
Identification of Critical Variables using an
FPGA-based Fault Injection Framework

Andreas Riefert Jörg Müller Matthias Sauer Wolfram Burgard Bernd Becker

Albert-Ludwigs-University Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ riefert ∣ muellerj ∣ sauerm ∣ burgard ∣ becker }@informatik.uni-freiburg.de

Abstract— The shrinking nanometer technologies
of modern microprocessors and the aggressive supply
voltage down-scaling drastically increase the risk of soft
errors. In order to tackle this problem, we propose an
FPGA-based fault injection framework which is able to
identify the most critical parts of a system running in its
native environment. Experimental results demonstrate,
that our approach significantly reduces the number of
critical calculation errors in the evaluated applications.

I. Introduction

In recent research, single-event upsets (SEU) have been
shown to occur in modern memory elements with a
rate of about 5000 FIT per Mbit [1].This induces upset
events at an interval of days or even hours in modern
microprocessors.

On the one hand, there exist several hardware and soft-
ware protection schemes to deal with SEUs and single-event
transients (SETs). However, applying these techniques to
all memory elements of a circuit or to an entire software
application, respectively, results in substantially higher
costs or drastically reduced performance. On the other
hand, modern microprocessors implicitly mask a lot of
the transient faults, i.e., many faults have no effect [2].
Additionally, certain software applications already partially
imply fault tolerance.

In this paper we present a fault injection framework,
which is able to identify the most critical registers of a
given microprocessor and the most critical variables of
an arbitrary application. Thereby, we implemented an
efficient and lightweight protection scheme by combining
the implicit fault tolerance of applications with explicit
fault detection and correction techniques.

We demonstrate the applicability of our approach in
experiments with an efficient error correction mechanism
applied to the identified critical variables of a state esti-
mation application.

The rest of the paper is organized as follows: Sections II
and III describe our fault injection framework and the
software applications under test. Section IV presents our
first experimental results and Section V concludes the
paper.

II. System Description

Our fault injection framework is an extension of [3].
The novel contribution comprises the identification of the
critical software variables. The flow described in this section
works as follows: First fault injection experiments are
executed, then the faulty runs are used to identify the
critical variables, which are finally protected by a software
approach.

The framework consists of a Generic Experiment Man-
ager and an FPGA-based fault injector. The Generic
Experiment Manager is executed on a desktop PC and
is responsible for running the experiments. On the FPGA-
side, faults are injected into a target processor by the fault
injection module.

The experiment manager generates a list of faults to
be injected and passes them to the fault injector on the
FPGA. It transmits the selected application and the input
data and starts the execution on the target processor. As
soon as the target processor returns the application results,
they are evaluated by the Generic Experiment Manager.
If the target processor does not respond within a certain
time, we regard this as a Total System Failure (TSF) and
terminate the run.

The fault injection into the registers of the target
processor is implemented by duplicating all registers and
connecting these new Shadow Registers to a scan chain.
This enables us to shift a fault to an arbitrary register.

Experimental evaluation shows that faults in the control
structure and memory management unit of the target pro-
cessor cause a lot of TSFs and calculation errors. Possible
solutions are the extension of registers with ECC [4] or the
use of Dual Interlocked CEll flip flops (DICE) [5]. These
protection schemes induce higher chip costs, thus it is not
practical to protect all registers. As faults in the register
file lead to only a few TSFs, we propose to protect the
contained registers by software redundancy.

As a protection of the whole application code would
result in a substantial performance overhead, we identify
the most critical parts of the application under test, i.e.,
the most critical variables with respect to the resulting
calculation error. Therefor we record the call stack of the
program at the time of the fault injection. This allows



us to determine all source code statements and variables,
which were probably affected by the fault. By analyzing
the faulty experiment runs, we created a ranking of critical
variables.

To experimentally show the significance of the identified
critical variables, we use a basic error correction and error
detection scheme for these variables, similar to [6]. All corre-
sponding computations are duplicated. A check mechanism,
implemented with seven assembler instructions, compares
the results and, if necessary, repeats the computations.

III. Bayes Filter State Estimation

In the experiments presented in this paper, we consider
the application of estimating the three-dimensional orienta-
tion x of an inertial measurement unit (IMU). This software
application is designed for operation on noisy sensor data
and therefore partially implies tolerance to transient faults.
We apply the Bayesian filtering scheme [7]. In particular,
we recursively estimate the posterior probability density
p(xt ∣ z1∶t,u1∶t) of the state xt at time t given all the
noisy data, i.e., the corrective measurement data z1∶t and
the predictive data u1∶t up to time t. We evaluate two
implementations of the Bayesian filtering scheme: the
extended Kalman filter (EKF) [8] and the particle filter [9].

IV. Experimental Results

A. Experimental Setup

In our experiments we use the ourMIPS processor [10],
[11], which runs on Altera Cyclone II FPGA starter
boards [12]. However, our approach could be also applied to
other microprocessors. We examined two filters for sensor
data fusion namely the EKF and the particle filter as
described in Section III. The input data was collected with
an IMU attached to a miniature blimp robot which was
observed by an accurate optical motion capture system for
position and orientation ground truth information. Under
fault injection, we consider the root mean square error
(RMSE) of a particular run as a critical error if it is more
than 0.5○ higher than the fault free RMSE.

To identify the critical variables of an application we first
execute 5000 runs, where we inject one fault per run. This
gives us the required data for our analysis as described
in Section II. In a second step, we implement the checker
mechanism (Section II) for the identified critical variables.
We run several experiments, where we inject faults into
all registers of the register file except five registers, which
are associated with the control structure of the processor.
This serves as a validation of the previous step.

B. Critical Variables

Figure 1 shows the ranking of critical variables for the
EKF, which was created considering only the critical errors.
This approach is reasonable, as the considered applications
calculate a state estimate from noisy measurement data,
which usually can be used, even if it slightly deviates from
the fault free computation result.

correction_acc / tmp2
correction_mag / tmp2

correction_acc / mu
prediction / tmp1

correction_mag / z_horizontal_1
prediction / V

prediction / tmp2
correction_acc / K

correction_acc / abs
correction_acc / tmp3

0 2 4 6 8 10 12 14

number of critical errors

Figure 1. The critical variable statistics created counting only the
critical errors of the EKF in 5000 runs. Each bar is labeled with the
function the variable appears in and the variable itself.

without checker

with checker (3 variables)

with checker (7 variables)

0 10 20 30 40 50 60 70 80 90

number of (all) errors
number of critical errors

Figure 2. Comparison of different protection levels of the EKF
application in 7000 runs.

The evaluation of the particle filter indicates a sub-
stantial fault tolerance as the algorithm did not produce
any critical calculation errors within 7000 runs. This is
reasonable as the particle filter comprises only a few critical
control parts and therefore is robust to the injected faults.

C. Experimental Evaluation

We evaluated our approach by protecting the 3 most
critical and the 7 most critical variables according to the
statistics of the critical errors. The first version increases
the runtime by 18%, the second one by 27%. Figure 2
shows the results of the fault injection experiments of the
unprotected version compared to that of our two protected
versions of the EKF. The number of all calculation errors
continuously decreases as the protection level increases.
The number of critical errors is decreased from nine in the
unprotected case down to one in both protected versions.
This is reasonable as the critical variables with the ranks
4 to 7 still produce a certain amount of calculation errors
with respect to all deviations, but only a small number of
critical errors (see Figure 1). According to our experimental
results, the protection of the 3 most critical variables is
sufficient in order to reduce the critical calculation errors
to a tolerable amount. As the underlying distribution for
the number of errors is a binomial distribution, we can test
for the improvement using Fisher’s exact test. At a 5%
confidence level, both versions with software checker have a
significantly lower error rate than the unprotected version.



Therefore, we have significantly increased the reliability
of our application by protecting only a small part of the
source code.

V. Conclusions

In this paper, we presented an FPGA-based fault injec-
tion framework which enables a user to identify the most
critical registers of an entire microprocessor and the most
critical variables of the executed software application. Our
experiments show, that the criticality of different parts of
a system with regard to system crashes and calculation
errors can substantially vary. Therefore protecting only the
identified critical parts of a system allows to implement a
lightweight and efficient error correction scheme. As our
approach is general, it could be easily applied to other
microprocessors or applications.

Acknowledgements

Parts of this work were supported by the German
Research Foundation (DFG) under grant GRK 1103.

References

[1] Soft Errors in Electronic Memory - A White Paper.
http://www.tezzaron.com/about/papers/soft errors 1 -
1 secure.pdf.

[2] N. Wang, J. Quek, T. Rafacz, and S. Patel, “Characterizing
the effects of transient faults on a high-performance processor
pipeline,” in International Conference on Dependable Systems
and Networks, pp. 61–70, 2004.

[3] M. Sauer, V. Tomashevich, J. Müller, M. Lewis, A. Spilla, I. Po-
lian, B. Becker, and W. Burgard, “An FPGA-based framework
for run-time injection and analysis of soft errors in microproces-
sors,” in International On-Line Testing Symposium, pp. 182–185,
2011.

[4] A. Bouajila, J. Zeppenfeld, W. Stechele, and A. Herkersdorf,
“An architecture and an FPGA prototype of a reliable processor
pipeline towards multiple soft- and timing errors,” in IEEE In-
ternational Symposium on Design and Diagnostics of Electronic
Circuits & Systems, pp. 225–230, 2011.

[5] A. Maru, H. Shindou, T. Ebihara, A. Makihara, T. Hirao, and
S. Kuboyama, “DICE-based flip-flop with SET pulse discrimi-
nator on a 90 nm bulk CMOS process,” in IEEE Transactions
on Nuclear Science, pp. 3602–3608, 2010.

[6] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante,
“Soft-error detection through software fault-tolerance techniques,”
in International Symposium on Defect and Fault Tolerance in
VLSI Systems, pp. 210–218, 1999.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT
Press, 2005.

[8] Y. Bar-Shalom, T. Kirubarajan, and X. Li, Estimation with
Applications to Tracking and Navigation. John Wiley & Sons,
Inc., 2002.

[9] F. Dellaert, D. Fox, W. Burgard, and W. Thrun, “Monte carlo
localization for mobile robots,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), pp. 1322–1328, 1999.

[10] B. Becker and P. Molitor, Technische Informatik: Eine
einführende Darstellung. Oldenbourg Wissenschaftsverlag, 2008.

[11] MIPS32 Architecture For Programmers Volume II: The MIPS32
Instruction Set, version 2.0, june 9, 2003 ed., 2003.

[12] Cyclone II FPGA Starter Development Kit.
http://www.altera.com/products/devkits/altera/kit-cyc2-
2C20N.html.


