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Abstract— Many mobile manipulation tasks require the robot
to be accurately localized with respect to the object where
the manipulation has to be executed. These tasks include
autonomous docking and positioning as well as pick and place
or logistics tasks. State-of-the-art approaches to the problem
commonly assume that the environment is static and localize
the robot with respect to predetermined locations. In this paper,
we present an approach that relaxes the static assumption and
enables a robot to accurately localize with respect to a reference
object that could be moved in the environment. The core of the
paper is an extension of the generalized ICP method to handle
multiple rigid bodies that move independently to each others.
Experiments in both simulated and real world scenarios show
that our approach is able to localize the robot with respect to
a moved object with an accuracy of less than one centimeter.

I. INTRODUCTION

Localization is one of the most important problems in
robotics and represent the enabling technology for many
applications. In the last 20 years, many researcher addressed
this problem and many significant contributions have been
made. Probabilistic techniques have demonstrated the capa-
bility to robustly estimate the pose of robots in a large variety
of application scenarios.

In many scenarios, and especially in industrial applica-
tions, highly accurate localization is a key requirement to
perform tasks such as pick and place, logistics, and mobile
manipulation. Typical solutions in factory floors rely on mod-
ifications of the environment such as wires embedded in the
floor or magnetic tapes. Modifications of the environment,
however, are costly and limit the flexibility of rearranging
the factory floor. In our previous work [7], we demonstrated
that accurate localization can be achieved at predetermined
locations in static environments. We achieved those results
without the need of artificial markers and solely relying on
safety laser range finders.

In this paper, we extended the fine localization approach
by relaxing the assumption of static environments and local-
izing the robot with respect to particular objects that can be
moved around. This is a key technology for flexible factories,
where the robot is required to pick parts from bins and boxes,
or load pallets from a logistic area. In this circumstances, the
bins, boxes, or pallets could move from one time frame to
another, being moved by shop-floor workers or unloaded at
slight different locations. Another case is where the shop-
floor workers defined positioning tasks with respect to CAD
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Fig. 1. Localization of the omniRob in front of moving object. The
left figure illustrates the teaching phase, when we drove the robot to the
reference location and build a model of the object (table). The right figure
depicts the robot localizing and positioning with respect to the rotated object.

models, where the exact location of the fixture may differ
from the original plan. Fig. 1 illustrates an example scenario,
where the robot is required to position itself in front of an
object that could be moved around.

We propose an approach that solely relies on a laser
range finder, a sensor that is commonly used in industrial
applications for safety reasons. Instead of localizing only
with respect to a pre-built grid-map of the environment
or to predefined locations, we also use a sensor based
representation of a reference object and estimate the robot
pose with respect to the object directly. We formulate the
problem in terms of sensor registration of multiple rigid
bodies and provide means to compute an accurate reference
model for the object as well as its relative position with
respect to the current robot pose.

II. RELATED WORK

The problem of accurate localization for industrial tasks
has been addressed by several researchers. Saarinen et al.
proposed to use the normal distribution transform in a Monte
Carlo localization framework (NDT-MCL) [8]. The NDT-
MCL uses a set of normal distributions to represent the
environment in a piecewise continuous way, reducing the
discretization effect of occupancy grid maps. The authors
reported a positioning accuracy of 1.4 cm in a repeatably
test and claim that the accuracy required for loading actions
in industrial environment has to be 3 cm. Röwekämper
et al. showed that it is possible to achieve a localization
and positioning accuracy of a few millimeters at taught-in
reference locations, by leveraging Monte Carlo localization
and scan alignment techniques [7]. Both works, however,



assume that the robot needs to be localized with respect to
a static location in the environment. In contrast to them, our
method achieves high localization accuracy even with respect
to objects that can change their position over time.

Few works addressed the problem of how to determine
possible docking locations from sensor data. Williamson
et al. [14] present an approach based on mixtures of Gaus-
sians and an Expectation Maximization (EM) algorithm for
robot docking. Each mixture represent a possible object and
the EM algorithm is used to assign points to objects. Jain
and Argall [6] leverage point clouds from a Kinect sensor
to detect edges of tables, bowls, or cups to find possible
docking candidates. However, the focus of the work is on
safety for humans on a wheelchair and the results show an
accuracy too low for industrial settings.

Other authors addressed the problem of moving objects
in the environment during localization and mapping. The
approaches of Anguelov et al. [2] and Biswas et al. [3], for
example, compute shape models of non-stationary objects.
They create maps at different points in time and compare
those maps using an EM-based algorithm to identify the parts
of the environment that change over time. However, their
focus was more on understanding which object moved and
the matching accuracy is too low for the purpose of this work.
Salas-Moreno et al. [9] estimated the location of objects
in the context of simultaneous localization and mapping
(SLAM). Although they are able to estimate the object
location with high accuracy, the authors still rely on the
assumption that the objects do not move in the environment.
Ahmad et al. [1] extended the graph-based formulation of
SLAM to also include moving objects. However, they focus
on objects that move continuously in the environment and
assume a known motion model. In this paper, we do not
assume any knowledge about the motion and we considered
changing environment, where objects are moved by the users
and then keep their location fixed.

Some other authors instead focused on simultaneously
performing scan matching and motion tracking from laser
scanners. Tipaldi and Ramos [12] proposed CRF-Clustering,
a conditional random field approach to perform motion
segmentation and at the same time compute the number
of objects and their displacement. Van de Ven et al. [13]
extended it by integrating a data association step within the
probabilistic framework. Yang et al. [15] introduced a multi-
model extension of RANSAC to deal with environments
with rapid changes. The same authors extended the work
by proposing a multi-scale algorithm in order to be robust
against segmentation errors [17] and exploit spatio-temporal
information of both stationary and moving objects [16]. With
respect to those work, we do not limit ourselves to just
use two sequential scan measurements, but we accumulate
points over time, while the robot is approaching the target,
to improve the localization accuracy.

III. ACCURATE LOCALIZATION TO MOVING OBJECTS

In this paper, we address the problem of accurately local-
izing a robot with respect to objects that can be moved in the

environment. It is important to accurately localize a mobile
robot locally while still maintaining the knowledge of the
robot position in a global reference frame. To achieve this, we
decompose the localization problem in two main parts: global
localization with respect to a map and relative localization
with respect to an object. For the global localization, we
employ the Monte-Carlo localization (MCL) approach pro-
posed by [4], which recursively estimates the posterior about
the robot’s pose given the motion command and the sensor
observations. MCL approximates the posterior distribution
with a set of weighted samples, called particles. When a
new odometry measurement is available, the algorithm uses
the motion model to draw a new set of samples. Those
samples are then weighted according to the observation
model whenever a new sensor measurement is available. We
compute the number of samples to draw at each prediction
step according to the KLD sampling [5] algorithm.

For the relative localization, we build upon the accurate
localization framework we developed [7] and extend it in
order to deal with objects that can be moved around. In our
previous work, we drove the robot to the location where high
accuracy was needed and stored local sensor measurements
as reference observations in the map. Those measurements
were recorded while the robot was standing still and then
used for scan matching during runtime. In this work, we
augment the reference measurements with semantic labels to
indicate the object of reference. Without loss of generality,
we assume that the labels are assigned by the user using a
graphical interface. Fig. 5 shows an example of a reference
model, where the object is depicted in red and the rest of
the environment in blue.

A. Generalized ICP for multiple rigid bodies

We formulate the relative localization problem in terms
of multi-body sensor registration, where we seek to align
multiple rigid bodies that undergo different rigid body mo-
tion. We extended the generalized iterative closest point
(ICP) [10] algorithm to handle multiple rigid bodies. Given
a reference point cloud Mp = {pp,i} and a local point
cloud Mr = {pr,j}, where pq,k = (x, y) is the k-th
point expressed in the local reference frame xq of the
point cloud q, generalized ICP estimates the transformation
T = (xp 	 xr) that best aligns the two point clouds.
Here, 	 is the inverse of the compound operator ⊕ as
introduced by Smith et al. [11]. Given an initial guess for
the transformation, the algorithm proceeds iteratively to first
compute correspondences between the points in the two
clouds and then to minimize their reprojection error. The
correspondences are computed according to their Euclidean
distance after applying the transformation

j? = argmin
j
‖pr,j −T⊕ pp,l‖2. (1)

The point correspondence 〈pr,j? ,pp,l〉 is computed by as-
suming the existence of a landmark l in the environment,
which is observed in both point clouds. Let the reprojection
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Fig. 2. Example factor graph with two rigid bodies. The positions of the
landmarks lk (shaded nodes) implicitly provide measurements zij (black
squares) between the current robot pose xr and the reference pose of the
objects xb and xo.

error associated with the landmark l be

zr,p,l = pr,l −T⊕ pp,l. (2)

To simplify notation, we assume that the points are reordered
according to the landmark they belong to and corresponding
points have the same index l. The transformation is computed
by solving the least squares problem

T? = argmin
T

∑
l

‖zr,p,l‖2Ωr,p,l
(3)

where Ωr,p,l is the information matrix associated with the er-
ror term zr,p,l. Generalized ICP uses the information matrix
Ωr,p,l to define different set of error functions, from point-to-
point to point-to-plane and plane-to-plane. Since no closed
form solution for the this problem exists, minimization is
performed using Levenberg-Marquardt.

To handle multiple bodies, we extended the framework to
estimate multiple transformations at the same time. Let con-
sider the two point clouds Mp and Mr defined above and
let assume the reference point cloud Mp to be partitioned
in disjoint sets, each containing the measurements belonging
to one of the rigid body. Let consider the augmented point
cloud M̂p = {pp,o,i} , where pp,o,i = (x, y) is the i-
th point belonging to object o and expressed in the object
reference frame xo. To avoid the combinatorial complexity of
considering all possible transformations between the objects,
we estimate the reference xo of all the objects with respect
to the robot reference frame xr. This is similar in spirit of
graph-based SLAM approaches and bundle adjustment. The
main difference, is that we iteratively re-estimate the point
correspondences and the object labels.

Given an estimate for the object poses xo, our multiple-
body extension begins by finding the point correspondences
and the semantic labeling according to the Euclidean distance
between the points of the to the o-th rigid body and the points
in the second point cloud Mr = {pq,j}, expressed in the
robot reference frame xr

(j, o)? = argmin
j,o

‖pr,j − (xo 	 xr)⊕ pp,o,l‖2. (4)

This results in the augmented point cloud M̂r = {pr,o,j}.
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Fig. 3. Example factor graph for computing the reference point cloud.
The positions of the landmarks lk (shaded nodes) implicitly provide
measurements zij (black squares) between the reference pose xp and the
laser scans xi (white nodes).

For each correspondence, we define the reprojection error as

zr,o,l = pr,o,l − (xo 	 xr)⊕ pq,o,l, (5)

where we assume again that the points have been reordered
such that points belonging to the same object o and landmark
l have the same index. The poses of all the objects are then
estimated by solving the following least squares problem

(x1, . . . ,xO)? = argmin
x1,...,xO

∑
l,o

‖zr,o,l‖2Ωr,o,l
, (6)

where x1, . . . ,xO are the poses of the objects in the scene.
In this work, we employ the information matrix related
to the point-to-plane error function. We first compute the
normal vector at each point of the reference point cloud
by estimating the principal axis of the point set in its local
neighborhood. The corresponding information matrix is then
set to high informative content along the normal and low
informative content on the other directions. For more details
on that, please refer to the generalized ICP paper [10].

Once new poses have been obtained, the algorithm re-
computes the correspondences and the semantic labels and
re-iterates until no new correspondences can be found or
the reprojection error is below a threshold. Fig. 2 shows
the factor graph underlying this minimization problem in the
case where we only consider two rigid bodies: one moving
object o and the static background b.

IV. POINT CLOUD GENERATION

In the previous section we described how we registered
two point clouds in the presence of multiple rigid bodies.
In this section, we will describe how those point clouds are
generated during both the modeling and localization phase.
In principle, one could use a single sensor measurement from
a laser range scanner or time-of-flight camera and achieve
millimeter accuracy in a static environment [7]. However the
amount of measurements obtained from the object in a single
step is limited and may not be enough to accurately localize
with respect to it. To overcome this problem, we propose
to use multiple measurements to build a local model of the
environment, taken at different locations.



A. Generating the reference point cloud

To generate a reference point cloud, we first drive the
robot close to the reference object with respect to which
we want to be localized. We then move the robot around
the reference location to collect multiple measurements of
the scene and the reference object. We build the reference
model by registering all the collected measurements using
the same multi-body variant of generalized ICP as we did
in the previous section. In this case, each rigid body is one
particular scan and its reference pose is the pose where the
robot was standing while recording the scan. To initialize
the reference frames, we use the odometry readings from the
wheel encoder. Fig. 3 depicts the factor graph corresponding
to the registration step. There, xp denotes the initial pose
of the robot when stopped and xi, i = 1, . . . , 3 the poses
where the robot collected the additional measurements.

Once the ICP algorithm converged, we collect all the
points from the multiple scans and merge them together in a
single point cloud. We use xr as the reference pose for the
whole point cloud and transform all the points accordingly.
Once the point cloud has been assembled, we manually label
the points belonging to the object of interest and initially set
their reference pose xo to be equal to the reference pose xr.

B. Generating the local point cloud

Given the real-time constraints from the robot control loop,
we cannot employ the multi-body registration technique for
generating a local point cloud during localization. Instead,
we generate it incrementally from the sensor readings in
the following way. We start to generate the local point
cloud when the robot reaches the location during the MCL
localization part. At this point, we first run a full multi-body
registration step from the last N sensor measurements, as we
did for the reference point cloud. This results in N estimates
of the robot poses xi, i = 1, . . . , N , where we fixed the first
pose to the one returned by MCL to remove the problem
of gauge freedom. After that, we integrate each new sensor
measurement by only considering the last N scans. We use
the odometry from the wheel encoders to compute an initial
guess of the current robot location and compute the point
correspondences from the current sensor measurements and
the previous N scans. The main difference with the multi-
body registration is that we do not optimize with respect
to all the scan poses, but only with respect to the current
one and we assume the previous poses to be observed. After
the current robot position is estimated, we recompute the
point correspondences and re-iterate until convergence. Fig. 4
shows the underlying factor graph. There, xr denotes the
current pose of the robot and xi, i = 1, . . . , 3 the last N
poses that have been optimized in the previous steps. Note
that we do not have any factor between the previous poses
and that we consider them as observed.

Once the joint ICP procedure converged, we collect all the
points from the current scan and the N previous ones and
merge them together in a single point cloud. We consider the
newly optimized robot pose xr as the reference pose for the
local point cloud and transform all the points accordingly.
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Fig. 4. Example factor graph for computing the local point cloud. The
positions of the landmarks lk (shaded nodes) implicitly provide measure-
ments zij (black squares) between the current robot pose xr (white node)
and the previous laser scans xi (shaded nodes). Note that in this case, we
assume the poses of the laser scans to be observed.
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Fig. 5. Labeled model of the table for the simulation environment. The
table is depicted in red and the background in blue.

V. EXPERIMENTS

We performed a set of experiments to evaluate the perfor-
mance of the proposed approach in both simulated environ-
ments and with a real robot. In both cases, we considered
an environment composed of three different objects: a table,
a box and a shelf. We considered these three objects for
their peculiar shape characteristics when observed from a
laser range finder. The box has a convex shape, which is
easily identifiable from different view points. The shelf has a
concave U-shaped footprint, which can create self-occlusions
if observed from different angles. Finally, the table has a very
hard shape to align with, since only the four small legs are
visible from the laser range finder.

For each object, we manually drove the robot in its
neighborhood to start the procedure to compute the reference
model and we manually labeled the object in the reference
point cloud. To remove the possible bias in the view-
point that could be introduced by running an autonomous
navigation system, we randomly drove the robot around the
environment visiting each location in a random order. During
the evaluation, we constantly moved each object in a different
location each time. To further characterize the performances
with respect to the object displacement, we translated the
objects up to 10 cm and rotated them up to 10 deg in
different settings. To measure the localization performance,
we computed the relative transformation between the robot



Fig. 6. Map of the simulated environment. The size of the in environment
is 8m by 6m. The table on the upper right, the box on the lower right,
and the u-shape shelf on the lower left are used in the experiments.

pose and the reference pose of the object after being moved.

A. Simulation experiments

For the experiments in the simulation environment, we
considered a differential drive robot equipped with a laser
range finder. We simulated the measurements from the wheel
encoders according to a velocity motion model, where the
translational velocity was affected by a zero-mean Gaussian
noise with a standard deviation of 0.1 m/s and the rotational
velocity by a zero-mean Gaussian noise with standard devi-
ation of 0.1 rad/s. We simulated a laser range finder with a
field of view of 180 deg and an angular resolution of 0.5 deg.
The simulated range reading were affected by a zero-mean
Gaussian noise with a standard deviation of 0.01 m. The map
of the simulated environment is pictured in Fig. 6.

We perform six different sets of experiments. We first only
moved the object around by 0.05 m (Set 1) and 0.1 m (Set
2), without rotating it. We then only perform a rotation of
5 deg (Set 3) and 10 deg (Set 4). Finally, we combined a
translation of 0.05 m and a rotation 5 deg (Set 5), followed
by a combined translation of 0.1 m and a rotation of 10 deg
(Set 6). For each set, we performed 10 localization runs.

Fig. 8 illustrates the results of the simulated experiment.
The mean translation and rotation error is roughly the same
in each set, showing that the performance of our method is
not affected by mild perturbations in the object position. The
mean translation error is less than 2.66 mm for all settings
and for all the objects and the maximum error is about
5 mm. With respect to rotation, the mean error is less than
0.23 deg and the maximum error is about 0.85 deg in all
the settings and for all the objects. The standard deviation,
depicted with error bars in the figure, is always less than
1.4 mm in translation and 0.25 deg in rotation.

Our approach share the same limitations of generalized
ICP. For example, if we have a box as reference object and
we rotate it of about 45◦, the approach will suffers from
the symmetry of the object. Similarly, the semantic labeling
process will fail if the object is shifted too far away. In this
situation, the measurements from the object are closer to the
background than to the original observations.

Fig. 7. Environment used for the real world experiments with three
locations and objects: a table (bottom left), a shelf (top right), and a card
box (top left).

B. Real-World experiments

For the real world experiments we used the KUKA
omniRob (Fig. 1) equipped with a SICK-S300 Professional
laser scanner. For the ground truth, we employed the optical
motion capture system from Motion Analysis Digital. The
system is composed of ten high speed Raptor-E cameras that
use infrared light to detect and track reflective markers. We
equipped each object and the robot with different constella-
tions of markers, such that both the pose and the identity of
the object could be retrieved by the system. We conducted
the experiment in an artificial environment consisting of three
rooms, containing the three objects (see Fig. 7 for a picture
of the experimental environment).

In this experiment, we considered three different sets for
the object displacement. We first shifted the objects by 0.1 m,
without rotation (Set 1). We then rotated the objects by
10 deg, without translation (Set 2). Finally, we combined a
translation of 0.1 m and a rotation of 10 deg (Set 3). For each
set, we performed 10 localization runs.

Fig. 9 illustrates the results of the experiment. When the
objects are only shifted by 10cm (Set 1) the mean translation
error for all objects is around 5 mm and the maximum error
was measured at about 9 mm. When to objects are rotated by
10 deg (Set 2) the translation errors are more spread, from
4 mm for the u-shape up to 11 mm for the table. If the objects
are shifted and rotated (Set 3) the mean translation error
for the table grows up to 13 mm with a maximum error of
19 mm, while the errors for the box and u-shaped object are
in the same range of Set 2.

Note that the increase in error for Set 2 and Set 3 is
partially due to the distance between the robot and the
objects. Given the lack of a correct ground-truth location
of the robot after the object has been moved, we compute
the reference location by applying to the motion capture
estimate of the object the rigid transformation that was
present during the registration of the reference model. The
distance between the objects and the robot was about one and
half meter, which would results in about 6 mm translation
error if the motion capture has an angular error of a quarter
of a degree. Those results are not directly comparable with
our previous evaluation. In our previous work, we were
able to directly measure the location of the robot in the
environment, while here, we need to measure the relative
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Fig. 8. Results of the simulation experiments with the object shifted
by 0.05m (Set 1), 0.1m (Set 2), rotated by 5◦ (Set 3), 10◦ (Set
4), simultaneously translated by 0.05m and rotated by 5◦ (Set 5), and
simultaneously translated by 0.1m and rotated by 10◦ (Set 6). The boxes
indicate the mean error over all runs and the bars its standard deviation.
The crosses represent the maximum errors.

displacement between the object and the robot. The resulting
measurements are then affected twice by the motion capture
noise and position estimates are amplified by small angular
errors, since the markers could not be mounted on the edges.
As a consequence, we take the results in the real world
scenario as lower bounds on the accuracy of the approach.
Nevertheless, all measured errors are sufficient for loading
actions in a warehouse, as claimed by Saarinen et al. [8].

VI. CONCLUSION

In this paper we presented a novel approach for localizing
a mobile robot with respect to an object that can be moved
in the environment. We decompose the localization problem
in two main parts: global localization with respect to a
map and relative localization with respect to an object. For
the first part, we employ a state-of-the-art Monte Carlo
localization algorithm [7]. For the second part, we propose a
novel extension of the generalized ICP algorithm to handle
multiple rigid bodies that undergo a set of independent
rigid motions. To improve accuracy, we further propose a
method to compute accurate reference models for the object
during both training and localization phase. We analyzed
our approach with simulated and real world experiments.
The results show that our method achieves a localization
accuracy of less than a centimeter, which is sufficient for
typical industrial tasks, even when objects are moved around.
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