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Abstract—The majority of existing approaches to mobile
robot mapping assume that the world is static, an assumption
which does not hold in most practical application domains.
In this paper we present a probabilistic grid-based approach
for modeling dynamic environments representing both, the
occupancy and the dynamics of the corresponding area. We
describe the environment as a spatial grid and use a hidden
Markov model to represent the occupancy state and state tran-
sition probabilities of each grid cell. Our approach updates the
occupancy state as observations become available. We describe
an offline and an online technique to estimate the transition
probabilities of the model from observed data. Experimental
results show that our model is better suited for representing
dynamic environments than standard occupancy grids. Further-
more, the results show that the explicit representation of the
environment dynamics can be used to improve robot navigation.

I. INTRODUCTION

An accurate model of the environment is essential for

many mobile robot navigation tasks. Although the environ-

ment generally is dynamic, most existing navigation ap-

proaches assume it to be static. They typically build the

map of the environment in an offline phase and then use

it without considering potential future changes. There are

robust approaches that can handle inconsistencies between

the map and the actual measurements. However, a largely

inconsistent model can lead to unreliable navigation or even

to a complete localization failure.

In this paper we consider the problem of modeling a

mobile robot’s environment taking the dynamics of the

environment explicitly into account. We present a probabilis-

tic model that represents the occupancy of the space and

characterizes how this occupancy changes over time. The

explicit representation of how the occupancy changes in time

provides a better understanding of the environment that can

be used to improve the navigation performance of the robot.

In our approach, we describe the environment as a spatial

grid and use a hidden Markov model (HMM) to represent

the belief about the occupancy state and state transition

probabilities of each grid cell. Our model, called dynamic

occupancy grid, is a generalization of a standard occupancy

grid. Figure 1 illustrates the fundamental difference between

these two models: while occupancy grids characterize the

state of a cell as static, our representation explicitly models

state changes.
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Fig. 1. Bayesian network describing the dependencies between the states
of a cell c and observations z in standard and dynamic occupancy grids.

In addition to the explicit representation of the environ-

ment dynamics, the HMM framework provides efficient al-

gorithms for estimating the model parameters. This allows us

to learn the dynamics of the environment from observations

made by the robot. Furthermore, within the framework we

can efficiently estimate the occupancy state of a cell from the

observed evidence as it becomes available, making it possible

to adapt the representation continuously over time.

The contribution of this work is a mapping approach

that represents the occupancy of the space and explicitly

characterizes how this occupancy changes over time. We

describe our model and how the representation can be

updated as new observations become available. Furthermore,

we present two techniques, one offline and one online, to

estimate the state transition probabilities of the model from

observed data. We evaluate our approach in simulation and

using real-world data. The results demonstrate that our model

can represent dynamic environments more accurately than

standard occupancy grids. Furthermore, we show how the

explicit representation of the environment dynamics can be

used to improve the path planning performance of a robot.

II. RELATED WORK

Previous work on mapping dynamic environments can be

divided into two groups: approaches that filter out sensor

measurements caused by dynamic elements and approaches

that explicitly model aspects of the environment dynamics.

Filtering out sensor measurements is based on probabilistic

sensor models that identify the measurements which are

inconsistent with a reference model of the environment.

Fox et al. [1], for example, use an entropy gain filter. Bur-

gard et al. [2] propose a distance filter based on the expected

distance of a measurement. Hähnel et al. [3] combine the EM

algorithm and a sensor model that considers dynamic objects

to obtain accurate maps. In contrast to these approaches, our

work explicitly represents the dynamics of the environment

in the environment’s model itself instead of relying on sensor

models to represent them.

To model the dynamics of the environment, some authors

have proposed augmented representations of the environment



which explicitly represent dynamic objects. The approaches

of Anguelov et al. [4] and Biswas et al. [5], for example,

compute shape models of non-stationary objects. They create

maps at different points in time and compare those maps

using an EM-based algorithm to identify the parts of the

environment that change over time. Petrovskaya and Ng [6]

extend occupancy grid maps with parameterized models of

dynamic objects like doors and apply a Rao-Blackwellized

particle filter to estimate the pose of the robot and the state

of the dynamic objects. The above-mentioned approaches

are based on the identification and modeling of dynamic

objects in the environment. Our approach, in contrast, does

not depend on high level object models and considers only

the occupancy of the space at a lower level of abstraction. It

is similar in spirit to the spatial affordance maps proposed

by Luber et al. [7]. These maps represent space-dependent

occurrences of relevant people activity events in the context

of people tracking using Poisson processes. The fundamental

difference to our model is that we consider the occupancy of

the space and not people tracking events. For this reason our

approach relies on HMMs that are better suited than Poisson

processes to describe the behavior of the occupancy in a cell.

The problem of modeling the occupancy of the space

in dynamic environments at a low level of abstraction has

already been addressed in the past. Wolf and Sukhatme [8],

for example, propose a model that maintains two separate

occupancy grids, one for the static parts of the environment

and the other for the dynamic parts. Brechtel et al. [9]

describe a grid-based representation that in addition to the

occupancy state of the cells, also stores a velocity vector that

can be interpreted as the velocity of the object that occupies

the cell. These approaches, however, are rather focused on

the problem of tracking dynamic objects in the environment

than on representing the environment’s dynamics. Biber and

Duckett [10] propose a model that represents the environment

on multiple timescales simultaneously. For each timescale

a separate sample-based representation is maintained and

updated using the observations of the robot according to an

associated timescale parameter. Konolige and Bowman [11]

describe a vision-based system where camera views are

grouped into clusters that represent different persistent con-

figurations of the environment. Changes in the environment

are handled by deleting views based on a least-recently-used

principle. The fundamental difference between previous ap-

proaches and ours is that, besides being able to continuously

adapt to changes over time, our model provides an explicit

characterization of the dynamics of the environment.

III. DYNAMIC OCCUPANCY GRIDS

Occupancy grids (as they were introduced by Moravec

and Elfes [12]) are a regular tessellation of the space into

a number of rectangular cells. They store in each cell the

probability that the corresponding area of the environment is

occupied by an obstacle. To avoid a combinatorial explosion

of possible grid configurations, the approach assumes that

neighboring cells are independent from each other.

Fig. 2. State transition probabilities at the faculty’s parking lot. The left
and right images correspond to the distributions p(ct = free | ct−1 = free)
and p(ct = occ | ct−1 = occ) respectively. The darker the color, the larger
the probability for the occupancy to remain unchanged.

Occupancy grids rest on the assumption that the envi-

ronment is static. As mentioned above, they store for each

cell c of an equally spaced grid, the probability p(c) that

c is occupied by an obstacle. Thus far, there is no model

about how the occupancy changes over time. The approach

described in this paper overcomes this limitation by relying

on an HMM (see [13]) to explicitly represent both the belief

about the occupancy state and state transition probabilities

of each grid cell as illustrated in Figure 1.

An HMM requires the specification of a state transition,

an observation, and an initial state distribution. Let ct be a

discrete random variable that represents the occupancy state

of a cell c at time t. The initial state distribution or prior

p(ct=0) specifies the occupancy probability of a cell a the

initial time step t = 0 prior to any observation.

The state transition model p(ct | ct−1) describes how the

occupancy state of cell c changes between consecutive time

steps. We assume that the changes in the environment are

caused by a stationary process, that is, the state transition

probabilities are the same for all time steps t. These proba-

bilities are what allows us to explicitly characterize how the

occupancy of the space changes over time. Since we are as-

suming that a cell c is either free (free) or occupied (occ), the

state transition model can be specified using only two tran-

sition probabilities, namely p(ct = free | ct−1 = free) and

p(ct = occ | ct−1 = occ). Note that, by assuming a sta-

tionary process, these probabilities do not depend on the

absolute value of t. Figure 2 depicts transition probabilities

for the parking lot at our faculty. The darker the color,

the larger the probability for the corresponding occupancy

to remain unchanged. The figure clearly shows the parking

spaces, driving lanes, and static elements such as walls and

lampposts as having different dynamics. The “shadows” in

the upper left and lower right areas of the maps were mostly

caused by maximum range measurements being ignored.

The observation model p(z | c) represents the likelihood

of the observation z given the state of the cell c. The

observations correspond to measurements obtained with a

range sensor. In this paper, we consider only observations

obtained with a laser range scanner. The cells in the grid

that are covered by a laser beam are determined using

a ray-tracing operation. We consider two cases: the beam

is not a maximum range measurement and ends up in a

cell (a hit) or the beam covers a cell without ending in it

(a miss). Accordingly, the observation model can also be



specified using only two probabilities: p(z = hit | c = free)
and p(z = hit | c = occ). We additionally take into account

the situation where a cell is not observed at a given time step.

This is necessary since the transition model characterizes

state changes only for consecutive time steps. Explicitly

considering this no-observation case allows us to update

and estimate the parameters of the model using the HMM

framework directly without having to distinguish between

observations and no-observations. The concrete observation

probability for a no-observation does not affect the results

as long as the proportion between the two remaining proba-

bilities remains unchanged.

From the discussion above it can be seen that standard oc-

cupancy grids are a special case of dynamic occupancy grids

where the transition probabilities p(ct = free | ct−1 = free)
and p(ct = occ | ct−1 = occ) are 1 for all cells c.

A. Occupancy State Update

The update of the occupancy state of the cells in a dynamic

occupancy grid follows a Bayesian approach. The goal is to

estimate the belief or posterior distribution p(ct | z1:t) over

the current occupancy state ct of a cell given all the available

evidence z1:t up to time t. The update formula is:

p(ct | z1:t) =

η p(zt | ct)
∑

ct−1

p(ct | ct−1) p(ct−1 | z1:t−1) , (1)

where η is a normalization constant. Exploiting the Markov

assumptions in our HMM, this equation is obtained us-

ing Bayes’ rule with z1:t−1 as background knowledge and

applying the theorem of total probability on p(ct | z1:t−1)
conditioning on the state of the cell ct−1 at the previous

time step t−1. Equation (1) describes a recursive approach to
estimate the current state of a cell given a current observation

and the previous state estimate. This approach corresponds to

a discrete Bayes filter. The structure of our particular HMMs

allows for a simple and efficient implementation of this

approach. Note that the map update for standard occupancy

grids is a special case, where the sum in (1) is replaced by

the posterior p(ct | z1:t−1).
This posterior, corresponds to a prediction of the occu-

pancy state of the cell at time t based on the observations

up to time t − 1. Prediction can be considered as filtering

without the processing of evidence. By explicitly considering

no-observations as explained in the previous section, the

update formula can be used directly to estimate the future

state of a cell or estimate the current state of a cell that has

not been observed recently.

B. Parameter Estimation

As mentioned above, an HMM is characterized by the state

transition probabilities, the observation model, and the initial

state probabilities. We assume that the observation model

only depends on the sensor. Therefore it can be specified

beforehand and is the same for each HMM. We estimate the

remaining parameters using observations that are assumed to

correspond to the environment that is to be represented.

One of the most popular approaches for estimating the

parameters of an HMM is an instance of the expectation-

maximization (EM) algorithm. The basic idea is to iteratively

estimate the model parameters using the observations and the

parameters estimated in the previous iteration until the values

converge. Let θ̂(n) represent the parameters estimated at the

n-th iteration. The EM algorithm results in the following

re-estimation formula for the transition model of cell c:

p̂(ct = i | ct−1 = j)(n+1) =
∑T

τ=1 p(cτ−1 = i, cτ = j | z1:T , θ̂
(n))

∑T

τ=1 p(cτ−1 = i | z1:T , θ̂(n))
, (2)

where i, j ∈ {free, occ} and T is the length of the observa-

tion sequence used for estimating the parameters. Note that

the probabilities on the right-hand side are conditioned on the

observation sequence z1:T and the previous parameter esti-

mates θ̂(n). These probabilities can be efficiently computed

using the forward-backward procedure [13].

This, however, is an offline approach that requires storing

the complete observation sequence for each cell. An online

version of the algorithm was derived by Mongillo and

Deneve [14]. To calculate the transition probabilities in (2),

this algorithm only needs to store the sufficient statistics

φijh(t; θ̂) =
1

t

t∑

τ=1

δ(zτ , h)p(cτ−1 = i, cτ = j | z1:t, θ̂), (3)

where i, j ∈ {free, occ}, h ∈ {free, occ, no-observation}, and
δ(zτ , h) = 1 if zτ = h and 0 otherwise. Dropping the de-

pendence on θ̂, only 16 values have to be stored. The algo-

rithm uses φijh instead of the probabilities computed with

the forward-backward procedure to estimate the transition

model. Therefore it implements only a partial expectation

step, while the maximization step remains exact.

Besides being an online approach with small storage

requirements, the prefactor 1/t in (3) allows the algorithm to

handle non-stationary environment’s dynamics. Additionally,

the algorithm updates with each observation the occupancy

state according to (1). These properties make the online

version of the EM algorithm an attractive alternative for

systems operating over extended periods of time.

IV. EXPERIMENTAL EVALUATION

We implemented our proposed model and tested it in

simulation and using data obtained with a real robot. The

goal of the experiments was to evaluate the quality and

usefulness of the representation.

A. Accuracy of the Representation

In a first experiment we evaluated the accuracy of our

proposed representation of the environment. We steered a

MobileRobots Powerbot equipped with a SICK LMS laser

range finder through the faculty’s parking lot. We performed

a run every full hour from 7am until 6pm during one day.

The range data obtained from the twelve runs (data sets d1
through d12) corresponded to twelve different configurations

of the parked cars, including an almost empty parking lot



Fig. 3. Comparison between dynamic and standard occupancy grids. Shown
are the ground truth (top), dynamic occupancy grid (middle), and standard
occupancy grid (bottom) maps at two different points in time.

(data set d1) and a relatively occupied one (data set d10).
We used a SLAM approach [15] to correct the odometry

of the robot and obtain a good estimate of its pose. Range

measurements were sampled at about 1Hz, and the trajectory

and velocity of the robot during each run were approximately

the same to try to avoid a bias in the complete data set.

Figure 3 shows a qualitative comparison between dynamic

and standard occupancy grids for the parking lot data set.

The online EM approach was used to build the dynamic

occupancy grid. We assumed that the parking lot did not

change considerably during a run and used the occupancy

grids obtained from every data set with the above-mentioned

SLAM approach as ground truth. In the figure, the maps on

the left column show the grids after the third run, that is, after

integrating data sets d1 through d3. The maps on the right

show the grids at the end of the last run, after integrating data

sets d1 through d12. As can be seen, the dynamic occupancy

grid readily adapts to the changes in the parking lot. Thus it

constitutes a better representation of the environment at any

point in time. Additionally, dynamic occupancy grids provide

information about the probable occupancy of areas that have

not been recently observed. This appears in the grids in the

figure (specially the right column) as light gray areas in the

places where the cars most frequently park.

To quantitatively evaluate the accuracy of our represen-

tation we computed its accuracy with respect to the ground

truth maps. In this context, accuracy is defined as the number

of correctly classified cells divided by the number of all clas-

sified cells. A cell c was classified as occupied if p(c) > 0.5
and as free if p(c) < 0.5. The remaining cells were not

taken into account. Figure 4 compares the accuracy of a
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Fig. 5. Accuracy of standard and dynamic occupancy grids for different
configurations of dynamic cells in a simulated grid map. Left: 5% dynamic
cells and 5% state change probability. Right: 25% dynamic cells and 25%
state change probability

standard occupancy grid (static) against that of the dynamic

occupancy grid whose parameters where estimated online

(dynamic online). We additionally consider the case when

the parameters where estimated offline (dynamic offline).

Figure 2 depicts the obtained parameters. Figure 4 plots the

accuracy of the grids over time for the parking lot data.

After each configuration change, the accuracy of the dynamic

occupancy grids quickly starts to increase as the map adapts

to the new configuration. Standard occupancy grids adapt

relatively quickly at first, but their adaptability decreases with

the number of observations already integrated into the map.

B. Effects of the Environment’s Dynamics

The accuracy of dynamic occupancy grids and their ad-

vantage over standard occupancy grids strongly depends on

the environment’s dynamics. In the parking lot environment

of the previous experiment, only a small number of cells

were dynamic (∼ 3%) and only few changes took place.

This explains why the standard occupancy grids in Figure 3

corresponding respectively to configurations 3 and 12 in

Figure 4 have high accuracy values even though they are

evidently inaccurate.

The goal of this experiment was to evaluate the accuracy

of our proposed representation for different environment

dynamics. In the context of occupancy grids, the dynamics of

the environment are characterized by the number of dynamic

cells and their state change probabilities. We used a 50× 50
grid map and changed the fraction of dynamic cells and state

change probabilities to generate artificial data for different

environment dynamics. We estimated the state transition

probabilities of the dynamic occupancy grid using both the

online and offline approaches and compared the resulting

model accuracy against that of a standard occupancy grid

for different data sets. Figure 5 shows the results for two
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Fig. 6. Accuracy of the parameters obtained with the online and offline
approaches when the environment’s dynamics change. The left and right
plots correspond to changes after 100 and 300 time steps respectively.

different settings: one relatively static and another more

dynamic. The curves correspond to the mean and standard

deviation for 10 repetitions of the experiment. As can be

seen in the figure, dynamic occupancy grids represent the

environment more accurately than standard occupancy grids.

Nevertheless, the more static the environment, the smaller the

difference between the accuracies. This experiment shows

that even for moderately dynamic environments dynamic

occupancy grids outperform standard occupancy grids.

C. Parameter Estimation

As can be seen in Figure 5, the offline approach produces

more accurate results at first, but the difference between the

results of the two approaches decreases over time. This sug-

gests that, regarding the accuracy of the representation over

time, both parameter estimation techniques are comparable.

Although the offline approach produces good results from

the beginning, it requires storing all observations for each

cell in the grid for an a priori training phase. This is a

considerable disadvantage since it limits the amount of data

that can be used for training, the resolution of the grid, or the

size of the environment that can be represented. Furthermore,

being an offline approach, once the parameters have been

estimated, they remain fixed. This makes the offline approach

inappropriate for environments where the assumption that the

environment dynamics are stationary does not hold. In con-

trast, the online approach continually adapts its parameters

as new observations become available. Figure 6 illustrates

the effects on the accuracy of the model parameters obtained

with the two approaches for 5% dynamic cells and 5% state

change probability (left plot in Figure 5) in the case that

the environment dynamics change. For the experiment, the

change consisted in selecting a new set of dynamic and static

cells. The number of dynamic cells and their state change

probabilities remained the same, but we obtained similar

results when these parameters where changed as well. As

can be seen in the figure, using the online approach, the

accuracy of the model quickly returns to its value before the

change. This is the result of the model parameters adapting

to the new environment dynamics. The accuracy of the

model whose parameters where estimated offline drops when

the dynamics change, and remains low. We also evaluated

the behavior of standard occupancy grids. As expected, the

number of observations needed by a standard occupancy

grid to correctly represent the occupancy of the new static

cells is approximately the same as the number of previous

�
��

Fig. 7. Experimental setup for the path planning experiment. The task
consists in navigating between A and B. At C we added a virtual door that
changed its state over time.

observations. Note that the dynamic cells remain inaccurately

represented.

D. Path Planning Using Dynamic Occupancy Grids

In the previous experiments we showed that dynamic

occupancy grids readily adapt to changes in the environment.

The goal of this experiment was to show that this adaptability

can be used to improve the path planning performance of a

robot. The experiment was performed in simulation within

the environment shown in Figure 7 corresponding to part

of the Intel Research Lab in Seattle. The task of the robot

was to navigate between positions A and B. We added a

virtual door at position C along the shortest path between A
and B. The state of the door changed each time step with a

probability of 0.001. To generate the a priori map needed for

path planning and obtain data for estimating the parameters

of the dynamic occupancy grid, we steered the robot through

the relevant parts of the environment in an offline phase.

We then performed 20 repetitions of the experiment. In

every repetition, the robot executed 20 runs from one position

to the other. The A∗ algorithm was used for path planning

and re-planning was performed at every time step. The cost

of a path was computed as the sum of the traversal costs for

each cell in the path. The traversal cost was set to 1 for free

cells and infinity for occupied cells. The cells in the grid

were classified as described in the first experiment.

Since numeric performance measures, like traveled dis-

tance or execution time, largely depend on the particular

environment used for the experiment, we opted for a more

qualitative evaluation and classified the trajectories followed

by the robot into five types:

1) short: the robot followed the shortest path.

2) long: the robot followed the longer path. In this case,

following the longer path was the optimal choice.

3) indirect long: the robot tried to follow the shortest

path first, found the door closed, turned around, and finally

followed the longer path. In this case, following the longer

path from the beginning would have been the optimal choice.

4) unnecessary indirect long: as in the previous case, the

robot tried to follow the shortest path first, found the door

closed, turned around, and finally followed the longer path.

In this case, however, continuing to follow the shortest path

would have been the optimal choice since the door would

have opened for the robot to pass.

5) unnecessary direct long: the robot followed the longer

path. No attempt was made to follow the shortest path. In this

case, following the shortest path from the beginning would

have been the optimal choice.



TABLE I

OCCURRENCES OF TRAJECTORY TYPES FOR DIFFERENT OCCUPANCY GRIDS AND PARAMETER ESTIMATION APPROACHES.

values in % static dynamic online dynamic offline random optimal

short 11.25 (±16.35) 25.50 (±22.24) 40.75 (±20.15) 24.25 (±10.17) 40.50 (±19.99)
long 35.75 (±14.80) 27.00 (±18.38) 15.00 (±9.03) 24.25 (±13.70) 17.25 (±9.39)

indirect long 4.75 (±1.12) 19.50 (±12.24) 30.50 (±8.72) 23.50 (±9.33) 27.75 (±9.24)
unnecessary indirect long 0.25 (±1.12) 1.50 (±2.86) 2.75 (±3.02) 1.50 (±2.86) 2.25 (±3.02)
unnecessary direct long 48.00 (±16.89) 26.50 (±21.34) 11.00 (±5.28) 26.50 (±13.19) 12.25 (±6.38)

accuracy 47.00 (±16.89) 52.50 (±16.10) 55.75 (±13.21) 48.50 (±10.14) 57.75 (±14.09)

The values in Table I correspond to the occurrences (aver-

age and standard deviation) of the different trajectory types

during the 20 repetitions of the experiment. We compared the

path planning performance when using a standard occupancy

grid (static), a dynamic occupancy grid whose parameters

where estimated online (dynamic online), and a dynamic

occupancy grid whose parameters where estimated offline

(dynamic offline). The number of occurrences of short and

long trajectories in the table indicate that the information

about the state change probability of the door, represented

in the dynamic occupancy grid, leads to better path planning

performances. Once the door is represented as closed in a

standard occupancy grid, the robot never attempts to follow

the shortest path again. This, in turn, prevents the robot from

updating the cells corresponding to the door. This can be

seen in the table by the small number of short, indirect long,

and unnecessary indirect long trajectories and explains the

large number of long trajectories. Using dynamic occupancy

grids, on the other hand, the state of the (unobserved) door

in the map changes over time according to the learned state

transition probabilities. Whenever the cells corresponding to

the door are classified as free, the robot attempts to follow

the shortest path.

We additionally implemented two baseline path planning

policies for comparison. In the first (random) the robot, when

in A or B, randomly chooses between the two possible

paths and never replans while on the way. In the second

(optimal) the robot has perfect knowledge about the state

change probability of the door and based on its internal belief

about the state of the door chooses the expected optimal

path. The percentage of runs in which the optimal path

was followed (accuracy) by this robot is an empirical upper

bound for the accuracy achievable in our experimental setup.

One sided t-tests show that the accuracy for dynamic offline

was significantly higher than those for static and random on

a 5% level. Between the accuracies for dynamic offline and

optimal we could not find a significant difference.

V. CONCLUSIONS

In this paper we introduced a novel approach to occupancy

grid mapping that explicitly represents how the occupancy

of individual cells changes over time. Our model is a

generalization of standard occupancy grids. It applies HMMs

to update the belief about the occupancy state of each cell

according to the dynamics of the environment. We described

how our maps can be updated as new observations become

available. We furthermore introduced an offline and an online

technique to estimate the parameters of the model from

observed data. We evaluated our approach in simulation and

using real-world data. The results demonstrate that our model

can represent dynamic environments more accurately than

standard occupancy grids. We also demonstrated that using

our model can improve the path planning performance of

a robot. The representation and online parameter estimation

approach presented in this paper can, in principle, also be

combined with a Rao-Blackwellized particle filter [15] to

perform SLAM, thus enabling long-term operation of mobile

robots in dynamic environments.
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