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I. INTRODUCTION

An ultimate goal of mobile robotics research is the ubiq-
uitous deployment of intelligent platforms that are capable of
undertaking a variety of tasks in everyday life for their users.
Over the previous decade, robots have become more integrated
into our daily lives, performing tasks in numerous environ-
ments including industrial settings such as in assembly and
manufacturing, indoor scenarios such as home assistance and
elderly care, as well as outdoor tasks such as lawn mowing and
parcel delivery. Despite the significant strides achieved in the
various application areas, reliably deploying robots in urban
environments remains an open challenge due to the complex
and highly dynamic nature of the environment that renders
hand-crafted solutions infeasible. In order to attain the goal of
ubiquitous robotic deployment, robots need to accurately esti-
mate their position as well as the position of other pedestrians
or agents in their vicinity in order to ensure safe operation.
In my work, I have focused on addressing the challenging
problem of reliable and accurate state estimation in urban
environments by introducing techniques that leverage the
abundantly rich semantic, structural and geometric information
in the scene. In the following sections, I briefly describe some
of the challenges, proposed solutions and future research di-
rections in the domains of localization and motion prediction.

II. MULTITASK LEARNING FOR VISUAL LOCALIZATION

Visual localization is an essential enabler for various
robotics and computer vision tasks such as Simultaneous
Localization and Mapping [21], Augmented Reality [11],
and autonomous navigation [6]. In order for robots to be
safely deployed in the wild, their localization system should
be robust to frequent changes in the environment, including
seasonal changes, dynamic changes such as moving vehicles,
and structural changes such as constructions.

While local feature-based approaches that utilize SfM infor-
mation for localization [19, 26] achieve for the most part state-
of-the-art performance, failures often occur with large view-
point changes and motion blur. On the other hand, although
deep learning-based methods are able to handle challenging
perceptual conditions, they are still unable to match the
performance of state-of-the-art local feature-based localization
methods. This is partly due to their inability to model the
3D structural constraints of the environment while learning
from a single monocular image. To address this shortcoming,
we proposed a novel loss function that enables embedding
the geometric knowledge of the scene by leveraging auxiliary
learning to jointly estimate the ego-motion of the robot [25].
Our proposed loss function augments the Euclidean loss by the
inclusion of an additional term that constrains the predicted
poses to be consistent with the ego-motion of the robot. This

TABLE I
COMPARISON ON THE MICROSOFT 7-SCENES BENCHMARK.

Method Median Error Pose Acc. Run-time

DSAC2 [4] 0.04m, 1.04◦ 76.1% 200ms
Ours 0.013m, 0.77◦ 99.2% 79ms

improves the accuracy of the poses predicted by our network,
as well as the robustness to perceptual changes (see Fig. 1).

The ability of the localization system to identify the stable
features in the environment is key to enabling successful
and reliable localization. Towards this goal, we propose to
simultaneously predict the semantics of the surroundings
as a means to instill structural cues about the environment
into the pose regression network and implicitly draw more
attention towards informative regions in the scene [15]. In
order to facilitate the effective combination of feature maps
across the task-specific networks, we proposed a novel layer
that utilizes feature map activations to dynamically weigh
the different semantic representations. We employ this layer
to fuse feature maps from the segmentation stream into the
localization stream and vice versa.

In order to enable the prediction of consistent semantics,
we further propose a novel self-supervised semantic context
aggregation technique that leverages the predicted relative
motion from the odometry stream of our network [15]. Using
pixel-wise depth predictions from a CNN and differential
warping, we fuse intermediate network representations from
the previous timestep into the current frame using our pro-
posed fusion layer. This enables our segmentation network to
aggregate more scene-level context, thereby improving the per-
formance and leading to faster convergence. Through incorpo-
rating the semantic and ego-motion information into the local-
ization task, our network architecture learns to jointly estimate
all three tasks in a multitask learning (MTL) manner. Given
two consecutive monocular images, our network predicts the
6-DoF global pose, ego-motion and semantic segmentation.

Exploiting MTL, our architecture achieves state-of-the-art
performance on the challenging Microsoft 7-Scenes bench-
mark [20], while simultaneously preforming multiple tasks.
Tab. I shows a quantitative comparison on the 7-Scenes dataset
with the previous state-of-the-art method in terms of median
localization accuracy, pose accuracy in terms of percentage of
poses with error below 5cm and 5◦ and run-time. The results
show that not only does our approach exceed DSAC2 [4]
by 67.5% in the translational and 25.9% in the rotational
components of the pose, it also improves on the pose accuracy
by 23.1% and the run-time by 60.5%. This renders our method
well suited for real-time deployment in an online manner.

III. MULTIMODAL MOTION PREDICTION

The ubiquitous deployment of mobile robots in urban en-
vironments necessitates the development of robust behavior



Fig. 1. Localization results depicting the
predicted pose (yellow trajectory) versus the
ground-truth pose (red trajectory) on the Red-
Kitchen scene [20].

Fig. 2. Motion prediction results on the
UCY-Uni dataset [10]. The solid line depicts
the ground-truth trajectory and the dotted line
depicts the network prediction.

Fig. 3. Sequence images from an example
street crossing scenario. Vehicles are repre-
sented by arrows where the size of the arrow
is proprotional to the velocity of the vehicle.

TABLE II
BENCHMARKING THE MOTION PREDICTION ON UCY-UNI [10].

Method Avg. Final Run-time Size
Error (m) Error (m) (s) (MB)

Social-LSTM [1] 0.27 0.77 1.78 95.8
SGAN [7] 0.60 1.26 0.04 N/A
Ours 0.29 0.46 0.06 7.0

prediction algorithms to ensure the safety of surrounding
humans. Among the situations in which the behavior of the
robot is crucial for the safety of itself and surrounding agents
is navigating street intersections. The complexity of the scene
and the presence of multiple dynamic objects render this
problem extremely challenging [13].

Most existing robotic approaches either propose the use
of vehicle-to-vehicle communication [17, 8] or rely solely
on the traffic light signal [2]. Employing vehicle-to-vehicle
communication methods requires the standardization of proto-
cols among all manufacturers, which is infeasible. Similarly,
solely relying on the traffic light information to make the
crossing decision is suboptimal as not only is the traffic light
recognition task challenging, the signal alone does not ensure
the intersection safety for crossing.

In order to address this problem, in my previous work,
we proposed a multimodal framework for jointly estimating
the future trajectories of the observable traffic participants,
recognize the state of the traffic light if present, and identify
the safety of the street intersection for crossing [14]. Through
leveraging the predicted trajectories of the observable vehicles
and pedestrians in the vicinity of the robot, in addition to
the state of the traffic light, our MTL framework is able to
accurately estimate the safety of the street intersection for
crossing, while being intersection invariant. Furthermore, as
our approach does not rely on any prior knowledge of the
environment or form of communication with the surrounding
traffic participants, it can be easily deployed in various envi-
ronments.

Unlike previous methods for behavior prediction [18, 12, 3],
we proposed a novel scalable neural network architecture
that employs causal convolutions to model the sequential
behavior of the observable traffic participants. Our proposed
architecture simultaneously predicts the trajectories of all ob-
servable traffic participants, thus enabling it to better leverage
the interdependencies in their motion without the need for
explicitly defining the relative importance between the various
participants. Furthermore, we predict the heading (theta angle)
of the observed dynamic objects, which enables our network
to predict more accurate trajectories (see Fig. 2).

Concurrently, we proposed a convolutional neural network
architecture for traffic light recognition that utilizes the global

information in the images to selectively emphasize informative
features and suppress irrelevant features using SE-blocks [9],
thereby being more robust to noise in the input image. In order
to learn a classifier that is robust to the type of intersection, we
fuse the learned representations from the traffic light recog-
nition network and the interaction-aware motion prediction
network to infer the final crossing decision. By incorporating
the uncertainty information from the motion prediction stream
and the learned representations from the traffic light recogni-
tion stream, the classifier is robust to incorrect predictions by
either sub-network. We evaluated our architecture on several
indoor and outdoor datasets for motion prediction, traffic
light recognition and street crossing prediction. Tab. II shows
a comparison of the performance of our framework with
state-of-the-art methods on the motion prediction task for
the UCY-UNI dataset [10]. The results demonstrate that our
approach improves upon the final displacement error by 40.3%
while achieving analogous average displacement error with a
competitive run-time of 0.06s. Moreover, our model requires
only 7.0MB of storage space, thereby making it efficiently
deployable in resource limited systems. Fig. 3 depicts an
example crossing scenario where using our proposed approach,
the network is able to accurately predict the safety of the
interval for crossing as the oncoming vehicles slow down to
a halt. IV. FUTURE WORK

For future work, I plan to extend our work to address the
problem of localization in dynamic environments. As the robot
traverses in urban cities, it is often surrounded by other dy-
namic objects with different velocities than its own. Learning
to estimate the motion of the surrounding dynamic objects
in the scene through scene flow can be beneficial towards
improving the ego-motion estimated by the network [16, 27].
Furthermore, the presence of dynamic objects in the scene can
impair the quality of the predicted global poses. Learning to
segment out the dynamic objects in the scene and inpaint the
occluded parts of the image using GANs would enable our
method to produce more accurate pose estimates [5].

In the context of motion prediction, I plan to incorporate the
prediction of obstacle maps into the motion prediction sub-
network [12]. Knowledge about the vicinity can substantially
improve the accuracy of the predicted trajectories by avoiding
paths that intersect with obstacles. Learning to semantically
classify the traffic participants can also aid in understanding
the potential interactions among them, thereby increasing the
accuracy of the predicted trajectories.

Overall, I believe that developing frameworks that incorpo-
rate information from diverse tasks via MTL will improve the
accuracy of the individual tasks by leveraging the similarities



and underlying interdependencies among the tasks and hence
increase robustness to complex urban scenes.
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