run-time (s) Size (MB)

Basic LSTM 0.30 1.25 0.29 6.1

Social-LSTM [172] 0.27 0.77 1.78 95.8

SGAN [51] 0.60 1.26 0.04 N/A

IA-TCNN (Ours) 0.29 0.46 0.06 7.0

accurate predictions in an online manner.

5.4.4 Evaluation of the Traffic Light Recognition

In this section, we evaluate the efficacy of AtteNet for the task of traffic light recognition

by benchmarking against convolutional neural network architectures designed for this

task. Furthermore, we provide extensive ablation studies investigating the representations

learned by the network as well as the various design choices and their subsequent effect

on the recognition accuracy.

5.4.4.1 Comparison with the State of the art

We compare the performance of our AtteNet on the task of traffic light recognition with sev-

eral network architectures tailored for the aforementioned task namely SqueezeNet [182],

DenseNet [82] and ResNet [84]. We compare against the SqueezeNet architecture due to

its relatively small size and high representational ability which enables it to be efficiently

deployed in an online manner. This was demonstrated in the Nexar challenge where the

first place winner used the SqueezeNet architecture achieving a recognition accuracy of

94.95%. Concurrently, we benchmark against DenseNet and ResNet architectures due

to their top performance in various classification and regression tasks. We employ the

ResNet-50 architecture with five residual blocks as a baseline. Similarly, we utilize the

DenseNet-121 architecture with four dense blocks and a growth-rate of 16. We quantify

the performance of each architecture by reporting the prediction accuracy, precision and

recall rates. Table 5.8 shows the classification accuracy of AtteNet on all three datasets:

Nexar, Bosch and FSC. AtteNet outperforms the best performing model (ResNet [84]) on

all of the datasets by an average of 6.85% which in turn validates the suitability of our

proposed architecture for the task of traffic light recognition. Furthermore, AtteNet is able

to outperform the state of the art on the Nexar challenge dataset.

Analyzing the precision and recall rates for each class on the Nexar dataset in Table 5.9

shows that our proposed AtteNet is capable of accurately identifying the various traffic
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Table 5.8: Comparison of classification accuracy of AtteNet with existing CNN traffic light

recognition models.

Dataset SqueezeNet [182] DenseNet [82] ResNet [84] AtteNet (Ours)

Nexar 94.7% 91.5% 88.9% 95.3%

Bosch 62.9% 79.1% 80.9% 82.9%

FSC 76.1% 79.7% 86.5% 91.8%

Table 5.9: Comparison of precision and recall of AtteNet for traffic light recognition on the Nexar

dataset.

Model Precision Recall

No Light Red Green No Light Red Green

SqueezeNet [182] 91.8% 96.2% 94.4% 90.0% 96.0% 95.8%

DenseNet [82] 83.2% 93.2% 91.5% 88.7% 94.7% 87.9%

ResNet [84] 73.4% 92.6% 92.6% 90.0% 88.6% 84.2%

AtteNet (Ours) 93.8% 95.7% 95.6% 90.3% 97.3% 95.8%

light signals with the highest recall despite the challenging lighting conditions observed in

this dataset. This is further corroborated in Figure 5.11(a) which plots the 3D t-Distributed

Stochastic Neighbor Embedding (t-SNE) [183] of the features learned by our proposed

AtteNet on the Nexar dataset in which data points belonging to the same traffic light

category are distinctively clustered together. We discuss more about these plots in the

ablation study presented in the following section.

Table 5.10 shows the precision and recall rates of our proposed AtteNet in comparison

to the baseline approaches on the Bosch dataset. Unlike the Nexar dataset, the Bosch traffic

lights dataset contains four categories for the traffic light signal by including a label for the

yellow state. This in turn increases the difficulty of the task at hand as there only exists few

labeled examples for the aforementioned class creating an imbalance in the distribution of

the distinct classes. Nonetheless, our proposed approach is able to achieve comparable

precision to the baseline variants and the highest recall rate. In Table 5.11, we present

the precision and recall rates on the FSC dataset. Our proposed AtteNet architecture

outperforms the baselines in terms of precision on each of the individual classes, while

achieving high recall rates. This further corroborates the suitability of our proposed

method for recognizing traffic lights in various conditions as shown in Figure 5.11(c)

depicting the distribution of the learned features by our model in comparison to the

baseline.
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Table 5.10: Comparison of precision and recall of AtteNet for traffic light recognition on the

Bosch dataset.

Model Precision Recall

No Light Red Green Yellow No Light Red Green Yellow

SqueezeNet [182] 85.0% 77.4% 84.0% 56.0% 77.6% 80.5% 87.6% 15.9%

DenseNet [82] 76.1% 79.6% 80.2% 33.3% 79.4% 69.1% 88.9% 4.5%

ResNet [84] 80.3% 76.6% 87.5% 26.6% 77.0% 82.2% 86.9% 13.6%

AtteNet (Ours) 85.2% 79.4% 84.3% 55.2% 77.6% 82.6% 89.2% 16.4%

Table 5.11: Comparison of precision and recall of AtteNet for traffic light recognition on the

Freiburg Street Crossing (FSC) dataset.

Model Precision Recall

No Light Red Green No Light Red Green

SqueezeNet [182] 0.0% 98.5% 97.5% 0.0% 96.3% 97.0%

DenseNet [82] 55.2% 98.5% 91.1% 99.2% 69.5% 84.3%

ResNet [84] 71.3% 86.1% 86.3% 93.2% 84.6% 65.3%

AtteNet (Ours) 75.4% 98.6% 99.7% 99.3% 96.8% 71.6%

5.4.4.2 Ablation Study & Qualitative Analysis

In this section, we investigate the various architectural decisions made while designing

AtteNet as well as present qualitative analysis of the obtained results on the benchmark

datasets. In order to understand the design choices made in AtteNet, we compare the

improvements gained by employing each of the following variants:

• ResNet: ResNet-50 base architecture

• AtteNet-M1: ResNet-50 base architecture with pre-activation residual units

• AtteNet-M2: ResNet-50 with pre-activation residual units and ELUs

• AtteNet-M3: ResNet-50 with SE blocks, pre-activation residual units and ELUs

• AtteNet-M4: ResNet-50 with 1×1 convolution SE blocks, pre-activation residual

units and ELUs.

Table 5.12 reports the accuracy, precision and recall rates of the aforementioned variants

on the Nexar dataset. We observe that the most notable improvement is achieved by

replacing the traditional identity residual units with the pre-activation residual units,

increasing the accuracy by 3.8%. This shows that utilizing the pre-activation residual
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Table 5.12: Comparative analysis of AtteNet on the Nexar dataset for the task of traffic light

recognition.

Model Accuracy Precision Recall

No Light Red Green No Light Red Green

ResNet 88.9% 73.4% 92.6% 92.6% 90.0% 88.6% 84.2%

AtteNet-M1 92.7% 86.3% 95.8% 92.7% 89.3% 94.3% 92.7%

AtteNet-M2 94.3% 92.0% 94.9% 95.2% 89.7% 96.1% 94.9%

AtteNet-M3 94.7% 90.7% 97.5% 94.2% 93.0% 94.9% 96.7%

AtteNet-M4 95.3% 93.8% 95.7% 95.6% 90.3% 97.3% 95.8%

units enables the network to better regularize the information flow which in turn leads to

better representational learning. Replacing the traditional ReLU activation function for

ELUs yields an additional 1.6% increase in the recognition accuracy which validates the

importance of applying activation functions that are robust to noisy data. Incorporating

SE blocks and replacing the fully connected layers with 1×1 convolutional layers further

improves the recognition accuracy of the model. The results corroborate the significance

of learning different weighting factors for the various channels of the feature maps. This

in turn enables the network to learn the interdependencies between the channels, thereby

improving the recognition capabilities as shown by the improved precision values.

Furthermore, we show the confusion matrix for AtteNet on the different datasets in Fig-

ure 5.10, where NL, R, G and Y stand for No Light, Red, Green and Yellow, respectively.

On the Nexar dataset, our proposed architecture is able to accurately disambiguate the dis-

tinct classes as shown by the diagonal pattern of the confusion matrix. While on the bosch

dataset shown in Figure 5.10(b), AtteNet is able to distinguish with high accuracy between

three of the four classes with the yellow traffic light often misclassified as red or green. We

believe this occurs as a result of the large imbalance in the distribution of the training data

wherein the yellow traffic light occurs 6−10-times less compared to the remaining classes.

A potential remedy for this problem is to employ class balancing techniques, apply more

augmentations to images belonging to this class, or by adding more images of the yellow

class to the training set. Figure 5.10(c) shows the confusion matrix of AtteNet on the FSC

dataset. The results indicate that our proposed AtteNet is able to accurately distinguish var-

ious classes further demonstrating the appropriateness of the architecture for the given task.

In order to gain a better understanding of the representations learned by the network,

we employ the t-Distributed Stochastic Neighbor embedding (t-SNE) [183] on the learned

features of the network. Through obtaining the set of principal components of the data,

t-SNE is able to transform the data to a lower dimensional space, thereby revealing

cluster and sub-cluster structures. In Figure 5.11, we display the down-projected features

obtained after applying t-SNE on the features from the penultimate layer of AtteNet and
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Figure 5.10: Confusion matrix for our proposed AtteNet on the different datasets for traffic light

recognition, where NL, R, G and Y stand for No Light, Red, Green and Yellow,

respectively. Using our proposed architecture, we are able to accurately disambiguate

the distinct traffic light states despite the small size of the light in the image and the

various illumination conditions.

DenseNet on the various datasets. Unlike DenseNet, the features learned in AtteNet

show clear cluster patterns separating the different classes, whereas in DenseNet there

is no clear distinction between the features learned for the various classes especially in

the Bosch and FSC dataset shown in Figure 5.11(b-c). Examining the t-SNE results of

AtteNet on the Bosch dataset shows three distinct clusters for the no light, red and green

classes, with the yellow class falling in between the red and green cluster. Nonetheless,

the representations learned by AtteNet are able to better capture the distinct classes in

the dataset in comparison to DenseNet where all four classes are merged together in one

cluster.

Furthermore, we perform qualitative analysis of the recognition accuracy of our pro-

posed AtteNet on the Nexar dataset in Figure 5.12. Figure 5.12(b, d, f) show incorrect

classifications by our method, where in Figure 5.12(b), green light reflected off a glass

structure is misidentified for a green traffic light signal due to both the shape and position

of the light matching the shape and potential placement of a traffic light. Similarly, in Fig-

ure 5.12(f), the green sign of the shop is misidentified as the traffic light resulting in an

incorrect classification. In Figure 5.12(d), the lack of information identifying the driving

direction of the car results in a misclassification as the network incorrectly identifies the

left-most traffic light to be the relevant one. However, despite the significant motion blur

and low lighting conditions, our proposed model is able to accurately predict the state of

the traffic light as shown in Figure 5.12(a, c, e).

In Figure 5.13, we show qualitative results on the Bosch traffic light dataset. Fig-

ure 5.13(d,f) show misclassification examples where AtteNet incorrectly predicts no

traffic light in the driving direction. In both cases this occurs due to the small size of the

traffic light and the presence of partial occlusions such as a pole hiding part of the traffic

light. In Figure 5.13(h) a yellow traffic light signal is incorrectly classified as red. We
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Figure 5.11: Three dimensional t-Distributed Stochastic Neighbor Embedding (t-SNE) of features

from the penultimate layer of our proposed AtteNet in comparison to DenseNet as

a baseline trained on the various datasets for the task of traffic light recognition.

The color of the points corresponds to the respective traffic light status, where black

denotes no light. Features learned by AtteNet can better capture the distribution

of the different classes in comparison to DenseNet where the clusters are not well

separated.

attribute the cause of the misprediction to the close similarity of the red and yellow colors

particularly in this image which can be verified by comparing the color of the brake lights

of the cars to that of the traffic light signal. Figure 5.13(c) shows a correct classification

of a green traffic light signal, where our proposed AtteNet is able to accurately recognize

the traffic light signal despite the small size of the traffic light and the presence of partial

occlusions. Similarly, in Figure 5.13(e, g), our network is able to accurately recognize

the traffic light despite the presence of several surrounding traffic lights, the small size of

the light and the presence of blur.

We present a qualitative evaluation of the performance of AtteNet on the FSC dataset

in Figure 5.14. In Figure 5.14(b), the red and white pattern on the traffic light pole causes

our network to incorrectly predict the presence of a red traffic light signal in spite of the

absence of a traffic light within the image. Figure 5.14(a, c, e) show challenging scenarios

in which AtteNet is able to accurately recognize the state of the traffic light while showing

robustness towards the lighting conditions, presence of multiple light sources and the small

size of the traffic light. Despite the achieved accuracy of the network, failing to recognize

a traffic light as shown in Figure 5.14(d, f) will lead to unintended circumstances. While

on the one hand, recognizing the traffic light in both images is quite challenging even
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Figure 5.12: Qualitative evaluation of AtteNet predictions on the Nexar dataset for traffic light

recognition. Below each image, we illustrate the ground-truth label (GT) and the

network prediction (Pred). In images (c) and (e), the network is able to attend to

the significant part of the image containing the traffic light and thus producing the

correct prediction despite the small size of the light and the illumination noise from

other sources of light. For the misclassified images, the attention of the network was

placed on an incorrect area of the image (e.g. in image (f)), resulting in an incorrect

prediction.
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Figure 5.13: Qualitative evaluation of AtteNet on the Bosch Traffic Lights dataset. Images (a,

c, e, g) illustrate correctly predicted examples, while images (b, d, f, h) illustrate

misclassified predictions. Despite the small size of the traffic lights (fig. (c)), and the

presence of multiple traffic lights in one image (fig. (e, g)), our proposed approach is

able to accurately predict the state of the traffic light.
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Figure 5.14: Qualitative analysis of the proposed traffic light recognition method on the Freiburg

Street Crossing (FSC) dataset. Figures (a, c, e) illustrate correctly predicted images,

while figures (b, d, f) illustrate mispredicted images. The small size of the traffic

lights (fig. (c, f)), presence of noise sources (fig. (b, e)) and the varying illumination

conditions (fig. (a, d)) under which the dataset was captured adds to the difficulty

of the dataset for the given task. Despite these challenges, our approach is able to

accurately recognize the state of the traffic light (fig. (a, c, e)).
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for humans due to its small size in the image, one cannot rely solely on the traffic light

recognition system to decide the safety of the intersection for crossing. Our proposed

approach for autonomous street crossing prediction rather combines the information from

both the traffic light recognition and motion prediction modules to accurately predict the

intersection safety for crossing as discussed in the following section.

In Figure 5.15, we utilize Grad-CAM [184] to visualize the activation masks of AtteNet

on the FSC dataset. Visualizing the output of the penultimate layer of our network using

Grad-CAM produces a gradient-weighted class activation mask highlighting regions of

the relevant regions in the image for predicting the output. For each image we show the

activation mask, the ground-truth label and the network prediction. In Figure 5.15(a, c, e),

the attention of the network is placed on areas of the image that contain the traffic light

hence leading to correct predictions. Figure 5.15(b) shows an example image where a car

crossing the intersection is occluding the traffic light. The activation mask shows that the

attention of the network is incorrectly placed on the brake lights of the car which in turn

lead to the incorrect prediction of a red traffic light signal. In Figure 5.15(d, f), the small

size of the traffic light in the image increase the difficulty of locating and recognizing it as

can be seen from the activation masks.

5.4.5 Evaluation of the Crossing Decision

In this section, we evaluate the efficacy of the proposed method for the task of predicting

the safety of the street intersection for crossing. We first evaluate the baseline approaches

addressing the problem as a binary classification task, followed by an extended evaluation

of the proposed method of incorporating information from both traffic light recognition

and motion prediction streams to learn the crossing decision.

5.4.5.1 Baseline

We evaluate the performance of the proposed Random Forest (RF) baseline classifier by

comparing with Support Vector Machine (SVM) [185], k-Nearest Neighbor (kNN) [186]

and the Naive Crossing Predictor (NCP). The parameters of both the SVM and kNN

classifiers were chosen using the same procedure as the Random Forest classifier, namely

leave-one-out cross validation on the training data. The best performance was obtained

using a Sigmoid kernel with a C -value of 2.0 and a γ-value of 0.1 for the SVM classifier

and a k -value of 8 for the kNN classifier proved to provide the best compromise between

precision and recall. We train the RF classifier using the parameters stated in Section 5.4.2.

Figure 5.16 shows the confusion matrix for the different classifiers on the FSC dataset.

The Random Forest classifier shows the best accuracy with the lowest number of false

positives in comparison to all other classifiers. The confusion matrix of the SVM classifier

shows that it favors labeling examples as not safe to cross over safe, which indicates that
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(a) Random Forest (b) SVM

(c) kNN (d) Naive Crossing Predictor

Figure 5.16: Confusion matrix for the various binary classifiers on the Freiburg Street Crossing

(FSC) dataset. The Random Forest (RF) classifier has the highest accuracy followed

by the kNN classifier.

the learned classifier is more likely to wait for longer periods of time. The kNN classifier

shows slightly better performance compared to the SVM, but with a higher number of

mispredictions in comparison to the Random Forest. The Naive Crossing Predictor on the

other hand shows the worst accuracy, consistently confusing both classes.

In order to measure the robustness of the Random Forest classifier to the type of

intersection, we re-evaluate all classifiers by training on a subset of the dataset in which

all encountered intersections are traffic light regulated, and test on a subset containing

zebra crossings. This amounted to five logs for training and three for testing. It is worth

noting that after the splitting was performed, the training data was observed to have the

same class distribution as the entire dataset, while the test data has a class distribution with

more negative examples. Figure 5.17 displays a bar plot of the precision and recall values

for the trained classifiers. The Random Forest classifier shows the best generalization

capabilities with a precision value of 98.6% and recall of 82.8%. The SVM classifier

has a high recall value which we attribute to the unbalanced class distribution of the test

set. The kNN classifier is able to generalize well to the current setup with a precision of

89.2% and a recall of 79.5%, while the Naive Crossing Predictor on the other hand, shows

the worst performance with a precision value slightly better than random guessing. The
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Figure 5.17: Bar plot showing the precision and recall values of the evaluated classifiers trained

on a subset of the Freiburg Street Crossing (FSC) dataset with only traffic light

regulated intersections and tested on zebra crossings. Note that the y-axis of the

plot starts from 50 to better highlight the differences between the classifiers. The

Random Forest (RF) classifier shows the best generalization capabilities with the

highest combined precision and recall values, 98.6% and 82.8% respectively. The

lowest precision is achieved by the Naive Crossing Predictor (NCP) with a value of

65.6%.

inferior performance of the Naive Crossing Predictor can be attributed to the field-of-view

of the radars. Since there is no full overlap between the field-of-view of the radars and

the Velodyne, blind spots exist. The learning-based classifier approaches are able to

compensate for the presence of intermediate blind spots and hence can correctly predict

the intersection safety in cases where the cars are temporarily in the blind spots. The

Naive Crossing Predictor approach on the other hand, is unable to learn such a behavior.

In the coming section we compare the performance of our proposed method for predicting

the safety of the intersection for crossing with the Random Forest classifier.

5.4.5.2 Evaluation of the Autonomous Street Crossing Predictor

We evaluate the performance of our proposed Autonomous Road Crossing Predictor

(ARCP) by reporting the accuracy, precision and recall rates on the FSC dataset. We

compare the performance of our approach with the Random Forest classifier. Furthermore,

in order to evaluate the tolerance of the learned predictor to mispredictions and noise

from the information source, we also report the individual performance of our proposed

ARCP by utilizing data from either the traffic light recognition module ARCP(TLR) or the
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Table 5.13: Comparative analysis of the learned crossing decision on the Freiburg Street Crossing

(FSC) dataset.

Method Precision Recall Accuracy

Random Forest 78.8% 60.7% 75.4%

ARCP(TLR) 53.1% 61.3% 54.6%

ARCP(MP) 87.8% 93.5% 85.4%

ARCP(TLR+MP) 91.9% 82.3% 86.2%

motion prediction module ARCP(MP) or their combination ARCP(TLR+MP). Table 5.13

demonstrates the precision, recall and accuracy for each of the aforementioned methods.

While the Random Forest classifier outperforms the binary classification baselines as

shown in the previous section and as shown by the diagonal pattern of the confusion

matrix in Figure 5.18(a), the precision, recall and accuracy of the classifier are critically

low which would hinder its deployment in real-world environments.

Furthermore, despite the high accuracy of the proposed AtteNet for traffic light recog-

nition, we observe that utilizing only information from this module, as in ARCP(TLR),

results in minor improvement in the accuracy over random guessing. We attribute this to

the difficulty of accurately predicting the intersection safety for crossing in the absence of

a traffic light or in cases where the classifier fails to detect the presence of one, which is

further demonstrated in Figure 5.18(b), where the confusion matrix does not show strong

distinction between the various classes.

On the other hand, by employing information from only the motion prediction mod-

ule, the overall accuracy of the crossing decision as well as the precision and recall are

improved by 10.0%, 9.0% and 32.8% respectively. Unlike ARCP(TLR), the confusion

matrix shown in Figure 5.18(c) shows that the learned classifier is able to better differ-

entiate between safe and unsafe crossing intervals. However, comparing the top row of

the confusion matrix of ARCP(MP) with that of the Random Forest baseline shows that

in unsafe intervals, there is no clear distinction from the learned classifier between the

selected decision, which can lead to suboptimal circumstances in deployment scenarios.

This problem is, however, rectified in the ARCP(TLR+MP) classifier as shown in Fig-

ure 5.18(d). By combining both information from the traffic light recognition and the

motion prediction modules, the classifier is agnostic to the type of intersection encoun-

tered. Furthermore, by incorporating feature maps from the last downsampling stage in

AtteNet and the Gaussian distribution parameters of IA-TCNN, the learned classifier can

better generalize to unseen environments as shown by the improvement in the accuracy,

precision and recall rates over the Random Forest baseline classifier in Table 5.13.

We conducted experiments to determine the optimal number of units in the last fully
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(a) Random Forest (b) ARCP(TLR)

(c) ARCP(MP) (d) ARCP(TLR+MP)

Figure 5.18: Confusion matrix of the various Autonomous Road Crossing Predictors (ARCP)

in comparison to the baseline Random Forest Classifier. The best performance is

achieved by utilizing both information from the Traffic Light Recognition (TLR)

module and the Motion Prediction (MP) module to learn the crossing safety.

connected layer fc1 of our ARCP method. Table 5.14 shows the precision, recall and

accuracy using different values for the aforementioned parameter. We hypothesize that

using a smaller number of units restricts the feature discrimination abilities of the network

which is corroborated by the results, where using 128 units results in the lowest accuracy.

However, we observe that by increasing the number of units to 1,024, the recall increases

by 0.2% over using 512 units, while the precision decreases by 17.7% and the accuracy

decreases by 4.0%. The best compromise between precision, recall and accuracy is

achieved by setting the number of units to 512.

In Figure 5.19, we perform qualitative analysis of the learned decision of our proposed

ARCP(TLR+MP) classifier in comparison to the Random Forest classifier as a baseline

on the FSC dataset. Each sequence is represented by three images corresponding to the

beginning, middle and end of the interval. Furthermore, we overlay the sensor detections

on birds-eye-view images of the intersections for ease of visualization. Detected dynamic

objects are represented by arrows, where magenta arrows signify objects moving towards

the robot, and green arrows signify objects moving away from the robot. Furthermore, the

size of the arrow grows proportionally with the detected velocity. Seq-1 depicts a situation
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Figure 5.19: Depiction of various crossing scenarios from the Freiburg Street Crossing (FSC)

dataset. For each sequence, we depict three timesteps corresponding to the beginning,

middle and end of the interval. We overlay the sensor visualization on birds-eye-view

images from the corresponding intersections. For each sequence, on the right-most

column, we depict the ground-truth label versus the predictions of the Random Forest

classifier as a baseline and our proposed ARCP(TLR+MP) classifier. The legend is

shown enclosed in a red box.
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Table 5.14: Effect of the number of units in the penultimate layer of our Autonomous Road

Crossing Predictor (ARCP) on the accuracy of the crossing decision.

Number of Units Precision Recall Accuracy

128 76.9% 63.5% 72.7%

512 87.8% 93.5% 85.4%

1024 70.1% 93.7% 81.4%

where the robot is located at the side of a zebra crossing that is clear, with the exception

of a cyclist (represented by the blue arrow) that is moving towards the robot. Despite

the intersection being safe for crossing, the Random Forest classifier incorrectly labels

the interval as unsafe for crossing. On the other hand, the ARCP(TLR+MP) classifier

correctly identifies the intersection state by utilizing the information from the motion

prediction module to infer the driving direction of the cyclist.

In Seq-2, the robot is located in the middle island at a signalized intersection, with traffic

coming from the left-hand side. As the pedestrian traffic light is green, the approaching

vehicle slows down throughout the observed interval rendering the intersection safe for

crossing. By utilizing information from the traffic light recognition module to detect the

state of the traffic light, in combination with the motion prediction module to identify that

the approaching vehicle is reducing its velocity, our ARCP(TLR+MP) classifier is able to

correctly label the interval as safe for crossing.

Seq-3 demonstrates a situation where a false positive detection by the tracker causes

an incorrect classification of the intersection as unsafe by the Random Forest classifier.

Our proposed classifier is, however, able to correctly predict the safety of the intersection

for crossing as it is able to identify the spurious detection as a false positive or a ghost

detection by the tracker. Another scenario is depicted in Seq-4, where the robot is located

at a grid-type signalized intersection, with vehicles approaching from the upper right

corner and heading towards the street parallel to the robot. By utilizing only information

from the tracker, the Random Forest classifier labels the crossing unsafe as it appears

that the cars are approaching perpendicularly to the robot. However, by predicting the

behavior of the vehicles for the remainder of the interval, our proposed ARCP(TLR+MP)

classifier is able to correctly classify the safety of the interval for crossing.

Finally, Seq-5 depicts an interval for which both classifiers incorrectly label the inter-

section as unsafe. The robot is placed at a signalized intersection with a green pedestrian

light and a vehicle approaching from the lower left corner of the image. As the intersection

contains a middle island, and since there is no traffic approaching from the significant

direction (top left corner of the image), the crossing is labeled as safe. However, as

neither classifier has a representation of the structure of the intersection showing the

presence of the middle island, the interval is in turn misclassified as unsafe for crossing.
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By incorporating semantic knowledge of the scene or learning an obstacle map of the

environment, the aforementioned problem can be rectified as the classifier can learn about

the various road topologies and their effect on the crossing decision.

5.4.6 Generalization Analysis on the DeepLocCross dataset

In the following, we perform an extended evaluation of our proposed pipeline for pre-

dicting the safety of the intersection for crossing by analyzing the performance of each

module as well as the entire system on the test sequences of the DeepLocCross dataset

(Section 4.3.3). Note that we do not utilize the training sequences of the DeepLocCross

dataset to pre-train the individual modules, but rather directly evaluate the generalization

capabilities of our framework.

Employing our IA-TCNN on the dataset to predict the future trajectories of all ob-

servable traffic participants, we achieve an average displacement error of 0.14m, 11.41◦,

0.13m/s in terms of translation, rotation and velocity respectively. Furthermore, using

AtteNet we achieve an accuracy of 78.5% for predicting the state of the traffic light.

Overall, predicting the safety of the intersection for crossing, our ACP classifier achieves

a precision of 85.7% and a recall of 78.2% on the DeepLocCross dataset. The low predic-

tion errors achieved by the overall network as well as the individual modules demonstrate

the generalization capabilities and efficacy of our proposed framework.

Additionally, we perform qualitative analysis of the crossing decision predicted by our

proposed ACP classifier on the DeepLocCross dataset in Figure 5.20. We depict three

example scenarios from the dataset, where each scenarios is represented by three sequence

images from the beginning, middle and end of the prediction interval. As in Figure 5.19,

we overlay the sensor detections on birds-eye-view images of the intersection to provide

a more comprehensive image of the scene. Seq-1 depicts a scenario wherein a cyclist

is approaching the robot on the sidewalk from the direction of oncoming traffic and

continues to cycle past the robot. Utilizing and predicting the orientation information

for the observed traffic participants, our IA-TCNN network is able to predict an accurate

trajectory for the cyclist continuing on the sidewalk and hence passing behind the robot

as opposed to in front of it. This information is in turn used by our ACP classifier to

correctly predict the safety of the intersection for crossing.

Seq-2 depicts a situation with heavy oncoming traffic, in which our ACP classifier

accurately predicts the intersection at the observed interval to be not safe for crossing. In

Seq-3, in the first half of the interval a car is approaching the intersection, however, at

the remaining half it slows down as the traffic light signal changes. By utilizing both the

traffic light predictions from AtteNet showing the pedestrian traffic light to be green, and

the trajectory information from IA-TCNN predicting the continued deceleration of the car

until it comes to a halt at the end of the interval, our ACP classifier is able to accurately

predict the safety of the intersection at the given interval for crossing.
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Figure 5.20: Depiction of various crossing scenarios from the DeepLocCross dataset. For each

sequence, we depict three timesteps corresponding to the beginning, middle and end

of the interval. We overlay the sensor visualization on birds-eye-view images from

the corresponding intersections. For each sequence, on the right-most column, we

depict the ground-truth label versus the predictions of our proposed ARCP(TLR+MP)

classifier. The legend is shown enclosed in a red rectangle.
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5.5 Related Work

In this chapter, we presented a novel approach to predict the safety of street intersections

for crossing by incorporating predictions from a motion prediction sub-network and a

traffic light recognition sub-network. In the following, we review recent related works in

the areas of motion prediction, traffic light recognition and intersection handling.

Motion Prediction approaches can be divided into two categories: methods model-

ing interactions among pedestrians and approaches modeling the behavior of vehicles.

Among the first methods to model pedestrian interactions is the Social Forces (SF) method

of (author?) [47] in which they applied a potential field based approach with attrac-

tive and repulsive forces to model the interactions among various pedestrians in the

surrounding environment. A subsequent variant of the SF method was later proposed

by Yamaguchi et al. [187], in which the authors employed a data-driven approach to

estimate the hidden variables affecting the behavior of the agents such as group affinity

and destinations. Lerner et al. [50] used an example-based reactive approach to model

pedestrian behavior by creating a database of local spatio-temporal scenarios. During an

interaction, the autonomous agent samples its trajectory incrementally by considering

similar spatio-temporal scenarios from the database. Subsequently, Pellegrini et al. [173]

introduced the Linear Trajectory Avoidance (LTA) method which uses similar concepts

from crowd simulation to model the behavior of pedestrians in crowded environments

using linear extrapolation over short intervals. Kuderer et al. [188] employed a maxi-

mum entropy reinforcement learning approach to model human navigation behavior. In

order to approximate the feature expectations, the proposed method employs Dirac delta

functions at the modes of the distributions. However, while this approach was able to

accurately model the behavior of pedestrians, suboptimal behavior often emerged due

to the large amount of data required to capture the stochasticity of human behavior. In

order to address this problem and enable accurate modeling of the pedestrian behavior,

Kretzschmar et al. [189] proposed computing feature expectations using Hamiltonian

Markov chain Monte Carlo sampling.

While the aforementioned approaches were able to capture the pedestrian behavior in

specific situations, the need for defining hand-crafted features made them undesirable for

deployment in dynamic environments. Inspired by the success of deep learning based ap-

proaches in the various areas of computer vision and robotics, Alahi et al. [172] proposed

an approach dubbed Social LSTM. Using a Long-Short Term Memory (LSTM) network

architecture and a Social Pooling layer that leverages spatial information of nearby pedes-

trians thereby implicitly modeling interactions among them. Similarly, Sun et al. [49]

used a sequence-to-sequence LSTM encoder-decoder architecture to predict the pedestrian

position and the angle of direction. The authors showed that incorporating the angular

information in addition to the temporal information led to a significant improvement in
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the accuracy of the prediction. Vemula et al. [48] proposed an alternative Social Attention

method to predict future trajectories based on capturing the relative importance of pedestri-

ans regardless of their proximity. The authors formulated the problem as a spatio-temporal

graph with nodes representing the pedestrians and edges capturing the dynamics of the

interactions between two pedestrians such as orientation and distance. Concurrently,

Pfeiffer et al. [190] proposed an LSTM based data driven model for motion prediction by

incorporating the obstacle map of the environment and encoding the surrounding pedestri-

ans in polar angular space, thereby enabling fast inference times in crowded environments.

More recently, Gupta et al. [51] proposed the use of recurrent based Generative Adver-

sarial Network (GAN) to generate and predict socially acceptable paths. Their proposed

SGAN approach is comprised of an LSTM-based encoder-decoder generator to predict

the future trajectories, followed by an LSTM-based discriminator to predict whether each

generated trajectory follows the social norms. Similarly, Sadeghain et al. [181] presented

a framework for predicting trajectories based on GAN dubbed SoPhie. By utilizing an

RGB image from the scene and the trajectory information of the pedestrians, the method

computes both the physical and social context vectors by focusing on only the relevant

information for each observed pedestrian. The computed vectors are then utilized by an

LSTM-based GAN module to generate physically and socially acceptable trajectories.

Over the years, several methods have been proposed for trajectory estimation of vehi-

cles [191]. Lefèvre et al. [192] proposed a Bayesian network to infer the driver’s intention

by utilizing the digital map of the road network. Kim et al. [171] proposed a trajectory pre-

diction method that employs a recurrent approach to predict the future coordinates of all

surrounding vehicles using an occupancy grid map representation with probability values

to reflect the uncertainty of the predictions. Similarly, Baumann et al. [193] proposed an

encoder-decoder architecture to predict the ego-motion of the vehicle using previous path

information. In order to minimize the potential collision risk, Park et al. [194] proposed

an encoder-decoder LSTM architecture accompanied with beam search to produce the

most likely K trajectories.

Despite the varying application areas of the motion prediction task, there is a growing

consensus that recurrent units in combination with trajectory information of the most rele-

vant pedestrians/vehicles can provide accurate predictions. While this is true, it comes at

the cost of the representational and run-time capabilities of these methods. As the majority

of the aforementioned approaches model each pedestrian/vehicle separately by predicting

only their local neighborhood, suboptimal behavior often occurs in complex densely

populated environments. In this chapter, we proposed a novel scalable neural network

architecture to address the problem of learning trajectories in populated environments.

Instead of the widely employed recurrent units such as LSTMs, our proposed network

utilizes causal convolutions to model the sequential behavior of the various agents in the

scene. Furthermore, by jointly learning the trajectories for all agents in the scene, our

network is able to better leverage the interdependencies in the motion without the need
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for explicitly defining the relative importance of each agent. Finally, our approach is not

restricted to modeling the behavior of either pedestrians or vehicles, but is rather able to

learn and infer the complex interactions among the various types of agents in the scene.

Traffic Light Recognition is one of the vital tasks for autonomous agents operating in

urban environments whether pedestrian assistant robots or autonomous vehicles. Although

traffic lights are designed to be relatively easily perceived by humans, they are not always

easily identified in camera images due to their small size, presence of other sources of

similar lights e.g. brake lights, billboards and other traffic lights in different directions,

and partial occlusions caused by different objects in the scene [195]. Furthermore, due

to the highly dynamic nature of the environment, traffic light recognition approaches

need to have fast inference times to enable safe deployment. In order to accurately

recognize traffic lights in varying illumination conditions, John et al. [196] employed

a Convolutional Neural Network (CNN) based approach to extract features from the

image. Accompanied by a GPS sensor to identify the regions of interest within the

image, the approach produces a saliency map containing the traffic light location to enable

recognition in low lighting conditions. (author?) [178] proposed a system for detecting,

tracking and recognizing traffic lights for autonomous vehicles. Their approach utilizes

the YOLO architecture [197] to detect the location of the traffic lights within the image.

The traffic lights are then tracked using the ego-motion information and stereo imagery to

triangulate their relative position. Finally, the state of the light is identified using a small

neural network trained on the extracted regions.

Similarly, in order to enable accurate traffic light recognition in complex scenes, Li et

al. [198] utilized prior information from the image regarding the position and size of

the traffic light in order to reduce the computational complexity of locating it within the

image. Additionally, they proposed an aggregate channel feature method accompanied

with inter-frame information analysis to facilitate accurate and consistent recognition

across the different frames. With the goal of improving the run-time capabilities and

reducing the computational resources, Liu et al. [199] proposed a traffic light recognition

system operating in an online manner on smartphones. Using ellipsoid geometry in the

HSV colorspace, their approach is able to extract region proposals which are in turn

passed through a kernel function to recognize the phase and type of the traffic light.

In contrast to the aforementioned methods for traffic light recognition, we do not

perform any pre-processing or utilize any structural prior from the scene, rather our

proposed network is able to attend to areas in the image containing the traffic light,

thereby increasing ease of deployment and robustness to new environments.

Intersection Crossing Safety Prediction: Among the early works on enabling au-

tonomous street crossing for pedestrian assistant robots are the works of (author?) [200,

201] in which the authors proposed a system to detect and track vehicles using cameras
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mounted on both sides of the robot. Using image differencing and edge extraction tech-

niques, the method is able to identify and track vehicles in a two lane street. Subsequently,

Bauer et al. [202] proposed an autonomous city explorer robot to navigate in urban envi-

ronments. In their approach, the robot is able to handle street crossings by identifying

and recognizing the state of the traffic light. In order to identify the safety of intersections

for autonomous vehicles, Campos et al. [45] proposed a negotiation approach by solving

local optimization problems for each of the vehicles approaching the intersection. Simi-

larly, Medina et al. [46] proposed a decentralized Cooperative Intersection Control (CIC)

system to enable safe navigation of a T-intersection for a platoon of vehicles. An alternate

approach to cooperative intersection crossing is proposed in [203], in which the authors

proposed a vehicle-to-vehicle intersection protocol guided by a GPS model, where each

vehicle periodically broadcasts its pose and intent to nearby vehicles and the crossing

priority is then decided by the vehicles among themselves.

Inspired by learning from demonstration approaches, Diaz et al. [204] proposed an

approach to aid visually impaired users to remain within the crosswalk bounds while

crossing a road. Their proposed method processes images from the scene to extract

the relative destination of the user and in turn produces an audio signal as a beacon for

the user to follow to reach the goal. More recently, Habibi et al. [205] and Jaipuria et

al. [206] presented techniques for pedestrian intent prediction at intersections by utilizing

the contextual information of the scene and Augmented Semi Non-negative Sparse Coding

(ASNSC) for learning the motion primitives to enable more accurate predictions of the

trajectories at street crossings. (author?) [207] developed an approach for predicting

the crossing intention of pedestrians. Their proposed method first detects and tracks

pedestrians approaching the sidewalks and then utilizes this information to estimate the

pose of the pedestrians by fitting skeletal features which are in turn utilized by a Random

Forest classifier to predict the crossing intent. In this chapter, we proposed a novel method

for predicting the safety of street intersections for crossing by utilizing information from

both the interaction-aware motion prediction and traffic light recognition approaches.

By leveraging the predicted trajectories of all observable vehicles and pedestrians in the

vicinity of the robot in addition to the state of the traffic light if present, our approach is

able to accurately estimate the safety of the intersection for crossing. Furthermore, as we

do not rely on any prior knowledge of the environment or any form of communication

technique with the surrounding traffic participants, our approach can be easily deployed

in various environments without any additional pre-processing steps.

5.6 Conclusion

In this chapter, we presented a system for autonomous street crossing using multimodal

data. Our system consists of two main network streams: a traffic light recognition stream
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and an interaction-aware motion prediction stream. Information from both streams is

fused as input to a convolutional neural network to predict the safety of the intersection

for crossing. We proposed AtteNet, a convolutional neural network architecture for traffic

light recognition that utilizes the global information in the images to selectively emphasize

informative features suppressing irrelevant features, while being robust to noisy data.

We performed extensive experimental evaluations on various traffic light recognition

benchmarks and show that the proposed architecture outperforms the existing methods.

Furthermore, we proposed an interaction-aware temporal convolutional neural network

architecture that utilizes causal convolutions to accurately predict the trajectories of all

observable traffic participants. We demonstrated that our approach is scalable to complex

urban environments while simultaneously being able to predict accurate trajectories of

all the observable traffic participants in the scene. Experimental evaluations on several

real-world datasets demonstrate that our architecture achieves state-of-the-art performance

on both indoor and outdoor datasets, while achieving faster inference times and requiring

less storage space in comparison to recurrent approaches.

In order to learn a classifier that is robust to the type of intersection, the learned

representations from the traffic light recognition network and the interaction-aware motion

prediction network are fused to infer the final crossing decision. By incorporating the

uncertainty information from the motion prediction stream and the learned representations

from the traffic light recognition stream, the classifier is robust to incorrect predictions by

either task-specific sub-network. Moreover, we introduced the Freiburg Street Crossing

dataset for motion prediction and intersection safety prediction for crossing which we

make publicly available to facilitate future work on the topics of motion prediction and

intersection safety prediction. Comprehensive experimental evaluations demonstrate the

efficacy of the proposed system for determining the safety of the intersection for crossing.

Furthermore, the results demonstrate the tolerance of the system to noise and inaccuracies

in the data, while accurately generalizing to new unseen scenarios.
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Conclusion and Future Work

In this thesis, we proposed several contributions to the field of state estimation for

mobile robots. Our contributions are focused on enabling mobile robot deployment in

urban environments by leveraging the rich features from the scene to enable robust state

estimation in an efficient manner. We presented frameworks for i) learning to reliably

localize in urban environments using the abundant textual information in the scene, ii)

learning to leverage the structural and temporal information to simultaneously predict

the pose, ego-motion and semantics of the scene in a multitask network architecture,

and finally, iii) learning to estimate the future trajectories of all traffic participants in the

vicinity of the robot concurrently with recognizing the traffic light signal and utilizing

information from both sources to predict the safety of a street intersection for crossing.

We extensively evaluated our proposed frameworks on several real-world indoor and

outdoor datasets. The results demonstrate that our proposed methods exceed the state of

the art while enabling efficient online deployment.

We first tackled the problem of localizing in urban environments. Although GPS

is frequently used to provide position estimates, its accuracy deteriorates in or near

buildings due to outages. Furthermore, frequent structural changes in the environment

require continuous map updates to enable successful localization. We proposed two

novel probabilistic localization frameworks to address the aforementioned challenges by

leveraging the textual information in the environment. Our first localization approach

enables pose estimation in a single step, while the second aggregates information across

multiple timesteps to produce a localization estimate that is tolerant to the amount of

textual information available. We extract stable textual features from the environment and

employ a probabilistic data association method that combines both distance and linguistic

metrics to match the extracted text with landmarks in a publicly available map. Finally, we

employ a particle filter-based method with dedicated sensor models in order to estimate

the pose of the robot in the environment. Our contribution is the first method to utilize

textual features from images of the scene to produce reliable localization estimates that

are more accurate than the estimates obtained from GPS. As publicly available maps are

frequently updated by the map provider, leveraging information from such maps renders

our method robust to changes in the environment, and alleviates the need of frequently
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revisiting the environment to perform map updates. It further facilitates the deployment of

robots in new environments without the need for any pre-processing steps. We evaluated

our methods on data captured from three different cities, and the results demonstrate that

both our proposed frameworks outperform GPS in terms of the localization accuracy,

thereby demonstrating the robustness of utilizing textual features for localization in urban

environments.

In the absence of textual information, enabling successful robot localization entails

finding stable features while being robust to repetitive and reflective surfaces which are

often present in the scene. Although local feature-based localization methods are able

to accurately estimate the robot pose, expert knowledge is required for selecting the set

of features that are representative of the environment. On the other hand, although deep

learning-based localization methods are robust to weather and illumination variations, they

are unable to match the performance of state-of-the-art local feature-based localization

methods. With the goal of enabling accurate and robust pose estimation, we proposed

two multitask learning convolutional neural network architectures for jointly estimating

the global pose, ego-motion and semantics of the scene which enable the encoding of

geometrical and structural features into deep learning-based localization methods. In order

to enable the network to exploit the geometric information regarding the environment, we

proposed a novel loss function which utilizes the relative motion information to constrict

the search space of the global pose regression stream, thus enabling the network to learn a

motion model that is globally consistent.

Our first architecture consists of a global pose regression stream and a Siamese-type

visual odometry stream. We employ a parameter sharing scheme to enable each sub-

network to exploit the interdependencies among the tasks. Moreover, we proposed an

improved architecture that further incorporates the semantic features from the scene into

the global pose regression network to encode the structural information and semantic

relations in the environment. We introduced an adaptive weighted fusion layer that

enables the learning of favorable weights for the fusion of feature maps based on region

activations, and utilized the layer to facilitate the encoding of the structural and geometrical

constraints into the pose regression network. Additionally, we presented a self-supervised

warping method to enable the segmentation network to incorporate temporal consistency

in the prediction and accelerate training by exploiting the estimated ego-motion from the

odometry stream to warp the semantic features from the previous timestep with the current

timestep. We performed extensive experimental evaluations complemented with ablation

studies on several indoor and outdoor benchmark datasets. The results demonstrate that

both our single-task and multitask architectures outperform state-of-the-art methods,

while achieving online run-time thus facilitating deployment in real-world scenarios. Our

contributed architectures are the first deep learning-based methods to outperform local

feature-based localization techniques in terms of localization accuracy, while being robust

to various perceptual challenges.
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As robots navigate in urban cities often encounter street intersections, safely navigating

across street intersections is an essential task for mobile robots. Although a majority of the

existing approaches utilize the traffic light signal to make an informed crossing decision,

relying solely on this signal limits the navigation capabilities of the robot to streets that

contain only signalized intersections. In order to overcome this limitation, we proposed a

multimodal convolutional neural network framework for predicting the safety of street

intersections for crossing. Our architecture consists of a motion prediction stream and a

traffic light recognition stream. We fuse representations from both sub-networks to enable

the prediction of a safe crossing strategy that is agnostic to the type of intersection. In order

to enable accurate and reliable prediction of the intersection safety, our motion prediction

network learns to estimate the future trajectories of all observable traffic participants

concurrently. Our network accomplishes this by utilizing causal convolutions coupled

with a binary masking mechanism to enable the prediction of trajectories with dynamic

lengths for a varying number of traffic participants. This eliminates the need for creating

handcrafted definitions for modeling the interdependencies between the traffic participants

and enables the network to learn a more realistic model of the trajectories. Furthermore, it

expedites the flow of information throughout the network, thus facilitating the prediction

of future trajectories for all observable traffic participants in an online manner.

Our proposed traffic light recognition stream employs a global attention mechanism

which enables the network to selectively emphasize informative features belonging to the

traffic light, while being robust to noisy data. We extensively evaluated our intersection

safety prediction framework on a real-world dataset captured at various street intersections,

demonstrating the benefit of leveraging both the motion information of traffic participants

in the vicinity of the robot and the traffic light signal in accurately predicting the safety

of an intersection for crossing. The results further demonstrate the robustness of our

proposed framework to the type of intersection and incorrect predictions by either sub-

network. Furthermore, extensive experiments on the traffic light recognition and the

motion prediction modules demonstrate that both our networks exceed the state of the art,

while enabling online deployment in an efficient manner.

In summary, in this thesis we proposed several contributions enabling robots to reliably

estimate their state and the state of all agents in their vicinity by utilizing semantic infor-

mation and leveraging rich features from the environment. With the goal of facilitating

the deployment of robots in urban environments, our proposed methods enable the robot

to learn a robust model of its surroundings. Our frameworks achieve state-of-the-art

performance in each of the addressed tasks, while enabling efficient online deployment.

We believe that the proposed techniques have brought us a step closer towards the goal of

life-long robot deployment in urban environments.
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Future Work

There are several directions in which future research can extend the scope and capabilities

of the methods proposed in this thesis. We presented an approach for localization in urban

environments that leverages the textual information in the scene utilizing publicly available

maps. As the area traversed by the robot increases, the probability of encountering signs

belonging to the same shop increases. As an example, there are multiple branches for

a certain chain restaurant within a city. In order to reduce the search space for the first

timestep, we can complement our approach with a topological localization method that

runs as an initial step. This would have the advantage of eliminating potential incorrect

initializations for the particle filter and thus speed up the overall localization procedure.

Another potential research direction to reduce incorrect data associations would be to

incorporate the uncertainty of the extracted text from the text spotting phase into the

landmark selection procedure. Currently, we assume that all selected landmarks are

equally likely, which adds tolerance to text spotting failures. However, it could also

potentially introduce noise to the localization method. Incorporating the text spotting

uncertainty to the extracted landmarks could reduce this noise, as particles sampled in

the vicinity of landmarks with low probabilities would get penalized. Furthermore, text

signs within a city can contain words from different languages, for instance signs at or

near train stations are often both in English and the official language of the country/city.

Instead of using the WordNet database in the official language of the country/city, we

can combine the databases from multiple languages, thus improving the accuracy of our

lexical data association metric.

In this thesis, we proposed a multitask learning architecture for jointly predicting

the global pose, visual odometry and semantic segmentation for a given scene image.

Currently, our network predictions for the ego-motion are scale dependent, which requires

the visual odometry network to be trained for every new scene. In order to mitigate this,

we can adapt our odometry prediction by utilizing depth maps predicted from a pre-trained

network in order to recover the scale in a manner similar to the approach proposed by

Yin et al. [208]. As the robot traverses in urban environments, it is often surrounded

by other pedestrians and cars with different traversal directions and velocities than its

own. Learning to estimate the motion of the surrounding dynamic and movable objects in

the scene through scene flow can be beneficial towards improving the visual odometry

estimated by the network, as the network can learn to discard feature correspondences

belonging to dynamic objects. Furthermore, the presence of dynamic objects in the scene

can impair the quality of the predicted global poses. Learning to segment out the dynamic

objects in the scene and inpaint the occluded parts of the image would enable our method

to produce more accurate pose estimates that are invariant to occlusions.

We addressed the problem of predicting the safety of street intersections for crossing in

this thesis by employing a multimodal framework that simultaneously predicts the future
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trajectories for all observable traffic participants and recognizes the traffic light signal.

One future direction would be to incorporate obstacle map predictions of the environment

into the motion prediction sub-network. We believe that knowledge about the vicinity can

improve the accuracy of the predicted trajectories by avoiding paths that intersect with

obstacles. Furthermore, this could also potentially improve the accuracy of predicting

the street intersection safety for crossing, as it eliminates false negative predictions by

leveraging the road structure. Learning to semantically classify the traffic participants can

also aid in understanding the potential interactions among them, thereby increasing the

accuracy of the predicted trajectories, as well as improving the prediction of the street

intersection safety for crossing. Another interesting direction would be learning to predict

the direction of the traffic flow and incorporating the information into the intersection

safety prediction sub-network. For instance, crossing a T-junction, the robot needs to only

observe traffic flowing in a perpendicular direction to it and safely discard parallel traffic

flow. Utilizing the information about the direction of the traffic flow can aid in reducing

false negative predictions from the classifier, and thus improve the overall prediction

accuracy.

In summary, the aforementioned directions are a subset of the potential extensions in

the scope of this thesis. There are several challenges facing the deployment of mobile

robots in urban environments due to the inherent complexity and stochastic nature of the

environment. We hope that the insights gained from the work presented in this thesis will

inspire future work, and bring us a step closer towards long-term deployment of mobile

robots in urban environments.
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Appendix A

Additional Ablation Studies on

Semantics-Aware Pose Regression

In this appendix, we present additional ablation studies investigating the various design

choices for the problem of multitask learning for geometry and semantics-aware pose

regression. Our goal is to provide a complete overview on the proposed framework

through an in-depth analysis of the architectural choices. We begin with an evaluation of

the base network topology, followed by an evaluation of the choice of the downsampling

stage to carry out the previous pose fusion. We conclude this appendix with quantitative

evaluations of the multitask learning design choices. The following results are the outcome

of joint work with Abhinav Valada [56, 57].

A.1 Base Architecture Topology

In the following, we investigate the effect of the different base architectures on the median

localization error for the task of global pose regression. We evaluate the performance of

employing shallow to deeper residual architectures with ReLU activation functions on

the DeepLoc dataset in Table A.1. We observe that increasing the depth of the model

improves the localization accuracy, as shown by the improvement between M1, M2

and M3 models. While increasing the number of layers improves the representational

capabilities of the network, the risk of over-fitting to the training data increases. This

can be observed by inspecting the localization accuracy of the M2 and M3 models, in

which the rotational error is reduced by approximately 30.0% at the cost of reduced

translational accuracy. Utilizing the pre-activation ResNet-50 architecture [81] in the M4

model improves both the translational and rotational accuracy as it reduces over-fitting

and enables faster convergence of the network during training. Therefore, we utilize this

model as the backbone for our VLocNet++STL network.
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Table A.1: Comparison of the VLocNet++STL base architecture topology on the visual localiza-

tion error on the DeepLoc dataset [136].

Method Base Model Activation Median Error

M1 ResNet-18 ReLU 0.83m, 5.96◦

M2 ResNet-34 ReLU 0.57m, 4.04◦

M3 ResNet-50 ReLU 0.65m, 2.87◦

M4 PA ResNet-50 ReLU 0.57m, 2.44◦

A.2 Previous Pose Fusion

In order to determine the downsampling stage to fuse the previous pose information

into our architecture, we evaluate the median localization error achieved by fusing the

previous pose at various stages of our VLocNetSTL architecture, namely at Res3, Res4 and

Res5. In Figure A.1, we plot the localization error at each of the aforementioned stages

on the Microsoft 7-Scenes dataset. The results show that performing the pose fusion at

earlier stages results in an imbalance in the pose error by either reducing the translational

error at the cost of the rotational error or vice versa. However, by fusing the previous

predicted pose at Res5, the localization accuracy achieved is consistently higher than at

the remaining stages. We hypothesize this occurs due to the maturity of the features at

this stage which enable the network to take full advantage of the pose information.

A.3 Parameter Sharing Evaluation

In this section, we study the impact of sharing features across the global pose regression

and visual odometry streams by experimenting with varying amounts of feature sharing.

Table A.2 shows the median global localization error achieved by VLocNetMTL with

various amounts of sharing between the pose regression and the visual odometry streams

on the Microsoft 7-Scenes dataset. We experiment with maintaining a shared stream up to

the end of Res2, Res3 and Res4 blocks (Figure 2.7). We only consider the error achieved

by the global localization stream as it is considered the primary task which we aim to

improve, while the visual odometry estimation is an auxiliary task. The results show that

maintaining a shared stream up to the end of Res4 block results in lower localization

accuracy. We believe this occurs as the representations learned at the Res4 block are

more task-specific and as such maintaining a shared stream negatively impacts both tasks.

Similarly, maintaining a shared stream until the end of the Res2 block results in a larger

pose error as the representations learned by the end of the second residual block are too

generic to provide benefit to either task. We achieve the best performance by maintaining
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(a) Translational error

(b) Rotational error

Figure A.1: Comparison of the median localization error from fusing the previous pose infor-

mation at various stages in the VLocNetSTL architecture on the Microsoft 7-Scenes

dataset [56].
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Table A.2: Summary of the localization performance achieved by VLocNetMTL with varying

amounts of sharing on the Microsoft 7-Scenes dataset [56].

Scene Res2 Res3 Res4

Chess 0.04m, 1.60◦ 0.03m, 1.69◦ 0.05m, 1.76

Fire 0.05m, 4.40◦ 0.04m, 4.86◦ 0.05m, 4.59

Heads 0.05m, 4.44◦ 0.05m, 4.99◦ 0.06m, 5.99◦

Office 0.04m, 1.68◦ 0.03m, 1.51◦ 0.04m, 1.82◦

Pumpkin 0.05m, 1.83◦ 0.04m, 1.92◦ 0.04m, 1.64◦

RedKitchen 0.04m, 1.89◦ 0.03m, 1.72◦ 0.04m, 1.75◦

Stairs 0.10m, 5.08◦ 0.07m, 4.96◦ 0.09m, 4.67◦

Average 0.06m, 2.99◦ 0.04m, 3.09◦ 0.05m, 3.17◦

a shared stream until the end of the Res3 block resulting in an improvement of 12.5% and

18.49% in the translational and rotational components of the pose over the single-task

VLocNetSTL architecture. We believe these results further demonstrate the utility of jointly

learning visual localization and odometry estimation.

A.4 Evaluation of the Semantic Feature Fusion

We experiment with fusing the semantic feature maps from Res5c into the localization

stream at various stages of the Res4 block in order to study the impact of the feature

fusion on the localization accuracy. Although the spatial dimensions of the semantic

feature maps match the feature maps at the Res5 block in the localization stream, the

Res5 block has a substanially larger number of feature channels which would outweigh

the rich semantic features from the segmentation stream, thereby diluting their impact.

We do not attempt to perform the semantic feature map fusion at earlier stages of the

network before the Res4 block as we believe incorporating high level semantic features at

early/intermediate stages of the network would be of no benefit since the features learned

at those stages are of lower level.

In Table A.3, we show the median localization pose error achieved by fusing the feature

maps at different stages of VLocNet++MTL on the DeepLoc dataset. In an attempt to avoid

having a cyclic dependency between the localization and segmentation sub-networks,

we do not fuse the semantic feature maps at Res4b whose output is forwarded to the

segmentation stream. Fusing the feature maps at the middle of the Res4 block at Res4c

results in the lowest localization error of 0.32m, 1.48◦ as it is able to achieve the right

balance between task-specificity and feature maturity.
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Table A.3: Evaluation of the impact of the semantic feature fusion on the localization performance.

The fusion layer denotes where the semantic feature maps are fused into the localization

stream. The results are shown for the DeepLoc dataset [136].

Fusion Layer Median Median

Translational Error Rotational Error

No fusion 0.37m 1.93◦

Res4a 0.49m 3.10◦

Res4c 0.32m 1.48◦

Res4d 0.54m 1.30◦

Res4e 0.46m 1.95◦

Res4f 0.61m 1.45◦

A.5 Evaluation of the Adaptive Weighted Fusion Layer

In order to evaluate the efficacy of the proposed fusion layer at favorably combining

feature maps from various timesteps and sub-networks, in this section, we compare

the localization accuracy of VLocNet++MTL that incorporates the adaptive weighted

fusion layer, with three of the most commonly employed feature combination methods.

Furthermore, in order to gain more insight on the effect of the feature fusion method

on the overall accuracy of the approach, we compare the results with the single-task

VLocNet++STL model. We compare the following fusion schemes:

• MTL-input-concat: A simple approach to incorporate the semantic features,

learned by the segmentation stream, into the visual localization stream is by con-

catenating the predicted segmentation mask Mt with the input image It as a fourth

image channel. The input to the localization sub-network would be the resulting

four-stream tensor.

• MTL-mid-concat: As a second baseline, we concatenate the semantic feature

maps with intermediate representations of the pose regression stream. As our earlier

experiments in Appendix A.4 demonstrate that fusing the semantic feature maps at

Res4c is most beneficial, we similarly concatenate the semantic representations at

Res4c. We additionally compare with concatenating the semantic feature maps at

the end of the Res4 block.

• MTL-shared: For the final baseline, we investigate the effect of sharing the latent

space of both networks as a variant of the approach proposed in [209]. Latent

space sharing can be represented by sharing a layer among the various networks. In

our implementation, we share the Res4c layer between both the segmentation and

localization streams.
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Table A.4: Comparison of VLocNet++MTL with baseline models for fusing semantic features

into the localization stream. Results are shown for the entire DeepLoc dataset [136].

Method Median Median

Translational Error Rotational Error

VLocNet++STL 0.37m 1.93◦

MTL-input-concat 0.56m 3.63◦

MTL-mid-concat Res4c 0.55m 3.38◦

MTL-mid-concat Res4f 0.50m 3.10◦

MTL-shared 1.17m 4.20◦

VLocNet++MTL 0.32m 1.48◦

Table A.4 shows the median localization accuracy for each of the aforementioned

baselines, in addition to our single-task VLocNet++STL and multitask VLocNet++MTL

on the DeepLoc dataset. Naively concatenating the semantic feature maps as in the

MTL-input-concat approach results in significantly worse accuracy in comparison to the

single-task architecture. We observe that concatenating the semantic features at the end of

the Res4 block is more beneficial than at Res4c which can be attributed to the complexity

of the learned representations. Nonetheless, this variant still achieves a lower localization

accuracy in comparison to VLocNet++STL. MTL-shared achieves the lowest accuracy

in comparison to the remaining methods. We believe this occurs due to the diverse

nature of the tasks learned and as such the representations learned by each stream differ

significantly. Thus, sharing weights across both network streams subsequently lowers the

performance of each individual task. VLocNet++MTL achieves the highest performance

with an improvement of 36.0% in the translational and 53.9% in the rotational components

of the pose compared to the best performing baseline (MTL-input-concat). Moreover,

the results demonstrate the effectiveness of the proposed fusion scheme in aggregating

both inter- and intra-dependent feature maps. Utilizing the proposed layer achieves an

improvement of 13.5% and 23.3% in the translation and orientation pose accuracy over

VLocNet++STL, which further demonstrates the utility of incorporating semantic features

into the localization network.
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[2] S. McGrail, Boats of the World: From the Stone Age to medieval times. Oxford

University Press on Demand, 2004.

[3] H. Chisholm, “Encyclopædia britannica,” vol. 24, pp. 749–751, 1910.

[4] N. Bowditch, “National imagery and mapping agency,” American practical navi-

gator:” Bowditch”. An epitome of navigation. Originally by Nathaniel Bowditch

(1773-1838). Arcata (CA, US): Paradise Cay Publications, 2002.

[5] N. R. Council, The global positioning system: A shared national asset. National

Academies Press, 1995.

[6] A. LaMarca and E. D. Lara, “Location systems: An introduction to the tech-

nology behind location awareness,” Synthesis Lectures on Mobile and Pervasive

Computing, vol. 3, no. 1, pp. 1–122, 2008.

[7] D. J. Backman, G. V. Roe, F. D. Defalco, and W. R. Michalson, “Hand-held

gps-mapping device,” 1999, uS Patent 5,902,347.

[8] J. Robinson, “Emergency response data transmission system,” 2007, uS Patent

7,280,038.

[9] “Spidertracks,” https://www.spidertracks.com/, 2005, accessed:2018-12-04.

[10] E. Griffith, C. Hudson, and T. L. Mosher, “Uninterruptable ads-b system for aircraft

tracking,” 2005, uS Patent 6,952,631.

[11] O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stachniss, “Efficient

and effective matching of image sequences under substantial appearance changes

exploiting gps priors,” in IEEE International Conference on Robotics & Automation

(ICRA), 2015.

[12] S. Kohli and S. Chen, “Gps car navigation system,” 2000, uS Patent 6,041,280.

[13] T. R. Kurfess, Robotics and automation handbook, 2004.

https://www.spidertracks.com/


174 Bibliography

[14] “Unimation,” https://goo.gl/sE6y3a, 1962, accessed:2018-12-06.

[15] “ABB robotics,” https://new.abb.com/products/robotics, 1974, accessed:2018-12-

07.

[16] “KUKA,” https://www.kuka.com/en-de, 1973, accessed:2018-12-07.

[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.

[18] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,

W. Steiner, and S. Thrun, “Experiences with an interactive museum tour-guide

robot,” Artificial intelligence, vol. 114, no. 1-2, pp. 3–55, 1999.

[19] “iRobot,” https://www.irobot.de/uber-irobot/uber-irobot/History, 2002,

accessed:2018-12-07.

[20] “MIIMO Robotic Lawnmower,” https://www.honda.co.uk/lawn-and-garden/

products/miimo/overview.html, 2013, accessed:2018-12-17.

[21] “BMW: Autonomous driving: Digital measuring of the world,” https://www.bmw.

com/en/innovation/mapping.html, 2017, accessed:2018-12-07.

[22] “Waymo,” https://waymo.com/journey/, 2009, accessed:2018-12-07.

[23] “Tesla autopilot,” https://www.tesla.com/autopilot?redirect=no, 2014,

accessed:2018-12-07.

[24] “Marble,” https://www.marble.io/, 2015, accessed:2018-12-07.

[25] “Nuro,” https://nuro.ai/product/, 2016, accessed:2018-12-07.

[26] “Starship,” https://www.starship.xyz/company/, 2014, accessed:2018-12-07.

[27] L. Luft, A. Schaefer, T. Schubert, and W. Burgard, “Closed-form full map posteriors

for robot localization with lidar sensors,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2017.

[28] J. Roewekaemper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff, and W. Burgard,

“On the position accuracy of mobile robot localization based on particle filters com-

bined with scan matching,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2012.

[29] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and

J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:

Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6,

pp. 1309–1332, 2016.

https://goo.gl/sE6y3a
https://new.abb.com/products/robotics
https://www.kuka.com/en-de
https://www.irobot.de/uber-irobot/uber-irobot/History
https://www.honda.co.uk/lawn-and-garden/products/miimo/overview.html
https://www.honda.co.uk/lawn-and-garden/products/miimo/overview.html
https://www.bmw.com/en/innovation/mapping.html
https://www.bmw.com/en/innovation/mapping.html
https://waymo.com/journey/
https://www.tesla.com/autopilot?redirect=no
https://www.marble.io/
https://nuro.ai/product/
https://www.starship.xyz/company/


Bibliography 175

[30] “Parcel delivery: The future of last mile,” https://www.mckinsey.com/∼/media/

mckinsey/industries/travel%20transport%20and%20logistics/our%20insights/

how%20customer%20demands%20are%20reshaping%20last%20mile%

20delivery/parcel delivery the future of last mile.ashx, 2016, accessed:2018-12-

07.

[31] “HERE HD live map,” https://goo.gl/AF36TD, 2018, accessed:2018-12-07.

[32] “Mapper.ai,” https://mapper.ai/product/, 2018, accessed:2018-12-07.

[33] “Deepmap,” https://www.deepmap.ai/, 2018, accessed:2018-12-07.

[34] “Delivery robots,” https://goo.gl/6fko2i, 2018, accessed:2018-12-07.

[35] M. Mazuran, F. Boniardi, W. Burgard, and G. D. Tipaldi, “Relative topometric

localization in globally inconsistent maps,” in Robotics Research, 2018, pp. 435–

451.
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