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Abstract— The shrinking nanometer technologies
of modern microprocessors and the aggressive supply
voltage down-scaling drastically increase the risk of
soft errors. In order to cope with this risk efficiently,
selective hardware and software protection schemes are
applied. In this paper, we propose an FPGA-based
fault injection framework which is able to identify
the most critical registers of an entire microprocessor.
Furthermore, our framework identifies critical variables
in the source code of an arbitrary application running in
its native environment. We verify the feasibility and rel-
evance of our approach by implementing a lightweight
and efficient error correction mechanism protecting
only the most critical parts of the system. Experimental
results with state estimation applications demonstrate
a significantly reduced number of critical calculation
errors caused by faults injected into the processor.

I. Introduction

The main source of transient faults in modern digital
circuits are cosmic rays or charged α-particles. These
phenomena cause local electric noise which can lead to an
inversion of the logical value on a line or storage element.
If such an event takes place in a storing element, the fault
is saved and persists in the circuit until the corresponding
memory element is overwritten again [1].

In recent research, single-event upsets (SEU) have been
shown to occur in modern memory elements with a rate of
about 5000 FIT per Mbit [2]. As modern microprocessors
tend to have more and more memory bits, e.g., larger
caches, this induces upset events at an interval of days or
even hours. Obviously, such error rates cannot be neglected,
especially in safety-critical applications.

On the one hand, there exist several hardware and
software protection schemes to deal with SEUs and single-
event transients (SETs). In hardware, error correcting
codes (ECC) and additional registers with a delayed clock
have been shown to reliably protect a microprocessor [3].
On a lower level, DICE-based flip-flops with an SET pulse
discriminator are also able to tolerate SEUs and SETs [4].
Software approaches like SWIFT detect transient faults
by extending the original program with new validating
instructions on the assembler level [5]. However, applying
these techniques to all memory elements of a circuit or to
an entire software application, respectively, results in sub-
stantially higher costs or drastically reduced performance.

On the other hand, modern microprocessors implicitly
mask a lot of the transient faults, i.e., many faults have
no effect [6]. Often, plenty of the available registers of a
processor are only rarely used by the compiler. Additionally,
certain software applications already partially imply fault
tolerance. For example, the state estimation techniques
applied in many robotic systems fuse noisy measurement
data to a robust state estimate [7] and are able to tolerate
some faults in the data.

In this paper we present a fault injection framework,
which allows to identify the critical parts of a system in its
real environment. Thereby, we can implement efficient and
lightweight protection schemes by combining the implicit
fault tolerance of applications with explicit fault detection
and correction techniques. The focus is on the reduction
of the number of silent data corruptions, as they are hard
to detect.

Our approach is able to automatically identify the most
critical registers of a given microprocessor and the most
critical variables of an arbitrary application. In particular,
our framework tracks a fault from its injection into a
register up to the source code, which is currently executed.
We demonstrate the applicability of our approach in experi-
ments with an efficient error correction mechanism applied
to the identified critical variables of a state estimation
application.

The rest of the paper is organized as follows: The related
work is discussed in Section II. Sections III and IV describe
our fault injection framework and the software applications
under test. Section V presents our first experimental results
and Section VI concludes the paper.

II. Related Work

A significant amount of research has been carried out
on studying the effects of real soft errors [1], [8] and their
simulation and emulation. Bouajila et al. [3] investigate
the Leon SPARC V8 processor. The fault injection is
simulated in ModelSim and emulated on an FPGA with
a linear feedback shift register (LFSR). The Very Long
Instruction Word processor r-VEX is implemented on an
FPGA and faults are injected into the instruction register,
the register file and the SRAM of the processor by Sterpone
et al. [9]. Sartori et al. [10] emulate soft errors by utilizing
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Figure 1. System overview

an FPGA, but faults are only injected into the output of
the floating point unit of a Leon 3 processor. In contrast
to the techniques mentioned above, our framework allows
the user to enable or disable the fault injection for every
individual register of the examined microprocessor.

There are several approaches, that identify critical parts
of a system using analytical methods instead of fault
injection experiments. Seshia et al. [11] proposed to use
formal verification tools to determine, whether certain
latches in a circuit have to be protected or not. A common
method for estimating the criticality of different parts of
a system is used by Bergaoui et al. [12]. They focus on
determining the criticality of the registers in the register
file of a Leon 2 processor. Criteria like lifetime, the number
of functional dependencies or conditional branches are
used for each register to calculate an overall value, which
indicates the criticality of the corresponding register. Nakka
et al. [13] utilize this idea in order to identify the critical
variables in an application with regard to a failure of the
system. Finally, Portela et al. [14] evaluate the efficiency
of an algorithm which adds checkpoints in the software
application in order to detect faults in the control flow.
Additionally, their algorithm tries to protect only the
critical parts of the application to reduce the runtime
overhead.

Compared to these approaches, our method emulates
the effect of transient faults in the application running in
its natural environment. Thereby, it tracks each injected
fault to the currently executed source code. This allows
us to associate faults in specific variables with calculation
errors in the application result and to evaluate arbitrary
complex algorithms.

III. System Description

Our fault injection framework is an extension of [15].
The novel contribution comprises the identification of the
critical software variables.

The flow described in this section works as follows: First
fault injection experiments are executed, then the faulty

runs are used to identify the critical variables, which are
finally protected by a software approach.

Figure 1 gives an overview over the fault injection
framework. The Generic Experiment Manager is executed
on a desktop PC and is responsible for running the
experiments which are scheduled in the database. On the
FPGA-side, faults are injected into the target processor by
the fault injection module.

The Generic Experiment Manager is responsible for
the initialization of the experiments and the evaluation
of their results. Thereby, the cross-compiled application
as well as the input data and the output data evaluation
library are obtained from the database, so that the Generic
Experiment Manager can run arbitrary applications.

An experiment consists of multiple runs with the same
parameters. A user can specify the examined application
and several parameters for the fault injection like the fault
rate or the registers where faults should be injected. The
experiment manager generates a list of faults to be injected
and passes them to the fault injector on the FPGA. It
transmits the selected application and the input data and
starts the execution on the target processor. As soon as
the target processor returns the application results, they
are evaluated by the Generic Experiment Manager. If the
target processor does not respond within a certain time, we
regard this as a Total System Failure (TSF) and terminate
the run.

All applications and their corresponding evaluation func-
tions are stored in dynamic linked libraries. This facilitates
the simple addition of new applications. Furthermore, the
experiments and their results are stored in the database,
so that it is possible to run the experiments in parallel on
several computers and FPGAs.

In our experiments, we use the ourMIPS processor [16],
which is based on the MIPS instruction set [17]. However,
our approach could be also applied to other microproces-
sors. For convenience, we additionally implemented an
ourMIPS simulator, on which the user can execute the
applications to ensure their correct functionality.



A. Fault Injection Into Registers

The fault injector on the FPGA stores the received fault
injection pattern from the Generic Experiment Manager.
Each fault in this list consists of a fault injection time and
a register ID. The injection time specifies the point of time
in clock cycles to inject the fault whereas the register ID
determines a certain bit of a register as the fault location.
In order to enable the fault injection into the registers of
the ourMIPS we duplicate each register of the processor.
These new Shadow Registers are connected to a scan chain.
This scan chain allows the fault injector to shift a fault,
which is represented by a logical ’1’, to the desired register
bit. If the target register is written in the clock cycle of the
fault injection, we invert the new value at the specified bit
and write this manipulated value into the register. If not,
we analogously manipulate the current value of the register
and store it. This fault model is reasonable because the
wrong logical value induced by a SEU can get stored in a
register until it is overwritten with a new value.

With the tools presented so far it is possible to inject
faults into certain modules or registers of the ourMIPS.
This allows us to experimentally evaluate the criticality
of these components with regard to TSFs and calculation
errors in the output data.

The ourMIPS consists of four main modules: the control
structure, the memory management unit, the ALU and
the register file. As previous experiments show, faults in
the control structure and in the memory management
unit cause a lot of TSFs and calculation errors. This is
not surprising since these modules control the processor,
the program and the data memory, respectively. Registers
contained in these critical modules, like the program
counter, require protection in order to increase the overall
processor reliability.

Possible solutions are the extension of registers with
ECC [3] or the use of Dual Interlocked CEll flip flops
(DICE) [4]. These protection schemes induce higher chip
costs, thus it is not practical to protect all registers. As
our experiments show, faults in the register file result only
in a few TSFs. Five of the registers are responsible for
most of them as they are also associated with the control
structure of the processor, e.g., the stack pointer. The
other 27 registers are mainly correlated with the data
flow. Therefore we propose to protect them selectively by
software redundancy.

B. Identification of Critical Variables

As a protection of the whole application code would
result in a substantial performance overhead, we identify
the most critical parts of the application under test, i.e.,
the most critical variables with respect to the resulting
calculation error. For this purpose we trace a fault from
its injection back to the source code which is currently
executed, the variable which is currently calculated respec-
tively.

First, we have to determine the call stack of the applica-
tion under test at the time of the fault injection. We need
the complete call stack and not only the current program
counter value for a simple reason: Assume two variables
’a’ and ’b’, whose values are both calculated by a function
’f’ and a fault, which is injected during the execution of
’f’. If we want to know which variable was affected by
the faulty computation of ’f’ we need to know whether it
was “called” by ’a’ or ’b’. Since ’f’ itself could call other
functions, we have to keep track of the whole call stack.
For this purpose we extend the ourMIPS with a lookup
table which is supposed to store the call stack for each
injected fault.

If we encounter a function call, which is indicated by
a Jump and link instruction in the MIPS instruction
set, we store the corresponding program counter value
in the lookup table. In case a function returns without a
fault being injected, we delete the corresponding program
counter value from the lookup table. If a fault is injected,
we also write the current program counter value into
the lookup table and add a stop sign. This is necessary
to separate the call stacks of different faults. After the
application under test is completed and has returned its
results, we read all values from the lookup table.

In our fault tracing procedure, we associate each program
counter value from the call stack with its corresponding
C statement in the source code of the application under
test. For this purpose we utilize the tool objdump, which
is part of the GNU Binutils. This tool is able to create an
interleaved representation of the C source code and the
corresponding assembler instructions. As the applications
under test commonly consist of several source files, we have
to create a linker map, which allows us to determine the
position of each source file in the executable file. Hereby,
we are able to associate each stored program counter value
with the appropriate C statement. In the next step we have
to check, whether the found C statement assigns a new
value to a variable. This is the case when the statement
either contains an assignment operator or a function, whose
parameters include a variable that is passed per reference
and modified inside the function.

The described mechanism is able to trace an injected
fault back to a software variable where the possibly faulty
value is stored. To identify the most critical variables of
our application under test, we execute several runs with
one injected fault each. If a run returns a faulty result,
we identify all the variables that were modified during all
the steps of the call stack. We store these variables in a
global list together with a counter. Each time a variable is
encountered, its counter is increased. Consequently with a
reasonably sized set of faulty runs we are able to create a
ranking of variables with respect to their criticality. Here,
we define the criticality as the number of faulty runs the
variable was associated with.

Figure 2 illustrates the described flow with a small source
code example, which was extracted from our evaluated



C code
main() { //program entry point

...
correction_acc(acc_x, acc_y, acc_z); //function call

correction_acc(float x, float y, float z) {
...
multtransposed(tmp3, H, tmp2); //function call

multtransposed(float **M, float **N, float **T){
...

T[i][j] += M[i][k]*N[j][k];
Assembler code
...
addu$v0,$v1,$a0
...

...
} //function return
...

} //function return
...

} //program done

fault in $v1

Figure 2. Example for the evaluation of an injected fault

application. The application starts its execution in the main
function, which makes a function call to correction_acc.
This function calls multtransposed, which contains a C
statement that calculates the values of the matrix T. This
statement, like all other C statements in the source code,
is realized by a set of assembler instructions. One of these
instructions is shown in Figure 2. It simply adds the values
of registers $v1 and $a0 and stores the result in $v0. If we
assume, that a fault is injected in $v1 during the execution
of this instruction, consequently a faulty value is stored in
$v0. This implicates a faulty value for the corresponding
entry of T, which is why we add T to our global list of
critical variables. Now we go one step up in the call stack
to the function multtransposed. The value of tmp2 is
modified by this function and therefore this variable is also
added to the global list. As the functions correction_acc
and main do not modify any values of their arguments,
our algorithm returns a list with the variables tmp2 and T,
each with a counter value of one.

C. Fault Correction by Software Redundancy

To experimentally show the significance of the identified
critical variables, we use a basic error correction scheme
for these variables, similar to [18]. Firstly, we duplicate
each considered variable and its computations in the C
source code. Secondly, we check each of the duplicated
computations for equality. Upon detection of an inequality
the corresponding computations have to be repeated. The
check mechanism is implemented with only seven assembler
instructions, which load the two computed values, compare
them and jump according to the result. In this way,
we reduce the performance overhead and, even more
important, reduce the probability of a fault hitting the
checker itself.

As a more sophisticated and more efficient approach, an
application engineer could use the variable ranking together
with his expert knowledge to create an application-specific
protection scheme.

IV. Bayes Filter State Estimation

In the experiments presented in this paper, we consider
the application of estimating the three-dimensional ori-
entation x of an inertial measurement unit (IMU). This
software application is designed for operation on noisy
sensor data and therefore partially implies tolerance to
transient faults. For robust fusion of the measurement data
of the sensors the IMU is equipped with, we apply the
Bayesian filtering scheme [7]. In particular, we recursively
estimate the posterior probability density

p(xt ∣ z1∶t,u1∶t) (1)

of the state xt at time t given all the noisy data, i.e., the
corrective measurement data z1∶t and the predictive data
u1∶t up to time t.

In our application, we represent the three-dimensional
orientation by a unit quaternion. The predictive data
are the measurements of the three-dimensional rotational
velocity u of the gyroscope. The corrective measurements
are that of the accelerometer and the magnetometer similar
to [19]. We assume an application for orientation estimation
in which the translational accelerations of the IMU are low
compared to the gravity and can be neglected. Under this
assumption, the acceleration measurements correspond to
the gravity vector and can be used in a straight forward
way to correct the estimated tilt of the IMU. In addition,
the heading estimate is corrected using the horizontal
projection of the magnetic field measurements, which
correspond to the earth’s magnetic field.

The Bayesian filtering scheme can be implemented in
several different ways [7]. In the following, we will describe
the extended Kalman filter and the particle filter.

A. Extended Kalman Filter

The extended Kalman filter (EKF) [20] is an efficient
implementation of the Bayes filter which assumes Gaussian
distributed uncertainty. It linearizes the system dynamics
in a first order Taylor expansion and applies the recursive
Kalman filter update, which exactly computes the state
estimate of Gaussian linear systems. At time t the EKF
represents the posterior p(xt ∣ z1∶t,u1∶t) with a Gaussian
N (xt;µt,Σt) with mean µt and covariance Σt.

B. Particle Filter

The particle filter is a sample based implementation of
the Bayes filter [21]. Here, the posterior is approximated
by a setM = {(x[i],w[i]) ∣ i ∈ [1,N]} of weighted particles,

where each particle corresponds to a possible state x[i] and
has an assigned weight w[i]. Each recursive update of the
posterior is performed in three steps. Firstly, each particle
is propagated from x

[i]
t−1 to x

[i]
t using a sampled noise value

on the predictive data ut in the prediction step. Secondly,
in the correction step, each particle is weighted according
to the new corrective measurement zt. In the resampling
step, a new generation of particles is drawn from M (with
replacement) such that each sample in M is selected with



a probability that is proportional to its weight. After each
update cycle, the state estimate µt is computed as the
weighted mean of all particles.

C. Filter Evaluation

We evaluate the accuracy of the filter algorithms by
comparing the orientation estimates µt to the actual ori-
entations (“ground truth”) x⋆t at all time steps. Therefore,
we evaluate the root mean square error (RMSE)

RMSE =

¿

Á
ÁÀ

1

T

T

∑

t=1

(∡(µt,x
⋆

t ))
2

(2)

of the orientation estimates, where ∡(⋅, ⋅) is the angular
distance between two quaternions.

V. Experimental Results

A. Experimental Setup

In our experiments we use the ourMIPS processor, which
runs on Altera Cyclone II FPGA starter boards [22].
The FPGA boards are connected to the PC via serial
communication. We consider the three-dimensional orien-
tation estimation using IMU data as software application
under test. We examined two filters for sensor data fusion,
namely the EKF and the particle filter, as described in
Section IV. The input data was collected with an IMU
mounted on a miniature blimp robot which was observed by
an accurate optical motion capture system for position and
orientation ground truth information. Under fault injection,
we consider the RMSE of a particular run as a critical error
if it is more than 0.5○ higher than the fault free RMSE.

To identify the critical variables of an application we
first execute 5000 runs, where we inject one fault per
run into one of two specific registers of the register file.
Fault injection experiments showed, that faults in these
registers produce many calculation errors. This gives us the
required data for our analysis as described in Section III-B.
In a second step, we implement the checker mechanism
(Section III-C) for the identified critical variables. We run
several experiments, where we inject faults into all registers
of the register file except five registers, which are associated
with the control structure of the processor. This is indicated
by many system crashes due to injected faults in these
registers. The checker mechanism serves as a validation of
the previous step.

B. Critical Variables

Figure 3 shows two rankings of critical variables for
the EKF. Both rankings were created from the same
set of experimental runs. Taking into account only the
runs with critical errors is also a reasonable view, as the
considered applications calculate a state estimate from
noisy measurement data, which usually can be used, even
if it slightly deviates from the fault free computation result.
Here, it is interesting to note, that the variable “pitch”
from function “correction mag” is listed on the second
place when counting all errors, but does not appear when

correction_acc / tmp2
correction_mag / pitch
correction_mag / tmp2

correction_mag / z_horizontal_0
correction_acc / K

prediction / tmp2
correction_acc / mu

prediction / V
prediction / sigma
prediction / tmp1

0 5 10 15 20 25 30 35 40

number of (all) errors

correction_acc / tmp2
correction_mag / tmp2

correction_acc / mu
prediction / tmp1

correction_mag / z_horizontal_1
prediction / V

prediction / tmp2
correction_acc / K

correction_acc / abs
correction_acc / tmp3

0 2 4 6 8 10 12 14

number of critical errors

Figure 3. The critical variable statistics created counting all errors
(top) and only the critical errors (bottom) of the EKF in 5000 runs.
Each bar is labeled with the function the variable appears in and the
variable itself.

counting only the critical errors. The reason for this is, that
on the one hand “pitch” consumes a lot of computation
time and therefore is hit by a fault with a high probability.
On the other hand it has only a small influence on the
overall result of the algorithm and thus only causes small
computation errors. Consequently, “pitch” should not be
protected.

In our experiments we also evaluated the particle filter
for identifying its critical variables. The results indicate a
substantial fault tolerance as the algorithm did not produce
any critical calculation errors within 7000 runs. This is
reasonable as the particle filter comprises only a few critical
control parts. Most of the computation time is spent for
the calculation of the particle values. In case of calculation
errors in particle values a low weight is assigned to the
particle in the correction step and it eventually dies out
during a resampling step. For that reason the particle filter
is robust to the injected faults.

C. Experimental Evaluation

We evaluated our approach by protecting the 3 most
critical and the 7 most critical variables according to the
statistics of the critical errors. The first version increases
the runtime by 18%, the second one by 27%. Figure 4
shows the results of the fault injection experiments of the
unprotected version compared to that of our two protected
versions of the EKF. The number of all calculation errors
continuously decreases as the protection level increases.
The number of critical errors is decreased from nine in the
unprotected case down to one in both protected versions.
This is reasonable as the critical variables with the ranks
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Figure 4. Comparison of different protection levels of the EKF
application in 7000 runs.

4 to 7 still produce a certain amount of calculation errors
with respect to all deviations, but only a small number of
critical errors (see Figure 3). According to our experimental
results, the protection of the 3 most critical variables is
sufficient in order to reduce the critical calculation errors
to a tolerable amount. As the underlying distribution of
the number or errors is a binomial distribution, we can
test for the improvement using Fisher’s exact test. At a 5%
confidence level, both versions with software checker have a
significantly lower error rate than the unprotected version.
Therefore, we have significantly increased the reliability
of our application by protecting only a small part of the
source code.

VI. Conclusions

In this paper, we presented an FPGA-based fault injec-
tion framework which enables a user to identify the most
critical registers of an entire microprocessor and the most
critical variables of the executed software application. Our
experiments show, that the criticality of different parts of
a system with regard to system crashes and calculation
errors can substantially vary. Therefore protecting only the
identified critical parts of a system allows to implement a
lightweight and efficient error correction scheme. As our
approach is general, it could be easily applied to other
microprocessors or applications.

In the future we plan to further extend our framework.
Firstly, we intend to identify also critical variables with
respect to system crashes. Secondly, we want to give a
user more control over the fault injection for evaluating an
application more efficiently. For this purpose we will allow
to select only a part of the source code for fault injection.
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