
Bayesian Optimization for Sample-Efficient Policy Improvement
in Robotic Manipulation

Adrian Röfer1, Iman Nematollahi1, Tim Welschehold1, Wolfram Burgard2, Abhinav Valada1

Abstract— Sample efficient learning of manipulation skills
poses a major challenge in robotics. While recent approaches
demonstrate impressive advances in the type of task that can be
addressed and the sensing modalities that can be incorporated,
they still require large amounts of training data. Especially with
regard to learning actions on robots in the real world, this poses
a major problem due to the high costs associated with both
demonstrations and real-world robot interactions. To address
this challenge, we introduce BOpt-GMM, a hybrid approach
that combines imitation learning with own experience collection.
We first learn a skill model as a dynamical system encoded in a
Gaussian Mixture Model from a few demonstrations. We then
improve this model with Bayesian optimization building on a
small number of autonomous skill executions in a sparse reward
setting. We demonstrate the sample efficiency of our approach
on multiple complex manipulation skills in both simulations
and real-world experiments. Furthermore, we make the code
and pre-trained models publicly available at http://bopt-gmm.
cs.uni-freiburg.de.

I. INTRODUCTION

Efficient methods for learning new manipulation motions
in a fast and reliable manner is still an open area of research
in robotics. Behavioral Cloning (BC) has become the state-
of-the-art technique to address this problem [1] and shows
impressive results, both in the variety of skills that are
trainable, as well as the types of input modalities [2]–[6], be
it robotic proprioception, camera data, or language. Although
they are more efficient than pure reinforcement learning (RL),
these approaches still require many demonstrations (100+)
to achieve high success rates. Far more data efficient are
the approaches that fit a parameterized model of the robotic
skill from data. Dynamical systems fall into this category and
have been shown to be able to generate physically plausible
motions that provide a high level of reactivity and robustness
against perturbations in the environment [7]–[10] unlike their
neural network based counterparts. These dynamical systems
can be trained from a handful of demonstrations, in some
cases, using certain constraints [8], even using a single one.
While their sample efficiency is a great strength, it is by no
means a guarantee for the model’s quality. Thus, it remains an
open challenge to update these models given, ideally sparse,
environmental feedback.

In our previous work [11], we addressed this challenge.
Given an initial dynamical system model, in our case a Gaus-
sian Mixture Model (GMM), we trained a Soft-Actor-Critic
agent, proposing updates to the dynamical system at a fixed

1 Department of Computer Science, University of Freiburg, Germany.
2 Department of Eng., University of Technology Nuremberg, Germany.
This work was funded by the BrainLinks-BrainTools center of the University
of Freiburg.

Fig. 1: We propose a simple but effective interpretation of a reinforcement
learning problem as black-box optimization of a policy. The policy, encoded
as a GMM, is evaluated to measure its accuracy. From this new measurement,
the optimizer can regress a new improved update.

step interval based on sensor data. We call this fusion of SAC
and GMM SAC-GMM. We demonstrated that our approach
boosts the dynamical systems’ performance to 80 + % after
around 500 episodes of autonomous exploration. While this is
relatively efficient in the domain of RL, there is still the need
to further reduce the samples required for model improvement.

If we view the problem of learning a policy not as
learning a step-wise action given an observation, but rather
as optimizing the value of a very costly black-box function, a
perspective examined in [12], we can leverage methods from
the domain of black-box optimization to further improve
sample efficiency. In this work, we propose BOpt-GMM
as a fusion of sample efficient Bayesian Optimization and
a GMM base policy model, as schematically represented
in Fig. 1. Bayesian Optimization (BOpt) is often used
for hyperparameter search in machine learning, where the
evaluation of a possible set of parameters is very expensive
and thus highly geared towards drawing as few samples as
possible. Previous approaches [13]–[15] have used BOpt in
an RL setting. Different from our approach, these works
rely on predefined motion primitives with a low number of
additional parameters over which they optimize, which is of
very similar complexity to hyperparameter search. In our case,
we leverage BOpt to search the high-dimensional space of
a multivariate GMM. The question arises as to how updates
in this trajectory representation can be carried out efficiently
and in a physically sound manner. Addressing these points,
in this paper we make the following contributions:

• We frame a sparse RL-setting as black-box optimization
of a GMM policy model.

• We propose two effective, low-dimensional update
methods for GMM encoded policies, which reduce the
parameter space independent of the optimization scheme.
We demonstrate their applicability to our optimization
approach as well as a reinforcement learning baseline.

• We evaluate our proposed approach thoroughly in
simulation as well as the real world and demonstrate a
significant improvement in sample efficiency.

• We make the code and pre-trained models publicly
available at http://bopt-gmm.cs.uni-freiburg.de.

II. RELATED WORK

Learning from human demonstrations also called imitation
learning, is an approach that has been exploited for more than
two decades [16]. Its overarching goal is to learn to reproduce
the actions demonstrated by a human, either externally or
through teleoperation of the robot [17]–[19]. It has been
deployed successfully in both robotics and autonomous
driving [20], using this approach robots have been enabled
to learn many household skills [21]–[24] and, lately, this
technique has even been used to train large vision and
language conditioned transformer models [25] to enable long-
horizon manipulations in LLM-based agents [26]. However,
training deep neural network policies from demonstrations
requires hundreds or thousands of demonstrations, even when
the approach is geared towards efficiency. As we are looking
to deploy robots in novel environments and on novel tasks,
this need for data becomes a limiting factor.

Alternatively, motions can also be learned from fewer
demonstrations by encoding them in low-dimensional mod-
els. Established examples are dynamic motion primitives
(DMP) [9] and Gaussian Mixture Models (GMM) [8]. DMPs
encode motions as a collection of attractors and repulsors,
while GMMs encode a trajectory more directly as the statis-
tical correlation of system state and its first-order derivative.
Both can be used to learn from few human demonstrations
as has been demonstrated in [8], [10], [27]–[29], with both
methodologies being applied successfully in longer complex
tasks [15], [30]. However, GMMs are the more common
choice for low-dimensional imitation learning, due to their
ability to encode more varied trajectories than DMPs. While
it is still a rarity, in our previous work [11] we demonstrated
how high-dimensional sensor information can be used in
combination with GMMs to enable fast and efficient learning
of reactive policies from very few demonstrations. However,
the number of exploration episodes needed to perfect the
policy is still quite high.

Using Bayesian Optimization methods for policy improve-
ment is not a new approach. BOpt has been used successfully
in finding threshold parameters for walking gaits [31], [32]
as well as efficient impact-compensating arm movements for
balancing robots [33]. In [34] the authors demonstrate sample-
efficient learning of a robotic policy in simple scenarios
by learning function of the task dynamics as a Gaussian
Process (GP). A similar technique is employed by [35], who
additionally use a linear projection to reduce the number of
policy parameters to. More flexible is the approach presented

in [36] which uses an auto-encoding scheme to form a low-
dimensional parameter space, trained on simulated trajectories.
BOpt has also been used to decide sampling a simulation or a
real world execution [37], reducing the number of expensive
real world examples needed to improve a policy. Different to
our proposed method all of these methods require a dense
reward signal. Using binary signals in combination with BOpt
has been studied as well, though less throughly. In [38], the
authors formulate an approach to maximizing a stochastic
binary reward by using a GP to model the parameters of a
binomial distribution. While they do demonstrate that this
model can be used to exploit such a function efficiently, we
use a different approach to integrating binary feedback, as
this model only lends itself to univariate scenarios.

Most closely related to the approach that we propose
are [13]–[15]. Englert et al. [13] propose using BOpt to
identify a low-dimensional task mapping for a constrained
optimization problem which they initialize from a single
demonstration. They continue to sample possible mappings
and finally use their motion problem with the uncovered
mapping to perform control to solve their tasks. With
their approach, they can optimize policies for manipulating
articulated objects. They reward their agent with the negative
forces exerted during the interactions. While their data
efficiency is impressive, the space of their mapping is ex-
tremely low-dimensional with no more than three dimensions.
Johannsmeier et al. [14] model a manipulation skill as a chain
of primitive controllers with learnable parameters for desired
contact force and superimposed oscillations. They study the
suitability of different optimizers for three example tasks and
find BOpt to be sufficient, though it is outperformed by an
evolutionary strategy. The low success of BOpt might be
explainable with their 30-dimensional parameter space and
rather large parameter range. In their setups, they derive a cost
from the execution duration of a robotic skill. Wu et al. [15]
follow up the efforts of [14], [39] by again employing
BOpt to learn parameters for motion primitives. Their key
change is encoding the demonstration trajectories as a GMM
and incorporating the probability of the current trajectory
under this distribution in the optimizer’s objective function,
enforcing a similarity of generated trajectories to the original
demonstrations. This similarity function is the main reward
signal for the optimizer, with only minor influence given to
task success. Otto, Celik, et al. [40], [41] phrase a policy
improvement problem on DMPs similar to ours, but use a
deep function approximator which leads to a significant data
requirement.

Our approach differs from the discussed works in three
main points: 1) We do not assume the existence of predefined
control primitives or motion models but learn these fully as
reactive systems from demonstration data. 2) We optimize
directly over our policy model which is a much larger
parameter space. 3) We use a simple binary reward signal
to guide our optimization and do not rely on measures that
require prior knowledge of the task, such as trajectory length,
or interaction forces. To the best of our knowledge, we are
the first to use BOpt to optimize a GMM-encoded policy.

III. PROBLEM FORMULATION

In this work, we consider a sparse reinforcement learning
setting, in which a policy πθ processing observations st,
produces an action at, and receives a reward rt ∈ R in return.
The objective of the policy is to accumulate the maximum
possible reward R for an episode. We assume the reward
to be sparse, only given out at the end of an episode for
either success or failure, i. e. R ∈ {0, 1}. We assume the
policy πθ to be parameterized under a space Θ ⊆ Rm and
assume the existence of an update function ⊕ which can
be used to derive an updated policy πθ,i = πθ ⊕ ∆θi. We
strive to find the optimal update ∆θ∗ which will yield the
optimal policy π∗ = πθ ⊕∆θ∗. Performance is assessed by a
non-deterministic evaluation function hθ(∆θ, j) → R which
executes the policy yielded by the update for j episodes and
averages the rewards obtained by the executions. The overall
objective is

∆θ∗ = argmax
∆θ

hθ(∆θ, j), (1)

where j is constant. Each evaluation of hθ yields a data
point (∆θi, Ri), which is collected in a dataset D =
{(∆θ1, R1), . . . , (∆θI , RI)}. This dataset can be used in the
search for ∆θ∗.

IV. BOPT-GMM FRAMEWORK

To address the formulated problem, we introduce our
approach BOpt-GMM. It consists of a gradient-free Bayesian
optimizer which generates updates ∆θ for the policy πθ which
is a dynamical system encoded as a Gaussian Mixture Model.
In the following, we describe all three of these components
in detail.

A. GMM

In this work, we examine the challenge of improving
an initial robotic motion policy πθ trained from a set of
demonstrated trajectories ΞD. Our approach assumes motion
to be driven by a dynamical system of the form fθ(s) = ṡ,
encoded in a GMMs as parameterization of πθ. Here ṡ
denotes the first-order derivative of the observable state s. We
follow the Dynamical System definition of [8], [27]. Given
an observable system state s ∈ Rm, in our case the position
of the robot’s endeffector relative to a frame of reference, a
GMM models the dynamics of this system as K components,
weighted by ω ∈ [0, 1]K with ∥ω∥ = 1, each of which
consists of a 2m-dimensional mean µk, and a corresponding
covariance matrix Σk, with

ω ∈ [0, 1]K , µk =

[
µk
s

µk
ṡ

]
, Σk =

[
Σk

s Σk
sṡ

Σk
ṡs Σk

ṡ

]
. (2)

At inference time, we use Gaussian Mixture Regression
(GMR) to infer ṡt from st as

ṡt = fθ(st) =

K∑
k=1

hk(st)(A
kst + bk) (3)

with
Ak = Σk

sṡ(Σ
k
s)

−1, bk = µk
ṡ −Akµk

s (4)

and hk(st) being the normalized probability of p (k | st). For
a more detailed understanding of the inference procedure,
please refer to [8].

B. GMM Parameterization

Although GMMs are low-dimensional models compared to
common neural network architectures, they do still hold too
many parameters to be exposed directly in ∆θ. In addition,
properties such as positive-definiteness of the components’
covariances need to be preserved during the update integration
πθ ⊕ ∆θ. Thus, we are concerned with finding a small
space ∆Θ, which preserves the necessary properties of the
GMM. We propose to perform norm-preserving updates to
the weights. The generated updates ∆θω,i at step i are added
to ω and normalized, while a small minimum activation ϵ is
enforced for numeric stability

ωk
i =

max(ωk +∆θωk,i, ϵ)∑K
j max(ωj +∆θωj ,i, ϵ)

. (5)

Updates for the means µ are integrated additively without
any further post-processing.

The number of parameters in the covariances Σk is (2 ·
|S|)2 and thereby quadratic in the number of degrees of
freedom |S|. Even by exploiting the symmetry of covariances
and the fact that only Σk

s and Σk
sṡ but not Σk

ṡ are relevant
for inference, the number of parameters to estimate still is
quadratic in |S|. Therefore, we are interested in a view of
Σk which enables us to formulate a much lower-dimensional
update space. We propose two schemes for updating the
covariance which is linear in |S|. Our first scheme is based
on eigenvalue decomposition as a natural lower-dimensional
parameterization. Given the eigenvectors Q and diagonal
matrix of eigenvalues Λ, we form the updated covariance as

Σk
i = QΛ diag(∆θΣk,i)Q

−1, (6)

with ∆θΣk,i ∈ [1− σ, 1 + σ].
In our second update scheme, we have the optimizer

produce updates ∆θΣk,i ∈ [−σ, σ] per component which
encodes Euler rotations, which we integrate as

Σk
x,i = RXY Z(∆θΣk,i)Σ

k
x. (7)

The general intuition behind these update rules stems from
the interpretation of the covariance matrix in 3-dimensional
space as an ellipsoid. In the first case, we assume that the
direction of the correlation of the initial model is reasonable.
By changing the eigenvalues of the decomposition, we restrict
the optimization to a scaling of the ellipsoid axes. In the
second case, the assumption is the opposite: we preserve the
scaling and instead allow for a rotation of the axes. In both
cases, the number of parameters is reduced to |S|. Note that
these are only meaningful interpretations in task space and
not in latent spaces such as joint space.

We also consider a rank-1 vector-base update for Σk
i based

on a singular value decomposition and rank reduction. We find
this update method to be less stable than the ones presented
above, but we include a brief description of it for the interested
reader in Sec. VI.

Fig. 2: Our approach consists of two parts: A Bayesian optimizer estimating the value p (∆θ | D) and proposing potential new updates ∆θi. The second
part is the evaluation function h(∆θi, j) which plays the update ∆θ for j steps and averages the returns. The results are used to inform the optimizer.

C. Bayesian Optimization

Bayesian Optimization (BOpt) is the state-of-the-art tech-
nique for hyperparameter tuning in automated machine
learning tasks. In this domain, its problem is formulated as
finding a vector of hyperparameters x ∈ A which maximizes
model performance as maxx∈A f(x), where A is typically a
bounded hypercube in Rn. Unlike model-free techniques such
as grid search and random search, BOpt algorithms build a
probabilistic surrogate function p (y | x, D), where D is a
dataset of evaluated hyperparameter samples, as defined in
Sec. III and x is a newly generated hyperparameter sample.
The function’s probabilistic nature allows the optimizer to
explore the parameter space according to the expected value
as estimated by the surrogate [42], [43]. A common surrogate
implementation is to use Gaussian Processes (GP), however,
these lend themselves mostly to lower-dimensional parameter
spaces and are costly to evaluate on large datasets [42].
Random forests (RF) are a common alternative to using
GPs in BOpt [42], [43]. By using multiple random trees as
regressors and averaging their output, RFs are able to provide
both an expectation and uncertainty estimate of a given x,
while being much more time and space-efficient than GPs. As
our parameter space is quite large with up to 70 parameters,
and our data becomes plentiful over time, we use RFs in this
work.

New samples are evaluated on the basis of an acquisition
function that rates potential new samples x according to
the surrogate function. While there are many acquisitions
functions, expected improvement [44] is criterion that is used
most commonly [42]. In the automated ML literature, it is
often pointed out that a drawback of BOpt is its sequential
nature which bars it from parallelization. This does not
concern us, as we are interested in improving a policy on a
single robot, and thus have no opportunity to parallelize.

We connect BOpt to our problem by setting A = ∆Ω and
f = h, as defined in Sec. III. We include the averaging eval-
uation function h as a measurement function that measures
the accuracy of a proposed sample for j episodes. While
existing optimizers such as SMAC [45] provide functionality
for optimizing stochastic functions, they do assume these to
depend on a seed they provide. Since we cannot affect the state
of the external world, we model h as a deterministic function
and reduce the variance by selecting a sufficiently large j.
We represent the process of surrogate update, sampling, and
sample evaluation schematically in Fig. 2.

V. EXPERIMENTAL EVALUATION

We evaluate our proposed approach BOpt-GMM in 3 sim-
ulated scenarios and their matching real-world counterparts,
which are shown in Fig. 3. We use the simulated scenarios
not only to contrast our approach with other baselines but
also to evaluate the impact of our proposed covariance update
schemes. In our real-world evaluation, we study if the well-
performing optimizer configurations we have identified in
simulation can also be applied to train and optimize policies
directly on real robotic systems.

A. Experiment Setup
In all evaluation scenarios, we collect 10 demonstrations

by teleoperation of the robot and fit a GMM to the data using
Expectation Maximization (EM). We also explored the usage
of the SEDS framework [8] but did not find the resulting
GMM models to improve performance while introducing
additional complexity in model fitting. Using these models as
a starting point, we compare BOpt-GMM to two baselines:

(1) In simulation, we introduce a naive Online GMM (OG)
approach in which we add all successful trajectories to a
growing dataset ΞO. We then refit πθ to the full dataset
Ξ = ΞD ∪ ΞO yielding our updated GMM πθ,i, where
ΞD is the set of original demonstration trajectories.

(2) Our SAC-GMM approach [11] which learns an addi-
tional policy π∆ which generates GMM-updates ∆θt
every n environment steps to dynamically update the
GMM. In addition to the position of the end effector,
SAC-GMM receives the wrench experienced by the
robot at its wrist, as we found it to learn too slowly
when using solely proprioceptive observations.

In the simulation, we also compare to a Behavior Cloning
(BC) policy similar to [2] trained on the same initial
demonstrations ΞD. As this baseline shows very limited
performance, we train a variant BC 100 on an extended
demonstration set Ξ100

D . We do not compare against plain
SAC as we already determined in our previous work [11]
that, due to the sparse reward setting, it does not learn any
successful policy on the time horizon of interest to us. Since
we are interested in both performance and training efficiency,
we track two metrics: 1) the overall policy success rate; 2)
the number of episodes taken to achieve 80% success rate.

B. Experiments in Simulation
We first evaluate our approach in the simulated scenarios

depicted in Fig. 3. All of our scenarios (a-c) are manipulations

(a) (b) (c)

(d) (e) (f)
Fig. 3: (a) Simulated sliding of a horizontal hatch. The location and orientation of the hatch’s frame are varied between episodes. (b) Simulated Drawer
Opening. The location of the cabinet is varied in the XY plane. (c) Simulated opening of a door. The location of the door is varied per episode. The handle
must be pressed to move the door. Real opening of a (d) sliding door, (e) drawer, (f) door.

of articulated objects and each poses a different challenge.
The first scenario (a) requires the robot to open a sliding
hatch. The robot starts above the hatch, has to loop behind the
handle and push open the hatch. This task does not require
greater precision but a looping steady motion. The second
scenario (b) requires the robot to open a drawer. Therefore
the robot must successfully hook the handle and move in
the opening direction. This task requires greater precision for
the hooking of the handle but once this has been achieved
it is rather forgiving. Setting (c) is the most difficult of our
scenarios. Opening the door requires precise and measured
motions to successfully press and hook the handle to open
the door. In all scenarios, we fit the GMMs to the relative
location of the end-effector to the object. We vary the location
of the object, requiring the agents to make the policy robust
against variance in scenarios.

We collect 10 demonstrations in each scenario and fit a
GMM for each setting. As the number k of Gaussians used
has an impact on the performance of the model while also
scaling the number of parameters to optimize, we perform
evaluations with k ∈ {3, 5, 7}, which yield at most 30, 50
and 70 parameters respectively. Throughout our experiments
we use j = 8 evaluation episodes. We give both SAC-GMM
and the Bayesian optimizer update ranges of

∆θω ∈ [−0.1, 0.1]

∆θµ ∈ [−0.05, 0.05]

∆θΣ ∈ [−0.1, 0.1].

(8)

We use the Bayesian Optimization implementation
from SMAC3 [45], a collection of mature gradient-free
optimizers for black-box optimization. Specifically, we use
the hyperparameter optimizer with logarithmic expected
improvement as an acquisition function. In addition, we

set SAC-GMM’s learning rate as 2 · 10−3. The baseline
performances of these models are presented in Fig. 4.

The success rates achieved by the approaches are reported
in Fig. 4. We find that both BOpt-GMM and SAC-GMM
improve over the baseline performance of the GMM, inde-
pendent of the specific k. The simple Online-GMM baseline
is not reliable. While it is able to increase its success rate
over the starting GMM in some cases, in others it deteriorates
performance dramatically. Behavioral Cloning cannot be
initialized successfully from the 10 episodes used to fit the
GMMs. With an additional 90 demonstrations, it does start
to achieve noticeable performance, however, this is not the
sample efficiency we aim to achieve.

While we can see from Fig. 4 that our approach and SAC-
GMM work well with any k, we choose k = 5 for a detailed
analysis, as we have found that setting to be a good tradeoff
between model performance and optimization/learning speed.
For a detailed analysis, we present Tab. I where we compare
the different GMM updates in SAC-GMM and BOpt-GMM.
We find that BOpt-GMM achieves 80% success rate 40%
(87 episodes earlier) faster than SAC-GMM. In Fig. 5, we
present a qualitative comparison of the success rates of the
two approaches over the training duration. On the other hand,
we also we observe that SAC-GMM achieves overall higher
performance than BOpt-GMM. With respect to our newly
proposed covariance update strategies, we find them to achieve
a much higher success rate on average in our 500 episode
timeframe than updating only the means µ as done in previous
work [11]. The combination of covariance update and means
update, however, does not exceed this success rate, likely due
to the larger number of parameters. A minor trend we seem to
identify in our data is that the RXY Z update performs better
for SAC-GMM than the eig update, while this is reversed for

k= 3 k= 5 k= 7 BC
0.0
0.2
0.4
0.6
0.8
1.0

S
u
cc

e
ss

 r
a
te

Sim. Hatch

k= 3 k= 5 k= 7 BC

Sim. Drawer

k= 3 k= 5 k= 7 BC

Sim. Door
GMM

BOpt-GMM

SAC-GMM

Online-GMM
BC

BC100

Fig. 4: Comparison of the mean performances of GMM, SAC-GMM, BOpt-GMM, and Online-GMM baseline in our three simulated scenarios in Fig. 3). k
indicates the number of GMM components. We run each method for 500 episodes. We find BOpt-GMM and SAC-GMM to improve significantly over
the initial GMM, while Online-GMM does not do so reliably, or even deteriorates performance. Additionally, we introduce BC trained on the same
demonstrations as the GMM, and BC100 trained on a full 100 demonstrations. The latter achieves recognizable but not comparable performance.

TABLE I: Detailed analysis of the effect of GMM updates in BOpt-GMM and SAC-GMM. The table shows the maximal success rate of models optimized
only over their means (µ), their covariances using our update approaches eig and RXY Z , as well as their combinations. We optimize a GMM (k = 5)
with these update strategies using both BOpt and SAC. We report the mean final performances of our models, as well as the mean number of episodes
needed to achieve 80% success rate. The Mean column reports the average of these metrics across the scenarios, while the Mean row reports the averages
across the update modalities. From the mean along both axes, we draw the overall conclusion that BOpt-GMM performs much faster, while SAC-GMM
achieves slightly higher overall performance. From the bottom row we can also conclude that the eig and RXY Z updates work better on their own, than
when paired with µ and also work better than µ alone. We note only two exceptions to this observation in the Door scenario for BOpt-GMM.

µ RXY Z eig µ+RXY Z µ+ eig Task mean

Success # eps. Success # eps. Success # eps. Success # eps. Success # eps. Success # eps.
rate > 80% rate > 80% rate > 80% rate > 80% rate > 80% rate > 80%

Hatc
h SAC 90.9% 125 100.0% 75 100% 100 97.5% 150 98.3% 125 97.3% 115.0

BOpt 88.8% 28 98.6% 14 99.2% 14 88.6% 28 85.6% 28 92.2% 22.0

Draw
er SAC 95.0% 150 99.0% 50 99.2% 50 97.5% 125 95.8% 225 97.3% 120.0

BOpt 82% 252 87.6% 49 94.3% 35 84.6% 133 88.6% 98 87.4% 113.0

Doo
r SAC 79.2% − 87.0% 250 83.3% 400 69.2% − 58.3% − 75.4% 430.0

BOpt 83% 301 81.6% 168 85.0% 203 90.3% 161 77% − 83.4% 266.0

M
ea

n SAC 88.4% 258.3 95.3% 125.0 94.2% 183.3 88.1% 258.3 84.1% 283.3 90.0% 221.6
BOpt 84.6% 193.6 89.3% 77 92.8% 84.0 87.8% 107.3 83.7% 208.7 87.6% 134.1

0.0
0.2
0.4
0.6
0.8
1.0

S
im

.
H

a
tc

h

0.0
0.2
0.4
0.6
0.8
1.0

S
im

.
D

ra
w

e
r

0 100 200 300 400 500
Number of episodes

0.0
0.2
0.4
0.6
0.8
1.0

S
im

.
D

o
o
r

Evolution of success rate

BOpt-GMM SAC-GMM

Fig. 5: To illustrate the significance of the difference in sampling efficiency,
we overlay the evolution of model performances of the three basic updates.
The dashed red line shows the performance of the base GMM. Note: BOpt-
GMM is only evaluated when a new incumbent is generated, while SAC-
GMM is evaluated at regular intervals. Hence the different graph lengths.

BOpt-GMM. We conclude from our simulated experiments
that SAC-GMM yields a higher policy success rate in the long
run, but BOpt-GMM achieves good performance much sooner.
Further, we will deploy the RXY Z and eig updates in our
real-world scenarios, as they promise to be the most effective.

Finally, we would like to note a peculiarity in working
with Bayesian optimization. The optimizer we use uses
the surrogate model to generate a so-called incumbent
configuration which is the assumed highest performing set
of parameters. The incumbent does not change after every
data sample, as a new sample does not need to reveal a
new optimal set of parameters. While this does not improve
sample efficiency in improving the policy, it does mean that
we only have to re-evaluate the performance of our policy
whenever a new incumbent is generated. As can be seen in
Fig. 5, in some scenarios, such as Hatch, the best performing
incumbent is found early, while in others this can take longer.
These discrete moments for policy evaluation distinguish
using BOpt significantly from other learning methods. It is
outside of the scope of this work, but we believe there to be
a potential for terminating the learning process early based
on a trade-off of the remaining uncertainty in the surrogate
model and the remaining possible improvement.

C. Real World Experiments

Our real-world scenarios (d, e, f in Fig. 3) mimic the
scenarios we explored in the simulation. We again have a
sliding door, a drawer, and a door for the robot to manipulate.
We monitor the completion of the tasks using AR markers
by measuring the displacement or rotation of the marker on
the moving part in the frame of a static marker. The sliding
door is registered as open when moved 0.4m to the left,

TABLE II: Results of the real-world experiments. We report the maximal
success rate of models and the number of episodes required to achieve
80% performance. In this experiment, we find BOpt-GMM to outperform
SAC-GMM. However, the real experiments ended after 100 episodes, which
explains the comparatively low maximum performance of SAC-GMM.

RXY Z eig Mean

Success # eps. Success # eps. Success # eps.
rate > 80% rate > 80% rate > 80%

H
at

ch SAC 63.3% − 53.3% − 58.3% 100.0
BOpt 76.6% − 85.5% 14 81.1% 57.0

D
ra

w
er SAC 86.6% 25 93.3% 50 90.0% 37.5

BOpt 86.6% 14 93.3% 14 90.0% 14.0

D
oo

r SAC 93.3% 50 71.1% − 82.2% 75.0
BOpt 93.3% 14 95.0% 7 94.2% 10.5

M
ea

n SAC 81.1% 58.3 72.6% 83.3 76.9% 70.8
BOpt 85.5% 42.7 91.3% 11.7 88.4% 27.2

the drawer is considered open at 0.2m, and the door is at
an angle of 25◦. The scenarios are randomized by sampling
different starting locations of the robot’s end-effector.

In the real-world scenarios, we reduce the scale of the
experiments. Where we verified our results in simulation on
16 different seeds and ran each method for 500 episodes,
here we reduced the numbers to 3 seeds and 100 episodes.
We use the insights we have gained from our simulations
and only study the RXY Z and eig updates. We collect 10
demonstrations per scenario by teleoperating the robot using a
gamepad and fitting an initial GMM with k = 5 components
to these. We set ∆θω , ∆θΣ, and SAC’s learning rate as before.
We find our observations from the simulation experiments to
be confirmed in our real-world experiments. Both SAC-GMM
and BOpt-GMM can use our update strategies to successfully
improve the baseline policy. Once again, BOpt-GMM passes
the 80% success rate threshold sooner than SAC-GMM. The
minor trend we observed in our simulated experiments is born
out more starkly in our real experiments: we observe that
the RXY Z update performs better in combination with SAC-
GMM, while the eig update performs better with BOpt-GMM.
Different from our simulation experiments, BOpt-GMM also
stays ahead of SAC-GMM in overall success rate. This is
likely due to the much shorter runtime of the experiments in
the real-world setting.

VI. CONCLUSION

In this work, we proposed employing gradient-free
Bayesian Optimization (BOpt) in a sparse reinforcement
learning setting with the aim of achieving greater sample
efficiency. We enabled the application of BOpt to this space by
encoding our underlying policy as GMM and letting BOpt find
suitable updates to this policy. We coin this combination BOpt-
GMM. To keep the updates low-dimensional but still enable
the optimizer to access the entire GMM, we proposed two low-
dimensional methods for updating the GMM’s covariance. We
compared our approach to three other baselines in simulation
and were able to successfully deploy the parameters we
identified in three real-world scenarios. In both simulation
and real world, we found that our approach is significantly
more efficient, achieving a success rate of 80%, 40% faster

than our baselines. We find that our covariance updates are
more effective for our approach and our SAC-GMM baseline.

For future work, we see an opportunity for combining BOpt-
GMM and SAC-GMM. BOpt-GMM would yield the first
drastic improvement, while SAC-GMM would be tasked with
developing the local reactivity needed to achieve a final couple
of percentage points of success. As a minor improvement, we
believe there is an opportunity for exploiting the variance in
the surrogate function to determine the number of episodes
to evaluate a sample. As a larger improvement, we are also
considering if there is an early stopping criterion that could
be used to reliably end the optimization process when it
stagnates. While this does not improve the overall policy
success rate, it would potentially further improve sample
efficiency.

APPENDIX - LOW-RANK COVARIANCE UPDATES

As additional GMM size |S| update, we examine a rank-1
update scheme. The scheme is based on constructing a low-
rank approximation of Σk, performing an update under this
approximation and reintegrating the update into the full-rank
matrix. We do so by extracting U, s,V from Σk as

Σk − diag(Σk) = U diag(s)VT , (9)

using singular value decomposition. We use this decompo-
sition to formulate a rank-1 update by only considering the
first column U1,V1 of U,V and the first component s1 of
s. Given the i-th update vector ∆θΣk,i ∈ [1− σ, 1 + σ], we
compute the updated matrix Σk

i as

Σk
i = diag(Σk) +U1 diag(s1)(V1 ·∆θΣk,i)

T . (10)

We investigate this update type in our simulated scenarios with
both BOpt-GMM and SAC-GMM. We find that this update
type is much less reliable at achieving strong performance
with either method and varying number of GMM components,
see Tab. III. Upon inspection, we find that the rank-1
update performs well (≥ 90%) in some settings, but fails
in others (≤ 30%). We suspect this is due to the required
decomposition being executed on Σk − diag(Σk), which can
become numerically unstable as Σk becomes more and more
diagonal. However, we need this decomposition to maintain
the invertibility of Σk

i as required by the GMR inference,
see Eq. (4) for details. In addition, this method allows us to
maintain the positive determinant of Σk, which is required
by the function hk(st) also required during inference.

TABLE III: We display the average final success rates achieved by our
ablated rank-1 update method. The reported success rates are averages over
all simulated scenarios and all numbers of GMM components k. While we
see in Fig. 4 that BOpt-GMM achieves an average success rate of over 80%
independent of the update type and k, this is not the case for the low-rank
update. Similarly SAC-GMM underperforms with this update. We show the
aggregated performance of the other update types in the right-most column.

Rank-1 µ+ Rank-1 Mean Mean o.
Rank-1 Updates

SAC 73.9% 72.0% 73% 88.7%
BOpt 74.1% 72.1% 73.1% 87.7%

REFERENCES

[1] T. Osa, J. Pajarinen, G. Neumann, J. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” Foundations and
Trends in Robotics, vol. 7, pp. 1–179, 11 2018.

[2] E. Chisari, T. Welschehold, J. Boedecker, W. Burgard, and A. Valada,
“Correct me if i am wrong: Interactive learning for robotic manipulation,”
IEEE Robotics and Automation Letters, 2022.

[3] J. O. von Hartz, E. Chisari, T. Welschehold et al., “The treachery of
images: Bayesian scene keypoints for deep policy learning in robotic
manipulation,” IEEE Robotics and Automation Letters, 2023.

[4] D. Honerkamp, M. Büchner, F. Despinoy, T. Welschehold, and A. Val-
ada, “Language-grounded dynamic scene graphs for interactive object
search with mobile manipulation,” arXiv preprint arXiv:2403.08605,
2024.

[5] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada, “Learn-
ing hierarchical interactive multi-object search for mobile manipulation,”
IEEE Robotics and Automation Letters, 2023.

[6] D. Honerkamp, T. Welschehold, and A. Valada, “N2m2: Learning
navigation for arbitrary mobile manipulation motions in unseen and
dynamic environments,” IEEE Transactions on Robotics, 2023.

[7] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical systems
as movement primitives,” Int. Journal of Humanoid Robotics, 2000.

[8] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[9] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[10] S. Manschitz, M. Gienger, J. Kober, and J. Peters, “Mixture of attractors:
A novel movement primitive representation for learning motor skills
from demonstrations,” IEEE Rob. and Aut. Letters, 2018.

[11] I. Nematollahi, E. Rosete-Beas, A. Röfer, T. Welschehold, A. Valada,
and W. Burgard, “Robot skill adaptation via soft actor-critic gaussian
mixture models,” in Int. Conf. on Rob. and Aut., 2022.

[12] F. Stulp and O. Sigaud, “Policy improvement: Between black-box
optimization and episodic reinforcement learning,” in Journées Fran-
cophones Planification, 2013.

[13] P. Englert and M. Toussaint, “Learning manipulation skills from a
single demonstration,” The International Journal of Robotics Research,
vol. 37, no. 1, pp. 137–154, 2018.

[14] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for
robot manipulation: Skill formalism, meta learning and adaptive control,”
in International Conference on Robotics and Automation, 2019.

[15] Z. Wu, W. Lian, C. Wang, M. Li, S. Schaal, and M. Tomizuka, “Prim-
lafd: A framework to learn and adapt primitive-based skills from
demonstrations for insertion tasks,” IFAC-PapersOnLine, 2023.

[16] M. Bain and C. Sammut, “A framework for behavioural cloning.” in
Machine Intelligence 15, 1995, pp. 103–129.

[17] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Survey: Robot
programming by demonstration,” Springer Handbook of Robotics, pp.
1371–1394, 2008.

[18] C. Celemin, R. Pérez-Dattari, E. Chisari, G. Franzese, L. de Souza Rosa,
R. Prakash, Z. Ajanović, M. Ferraz, A. Valada, J. Kober et al.,
“Interactive imitation learning in robotics: A survey,” Foundations and
Trends® in Robotics, vol. 10, no. 1-2, pp. 1–197, 2022.

[19] B. Zheng, S. Verma, J. Zhou, I. W. Tsang, and F. Chen, “Imitation
learning: Progress, taxonomies and challenges,” IEEE Transactions on
Neural Networks and Learning Systems, no. 99, pp. 1–16, 2022.

[20] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on
imitation learning techniques for end-to-end autonomous vehicles,”
IEEE Transactions on Intelligent Transportation Systems, 2022.

[21] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in Conference on robot learning,
2017, pp. 357–368.

[22] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese,
and R. Martı́n-Martı́n, “Error-aware imitation learning from teleopera-
tion data for mobile manipulation,” in Conference on Robot Learning,
2022, pp. 1367–1378.

[23] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-
Fei, “Learning to generalize across long-horizon tasks from human
demonstrations,” arXiv preprint arXiv:2003.06085, 2020.

[24] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” in Conference on Robot Learning,
2023, pp. 785–799.

[25] A. Brohan, N. Brown, J. Carbajal et al., “Rt-1: Robotics transformer
for real-world control at scale,” arXiv preprint arXiv:2212.06817, 2022.

[26] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[27] N. Figueroa and A. Billard, “A physically-consistent bayesian non-
parametric mixture model for dynamical system learning.” in Proc. of
the Conf. on Robot Learning, 2018, pp. 927–946.

[28] È. Pairet, P. Ardón, M. Mistry, and Y. Petillot, “Learning generalizable
coupling terms for obstacle avoidance via low-dimensional geometric
descriptors,” IEEE Robotics and Automation Letters, 2019.

[29] Z. Lu, N. Wang, and C. Yang, “A constrained dmps framework for
robot skills learning and generalization from human demonstrations,”
IEEE/ASME Transactions on Mechatronics, 2021.

[30] Y. Wang, N. Figueroa, S. Li, A. Shah, and J. Shah, “Temporal logic im-
itation: Learning plan-satisficing motion policies from demonstrations,”
arXiv preprint arXiv:2206.04632, 2022.

[31] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty: An experimental
comparison on a dynamic bipedal walker,” Annals of Mathematics and
Artificial Intelligence, vol. 76, pp. 5–23, 2016.

[32] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. Atkeson,
“Bayesian optimization using domain knowledge on the atrias biped,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1771–1778.

[33] S. Kuindersma, R. Grupen, and A. Barto, “Learning dynamic arm
motions for postural recovery,” in Int. Conf. on Humanoid Robots.
IEEE, 2011, pp. 7–12.

[34] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades,
and J.-B. Mouret, “Black-box data-efficient policy search for robotics,”
in Int. Conf. on Intelligent Robots and Systems. IEEE, 2017, pp.
51–58.

[35] L. P. Fröhlich, E. D. Klenske, C. G. Daniel, and M. N. Zeilinger,
“Bayesian optimization for policy search in high-dimensional systems
via automatic domain selection,” in Int. Conf. on Intelligent Robots
and Systems. IEEE, 2019, pp. 757–764.

[36] R. Antonova, A. Rai, T. Li, and D. Kragic, “Bayesian optimization in
variational latent spaces with dynamic compression,” in Conference on
Robot Learning. PMLR, 2020, pp. 456–465.

[37] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause,
S. Schaal, and S. Trimpe, “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with bayesian
optimization,” in Int. Conf. on Rob. and Aut. IEEE, 2017, pp. 1557–
1563.

[38] M. Tesch, J. Schneider, and H. Choset, “Expensive function opti-
mization with stochastic binary outcomes,” in Int. Conf. on Machine
Learning. PMLR, 2013, pp. 1283–1291.

[39] F. Voigt, L. Johannsmeier, and S. Haddadin, “Multi-level structure vs.
end-to-end-learning in high-performance tactile robotic manipulation.”
in Proc. of the Conf. on Robot Learning, 2020, pp. 2306–2316.

[40] F. Otto, O. Celik, H. Zhou, H. Ziesche, V. A. Ngo, and G. Neumann,
“Deep black-box reinforcement learning with movement primitives,” in
Conference on Robot Learning. PMLR, 2023, pp. 1244–1265.

[41] O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann, “Specializing
versatile skill libraries using local mixture of experts,” in Conference
on Robot Learning. PMLR, 2022, pp. 1423–1433.

[42] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:
methods, systems, challenges. Springer Nature, 2019.

[43] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020.

[44] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
optimization, vol. 13, pp. 455–492, 1998.

[45] M. Lindauer, K. Eggensperger, M. Feurer et al., “Smac3: A versa-
tile bayesian optimization package for hyperparameter optimization,”
Journal of Machine Learning Research, 2022.

