
Latent Plans for Task-Agnostic Offline
Reinforcement Learning

Erick Rosete-Beas1∗, Oier Mees1∗, Gabriel Kalweit1, Joschka Boedecker1,Wolfram Burgard2

1University of Freiburg 2University of Technology Nuremberg

http://tacorl.cs.uni-freiburg.de

Abstract: Everyday tasks of long-horizon and comprising a sequence of multiple
implicit subtasks still impose a major challenge in offline robot control. While
a number of prior methods aimed to address this setting with variants of imita-
tion and offline reinforcement learning, the learned behavior is typically narrow
and often struggles to reach configurable long-horizon goals. As both paradigms
have complementary strengths and weaknesses, we propose a novel hierarchi-
cal approach that combines the strengths of both methods to learn task-agnostic
long-horizon policies from high-dimensional camera observations. Concretely,
we combine a low-level policy that learns latent skills via imitation learning and
a high-level policy learned from offline reinforcement learning for skill-chaining
the latent behavior priors. Experiments in various simulated and real robot control
tasks show that our formulation enables producing previously unseen combina-
tions of skills to reach temporally extended goals by “stitching” together latent
skills through goal chaining with an order-of-magnitude improvement in perfor-
mance upon state-of-the-art baselines. We even learn one multi-task visuomotor
policy for 25 distinct manipulation tasks in the real world which outperforms both
imitation learning and offline reinforcement learning techniques.

Keywords: Offline Reinforcement Learning, Imitation Learning, Robot Learning

1 Introduction
In recent years, reinforcement learning (RL) has achieved tremendous successes in a variety of do-
mains [1, 2, 3, 4]. Especially offline RL [5, 6, 7, 8, 9, 10] with its appealing property to estimate
(close-to) optimal policies from previously collected and fixed datasets yielded a strong current in
robot control research. However, despite the exceptional progress in this fast-moving field, cur-
rent offline RL methods are often evaluated on highly specific and artificial benchmarks lacking
the complexity and long-term dependencies of everyday tasks, which inherently entail a sequential
relationship of multiple implicit subtasks. It lies in the nature of such composite tasks that this trans-
lates to estimating optimal actions for a significant amount of consecutive decision steps, making
learning of such optimal policies very difficult. In fact, Kidambi et al. [11] discovered a quadratic
relationship between the horizon of a task and the worst-case accumulated error of any offline RL
method. This poses a major challenge especially in case of raw and unstructured sensory inputs, as
robots must be capable of learning a large repertoire of skills and combine them to perform everyday
tasks acting on long time scales.

One way to alleviate the problem of long horizons is the hierarchical subdivision of a task into high-
and low-level policies, where a high-level policy is chaining executions of multiple low-level policies
over primitives. Most commonly, such hierarchical structures are rather rigid and act upon a fixed
number of low-level policies, thus lacking the flexibility and extendability required for most real-life
settings. In addition, the a priori definition of useful low-level skills or their discovery from data is
a highly non-trivial task. Related prior work attempted to solve this via a goal-conditioned reformu-
lation [12] of Conservative Q-learning [6]. However, it was shown that on short and distinct robot
manipulation tasks, self-supervised learning on unlabeled play can significantly surpass the perfor-
mance of individual expert-trained behavioral-cloning policies [13] – which, on the flip-side, can be
on par with computationally expensive offline RL methods in such settings [14, 15]. In this work,
we thus propose to leverage play data, i.e., non-goal-directed collections of trajectories grounded

∗Equal Contribution

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

http://tacorl.cs.uni-freiburg.de

1 2
3

Latent Plan

Low-level Policy

High-level Policy

Figure 1. TACO-RL learns a single 7-DoF hierarchical visuomotor policy from offline data. It can solve long-horizon robot manipulation
tasks by using a high-level policy that divides a task into a sequence of latent behaviors that are executed by a low-level policy that interacts
with the environment. It reduces the effective horizon of the high-level policy and learns to chain skills through dynamic programming.

in human action execution, to estimate short-horizon expert policies via imitation learning chained
via a coarse-grained high-level policy optimized by offline RL to account for optimal solutions over
long horizons. By stitching latent plans extracted from unstructured data, our formulation offers the
simplicity of imitation from collected play data while offering long-term optimality for sequential
multi-tier tasks. Specifically, we use the collected data to learn our hierarchical policy as acquiring
data with good state coverage and visual variety is important for successful applications of offline
RL. Play data assumes access to an unsegmented teleoperated dataset of semantically meaningful
behaviors provided by users, without a set of predefined tasks in mind. Unlike previous hierarchi-
cal approaches, that learn long-horizon tasks by performing a discrete set of tasks with a low-level
policy, we are motivated by the idea of an agent capable of task-agnostic control. In this setting, we
are endowing the agent with the ability to reach any possible target state from a given initial state.
Specifically, we learn a low-level policy that decodes motor control actions from latent skills learned
through imitation learning in a self-supervised manner. This low-level policy can perform various
behaviors when present in a state by conditioning the policy with a latent plan. Consequently, we
also learn a high-level policy that will order these behaviors to achieve long-horizon tasks. This
high-level policy is modeled as a goal-conditioned policy that outputs latent plans to be decoded by
the low-level policy. The skill-chaining of the behavior priors is learned through offline RL by aug-
menting plan transitions with hindsight relabeling. This hierarchical approach constitutes a practical
solution by decomposing a whole task into smaller chunks of sub-tasks. The high-level policy can
learn long-horizon tasks as the effective episode horizon is reduced and it does not need to capture
in detail the physics of the world, simplifying the underlying dynamics of the RL agent. The model
formulation allows to design a general-purpose training objective by considering every possible state
reached in the data as a potential task. Additionally, our approach is effective for learning policies
from large and diverse datasets which do not necessarily contain optimal behaviors.

The primary contribution of this work is an hierarchical self-supervised approach to learning task-
agnostic control policies from high-dimensional observations by combining model-free RL methods
with imitation learning. To our knowledge, our method is the first learning system explicitly aiming
to solve long-horizon multi-tier tasks from purely offline and unstructured play data without access
to a model. We integrate our components in a unified framework, called Task-AgnostiC Offline
Reinforcement Learning (TACO-RL). See Figure 1 for an overview. We show that our model obtains
the highest success rate when tested against other state-of-the-art baselines on various long-horizon
tasks of the challenging CALVIN environment [16] and that it is able to learn a single visuomotor
7-DoF policy that can perform a wide range of long-horizon manipulation tasks in both a simulated
and a real-world tabletop environment. At test time, the real world system is capable of solving a
challenging suit of 25 manipulation tasks at 10 Hz that involve more than 300 decisions per task.

2 Related Work

Offline Reinforcement Learning. Offline RL [5], i.e., RL from fixed and possibly mixed transition
sets, constitutes a recent trend in RL and robot control research. Generally, at least in model-free

2

settings, these techniques put a regularization on out-of-distribution actions, so as to enforce the
learned policy to remain in the coverage of the dataset, since offline RL methods tend to suffer
strongly from the problem of value overestimation. The simplest, yet competitive, attempt to solve
this issue is a behavioral cloning addendum to a classical actor-critic framework [8]. Conservative
Q-learning [6], on the other hand, imposes a penalty for actions not covered in the dataset making
out-of-distribution actions non-optimal. Fisher-BRC parameterizes the critic as the log-behavior-
policy [17] extended by a weighted offset term. Implicit Q-learning [10] modifies the Bellman
optimality update towards a SARSA-like update, maximizing only over actions in the data-set. How-
ever, the rationale behind most current offline RL methods remains rather similar. While we make
use of Conservative Q-learning in our experiments – which recently emerged as one of the most
widely used benchmarks in offline RL – we want to point out that any other sophisticated improve-
ment upon the classical offline RL objective is orthogonal to our work and could in principle be
incorporated in our framework.

Hierarchical policy learning. Hierarchical policy learning involves learning a hierarchy of policies
where a low-level policy performs motor control actions and a high-level policy directs the low-level
policy to solve a task. While some works [18, 19, 20] learn a discrete set of lower-level policies, each
behaving as a primitive skill, this is not appropriate for a general-purpose robot that accomplishes
a continuum of behaviors. A large body of hierarchical policy optimization approaches following
a similar rationale to our method use planning in latent state spaces [21, 22, 23, 24, 25, 26, 27,
28] and hence require a model covering the complex dynamics of multistep skills, which is an
active field of research on its own. We alleviate the necessity of a model by estimating the high-
level policy via model-free RL as opposed to model-based planning and thus keep the optimization
over the continuous set of skills completely at training time. In contrast to a plethora of prior
work [29, 30, 31, 32, 33, 34, 35], our approach acts in the offline paradigm as it yields a lot of
appealing properties for learning robot control policies. En route to a skill-chaining policy able to
solve long-horizon problems, our approach exploits unstructured play data to estimate the latent
skill embeddings as opposed to other work that relies on expert data or predefined skills [36, 37, 38].
Whilst in principle also other latent skill representations could be considered [39, 40, 41, 42, 43],
we build upon Play-LMP [13] as it has already shown great performance and robustness in this
very setting. Our design choices are directed towards a general-purpose visuomotor agent that has a
high zero-shot generalization even for complex long-horizon tasks, a setting more complex than in
previous offline methods [13, 44]. In summary, our approach is aiming to solve temporally extended
tasks without the necessity of a model or planning from entirely offline, unstructured, unlabeled
and suboptimal data. This unique combination of properties thus adds a scalable and extendable
optimization method to the toolbox of robot learning.

3 Mathematical Foundation
In this section, we introduce notation and define the problem setting. We model the interaction be-
tween and environment and a goal-conditioned policy as a goal-augmented Markov decision process
M = (S,A, p, r,G, p0, γ) where S represents the state-observation space, A represents the action
space, p(s′|s, a) is a state-transition probability function, r(s, a, s′) represents the reward function,
G ⊆ S specifies the goal space, p0(s) is an initial state distribution, and γ ∈ (0, 1) represents the
discount factor. We note that the agent does not have access to the true state of the environment,
but to visual observations. We learn in an offline manner by assuming to use a large, unlabeled, and
undirected fixed dataset D = {(s1, a1), (s2, a2), ..., (sT , aT)}. We then relabel this long temporal
state-action stream to produce a dataset of trajectories D = {(τi = (st, at)

k
t=0}Ni=1 that can be used

to learn both the low-level and high-level policy without access to a model.

4 Offline goal-conditioned RL with TACO-RL
In this section, we elaborate on TACO-RL. Our proposed method considers the bottom-up approach;
we start by training a low-level policy and we use it to provide a higher-level action space for a high-
level policy that, due to this task division, is ideally facing an easier learning problem. First, we
describe our unsupervised objective, which learns a continuous space of latent-conditioned behav-
iors πω(a|sc, z) from D, where sc represents the current state. Afterward, we detail how to learn
the high-level policy with offline RL by hindsight relabeling sub-trajectories with the aid of the pre-
viously learned low-level policy. This reduces our effective task horizon, making it easier to learn
long-horizon tasks. Additionally, the low-level policy will predict actions close to the offline data
distribution, bringing stability to the whole learning pipeline. See Figure 2 for an overview.

3

(1) Low-level policy learning (2) High-level policy learning (3) Policy inference

Offline dataset

action

Prior Encoder

Low-level policy

Latent space

KL divergence
minimization

latent
plan

current

current

Objective

action
Action

likelihood

Entire sequencelast state

Offline dataset

Fixed
pre-trained
encoder

Entire
sequence

Relabeled transition

latent plancurrent last
state

goal

High-level policy

Low-level policy

?

goalcurrent
@ 1Hz

@ kHz
current latent

plan

actionclosed
loop
@ kHz

action

Offline RL Training

High-level policy

Figure 2. TACO-RL Overview. TACO-RL is a self-supervised general-purpose model learned from an offline dataset of robot interactions,
it generalizes to a wide variety of long-horizon manipulation tasks. (1) Low-level policy: Recognizes and organizes a repertoire of behaviors
from unlabeled, undirected dataset in a latent plan space. (2) High-level policy: Hindsight relabeling of sampled windows of experience into
reward-augmented latent plan transitions. Learned with offline RL, this allows the high-level policy to stitch plans together to achieve complex
long-horizon tasks. (3) Inference: the hierarchical model is used to perform goal-conditioned rollouts in robot manipulation tasks.

4.1 Learning the low-level policy
We would like to extract a continuous space of primitives that propose meaningful behaviors for
an agent to take within a given state. We learn a low-level policy πω(a|sc, z) from the offline,
unstructured dataset D that is able to decode a latent plan z to its respective motor-control actions
a. After training, we can use the latent plans as an action space for the high-level policy to learn
reaching temporally extended goals by “stitching” together latent skills through goal chaining.

In our fixed static dataset D, it is expected to find different valid behaviors achieving the same out-
come in a scene, e.g. closing a drawer quickly or slowly. We address this inherent multi-modality by
auto-encoding contextual data through a latent plan space with a sequence-to-sequence conditional
variational auto-encoder (seq2seq CVAE) [13, 45]. Conditioning the action decoder on the latent
plan allows the policy to use the entirety of its capacity for learning uni-modal behavior. Conse-
quently, we propose the following objective for learning the low-level policy πω(a|sc, z):

min
ω,φ

Eτ∼D,z∼qφ(z|τ)

− |τ |∑
t=0

log(πω(at|st, z))

 , (1)

where E indicates empirical expectation and qφ(z|τ) may be interpreted as the latent plan encoder.
As an additional component of the algorithm, we enforce consistency in the latent variables pre-
dicted by encoder qφ(z|τ) and prior πδ(z|st, sg). Since our goal is to obtain a latent plan z that
captures a temporal sequence of actions for a given trajectory τ = (s0, a0, ..., sk, ak), we utilize a
regularization that enforces the distribution qφ(z|τ) to be close to just predicting the primitive or the
latent variable z given the initial and last state of this sub-trajectory, i.e., πδ(z|sc, sg). The Evidence
Lower Bound (ELBO) [46] for the CVAE can be written as:

log p(x|s) ≥ −KL (q(z|x, s) ‖ p(z|s)) + Eq(z|x,s) [log p(x|z, s)] . (2)

The conditioning of the prior πδ(z|sc, sg) on the initial and final state regularizes the distribution
qφ(z|τ) to not overfit to the complete sub-trajectory τ . In practice, rather than solving the con-
strained optimization directly, we implement the KL-constraint as a penalty, weighted by an ap-
propriately chosen coefficient β. Thus, one may interpret our objective as using a sequential β-
VAE [47]. Finally, we use balancing terms within the KL loss [48, 49], see Appendix D.1.

4.2 Offline RL with Hindsight relabeling
After distilling learned behaviors from D in terms of an encoder qφ(z|τ), a latent behavior policy
πω(a|sc, z), and a prior πδ(z|sc, sg), TACO-RL then applies these behaviors to learn a general-
purpose agent with offline RL. We formulate a goal augmented MDP by augmenting environment
trajectories with a reward function. Thereby, we sample a trajectory from the dataset τ =∼ D.

4

Samples from goal distribution

Current state

Positive
examples:

r = 1
r = 0

Negative
examples:

r = 0

Figure 3. We relabel sampled trajectories into reward augmented transitions by sampling goal states that can be reached after executing a
sequence of behaviors. With green border, we have the frame found at the end of the sampled trajectory. As this state will be reached after
executing the latent behavior, the reward for this transition is 1. With blue border, we find future states that occur after the sampled sequence.
These goals are necessary for chaining behaviors. The reward for these transitions is 0. Finally, with red border, we present images with similar
proprioceptive information to the final state in the sampled trajectory, but a different scene arrangement. The reward for these transitions is 0.

Then, we use this trajectory to represent a high-level policy transition by using the pre-trained fixed
encoder. For this, we sample a latent plan from the policy encoder zt ∼ qφ(z|τ) and we generate
an interaction transition using the sampled latent plan (st, zt, st+k−1). To augment this transition
with a reward, we use hindsight relabeling with a sparse reward as follows r(st, zt, st+k−1, sg) =
1st+k−1=sg . In this formulation, we assume that during inference we can decode the latent plan
using the low-level policy and we will reach the final trajectory state st+k−1. Note that st, st+k−1,
and sg all represent images, and the reward is only given when the high-level transition reached state
and goal state exactly match. During training, goals are sampled according to a distribution sg ∈ S,
which we will discuss later. Our Q-learning approach corresponds to the following Bellman error
optimization objective:

min
λ

Eτ∼D,z∼qφ(z|τ),sg∼S
[
Qλ(st, zt, g)− Q̂(st, zt, g)

]2
where: Q̂(st, zt, g) =

(
1st+k−1=sg + γ1st+k−1 6=sg max

zt+k−1

Qλ(st+k−1, zt+k−1, sg)

) (3)

We can then learn a high-level policy πθ(z|sc, sg) with an off-the-shelf offline actor-critic method.
In TACO-RL, we use Conservative Q-Learning (CQL) [6] where we initialize the actor weights with
the previously learned prior policy πδ(z|sc, sg), as the prior policy is already a good starting point
that is able to solve short-horizon tasks.

Selecting goals for relabeling transitions. Our high-level policy is learned via offline RL as we
want to learn through dynamic programming how to chain skills to reach long-horizon goals. For
this we need to create a formulation that sample goal states sg that can be reached after executing a
sequence of plans. Naively choosing sg , say by sampling random states uniformly from the dataset,
will provide an extremely sparse reward signal, as two random state images will rarely be identical.
The sparse reward problem can be mitigated by selectively sampling as goals the states that were
reached in future time steps along the same trajectory as st [50]. As we want to sample states that
are reached after executing a plan, we assume an arbitrary window size k. Concretely, to sample
goals for a transition at time step t, we sample a discrete-time offset ∆ ∼ Geom(p), with p ∈ [0, 1],
and use the state at time t + ∆ ∗ (k − 1) as the goal. Note that if we assume consistent transitions
from latent plan decoding, then if ∆ = 1, the reward for this transition is 1, as the low-level policy
will reach the specified state after executing the plan, avoiding the sparsity issue.

However, relabeling all transitions in this manner introduces a problem: because the distance func-
tion is only trained on goals that have been achieved, it will systematically underestimate the distance
to unreachable goals. We require a method for selecting “negative” goals that are distant, but still
relevant. Randomly selecting states will produce pairs of images that are likely to be distant, but not
necessarily relevant (e.g., pairs in which all objects and the robot have been moved). We want a goal
sampling procedure that generates less obvious examples of distant states that are more informative.
Similar to Tian et al. [51], we sample negative goal states sg which have a similar proprioceptive
state. This constraint enables the Q-function to learn to focus on the scene’s under-actuated parts
(e.g., objects), which are likely to have distinct positions. As a result, these timesteps act as hard
negatives, encouraging the model to pay closer attention to the scene. This sampling approach is
computationally inexpensive, as we can query a precomputed k-nearest neighbors structure.

5

5 Experimental Results

We evaluate TACO-RL for learning a general-purpose robot in both simulated and real-world envi-
ronments. The goals of these experiments are to investigate: (i) whether our hierarchical model is
effective in performing complex long-horizon skills, (ii) how TACO-RL compares with alternative
goal-conditioned policies, (iii) if our model scales to be used in real-world robotics.

5.1 Experimental Setup

We evaluate our approach in both simulated and real-world environments. We first investigate learn-
ing 7-DoF visuomotor robot skills in the CALVIN environment [16]. We train on the environment D
of CALVIN, which contains 6 hours of unstructured play data collected via teleoperating a Franka
Emika Panda robot arm to manipulate objects in a 3D tabletop environment.

Baselines Methods. As we aim to combine the complementary strengths of both paradigms, imita-
tion and offline RL, we compare TACO-RL to representatives of the two extrema of the spectrum:
the offline RL method Conservative Q-learning [6] extended by hindsight relabeling (CQL+HER)
and the imitation learning method Play-supervised Latent Motor Plan (LMP) [13]. CQL+HER
is trained on the derived reward as explained in Section 4.2 and introduces a penalty for out-of-
distribution actions to limit the respective values of unseen actions. To make a fair comparison,
this baseline is also trained with the negative mining trick. LMP, on the other hand, trains a goal
conditioned imitation agent and resembles the low-level policy in TACO-RL, however, without any
long-term optimality guarantees which TACO-RL accounts for by offline RL of a higher-level plan-
selective policy. Additionally, we also compare against Relay Imitation Learning (RIL) [32]. This
algorithm is the most related hierarchical algorithm, as it also learns from offline play data. RIL
represents the family of methods that learns to predict latent subgoals for a low level policy.

5.2 Simulation Results

We start by evaluating our approach in the CALVIN environment [16]. This is a challenging en-
vironment as the scene changes through time and we act by using only RGB images of a static
camera as input. As there is no predefined reward signal in this dataset, we relabel the transitions
analogously as we do with TACO-RL. We investigate if our method is capable of performing com-
plex long-horizon tasks in a robot control setting. We first attempt to solve 500 unique chains of
5 image-based goals queried in a row. For each subtask in a row the policy is conditioned on the
current sub-goal image instruction and transitions to the next sub-goal only if the agent successfully
completes the current task or if 180 timesteps have passed without reaching a success. We call this
evaluation of performing multiple tasks on a row, long-horizon multitask with visual observations
LH-MTVis. This setting is very challenging as it requires agents to be able to transition between
different subgoals. Additionally, we ablate our model by increasing the negative goals ratio to 50%
and removing the negative mining.

Method LH-MTVis

No. Instructions in a Row (500 chains)
1 2 3 4 5 Avg. Len.

Ours 95.4%±2 82%±7.3 57.8%±15 32.7%±10 6.9%±3.1 2.7±0.3
No neg. goals 94.9%±4.5 69.7%±14.3 31.1%±15.7 5.5%±4.5 0.9%±0.8 2.02±0.4

50% neg. goals 71.8%±2.2 27.1%±1.8 6.2%±2.6 0.2%±0.3 0%±0 1.05±0.1

RIL [32] 70.3%±3.5 32.9%±7.2 10.5±4.01 2.4±0.7 0.1±0.1 1.17±0.15
LMP [13] 91.4%±2.3 63.3%±3.5 23.1%±2.2 3.6%±0.9 0.2%±0.08 1.8±0.08

CQL+HER 65.5%±12.7 25.3%±11 5.6%±3.2 0.6%±0.2 0% 0.9±0.2

Table 1. Success rates of models running 500 chains per three different random seeds, using intermediate sub-goal images.

In Table 1. we can see that TACO-RL is able to outperform all baselines. This experiment demon-
strates that our agent is able to transition between different sub-goal images more naturally, enabling
chaining more tasks in a row. Through our ablations, we observe that the performance of our model
drops significantly when increasing the negative goal ratio to 50%. This result is to be expected as
reducing the number of positive examples leads to a less informative reward indicating which are
the useful behaviors to reach a transition. If we remove the negative goals from the goal distribution,
the agent is still able to perform more sequential tasks than the baselines, but it underestimates the
distance to the goals. This results in a decreased performance compared to our full approach.

6

Figure 4. Real-world Manipulation Tasks. Examples shown from left to right are: closing the drawer, opening the drawer, moving the sliding
door left, moving the sliding door right, lifting the block, rotating the block, pushing the block, turning the green LED on, placing the block on
top of the drawer and placing the block in the container.

We then evaluate the capacity of our model to perform 1000 rollouts of two sequential tasks using a
single goal image. For this, we allow the agent to perform actions until 300 timesteps has passed. We
record the success rate of all models in Table 2. TACO-RL successfully performs long-horizon tasks
that require reasoning over sequential behaviors with an final success rate of 27% which corresponds
to an order of magnitude improvement upon the LMP and CQL+HER baselines. RIL also exploits
a hierarchical structure which allows it to reason over longer horizons than the other baselines, but
TACO-RL still obtains more than two times its accuracy when performing both sequential tasks
using a single image, proving its effectiveness in chaining skills through dynamic programming.

Method LH-MTVis

No. Instructions in a Row (1000 chains)
1 2 Avg. Len.

Ours 67.9%±3.9 27%±2.5 0.94±0.06
No neg. goals 39.5%±2.7 4.2%±1.6 0.44±0.04

50% neg. goals 45.4%±5.2 6.3%±0.6 0.52±0.05

RIL [32] 66.2%±6.5 13.3%±2.3 0.79±0.09
LMP [13] 34.3%±3.2 2.7%±0.1 0.3±0.03

CQL+HER 35.2%±3.4 2.4%±0.8 0.37±0.04

Table 2. Success rates of models running 1000 chains per three different
random seeds conditioned only on the last goal image.

We further test the capacity of the models to
perform a single task when the goal image does
not contain the robot performing the task, but
the end effector appears in another position af-
ter the task was performed (cf. Table 3). We run
50 rollouts for each task. These harder tasks re-
quire reasoning about changes in the scene and
additionally evaluates generalization, as each
rollout uses a different goal image not seen dur-
ing training. With our ablations, we can see that
including the negative goals in our framework
contributes greatly to obtain a good performance in this scenario alleviating to not only imitate the
final end effector position, but to reach the entire scene configuration. We noticed that TACO-RL
was able to outperform the baselines, which can be explained through the skill-chaining abilities
of our model and the negative goal mining used to train the critic network of the high-level policy.
On the other hand, CQL+HER is not able to achieve the desired goal image and LMP has a strong
bias towards the end-effector position ignoring the changes in the environment. RIL can imagine
intermediate latent sub-goals required to achieve the task, which reduces the bias towards the end
effector position, but it stills obtain a lower accuracy rate than our method.

Method \Task Place block in drawer Open drawer Move slider left Turn on lightbulb

Ours 94%±8.7 87.3%±5 79.3%±11.7 94%±4
No neg. goals 77.3%±6.1 37.3%±32.3 13.3%±9.5 9.3%±6.1

50% neg. goals 88%±7.2 58.7%±21.6 39.3%±25.3 92%±4

RIL [32] 74.67%±26.6 87.3%±1.15 77%±1.4 92.7%±2.3
LMP [13] 78.6%±6.1 12%±2 12%±5.2 10%±2

CQL+HER 67.6%±20.8 8.6%±5 17.3%±8 4%±4

Table 3. The average success rate of goal-conditioned models running 50 rollouts where the goal image does not contain the end effector
performing the task. Three models trained from different random seeds were used to perform the rollouts.

5.3 Real-Robot Experiments
For the real-world experiments, we investigate learning a single policy capable of performing mul-
tiple goal conditioned tasks. Examples of the tasks are shown in Figure 4. To generate the training
dataset we collected nine hours of play data recorded via teleoperating a Franka Emika Panda robot
arm with a VR controller. To avoid self-occlusions in the scene, these models also receive RGB

7

images of a gripper camera as an additional input. After training the models with the offline dataset,
we performed 20 rollouts for each task using multiple goal images and start positions. TACO-RL
was able to outperform the baselines consistently, especially when evaluated from a start position
far away from the goal image or that required extended reasoning. We recorded the success rate of
each model in Table 4.

Task \Method Ours LMP [13] CQL+HER

Lift the block on top of the drawer 60% 60% 20%
Lift the block inside the drawer 65% 50% 15%
Lift the block from the slider 60% 30% 10%

Lift the block from the container 65% 60% 20%
Lift the block from the table 70% 70% 30%

Place the block on top of the drawer 60% 50% 30%
Place the block inside the drawer 70% 40% 20%

Place the block in the slider 30% 0% 0%
Place the block in the container 65% 30% 15%

Stack the blocks 30% 0% 0%
Unstack the blocks 30% 10% 0%
Rotate block left 70% 40% 10%

Rotate block right 70% 50% 15%
Push block left 60% 50% 20%

Push block right 60% 50% 10%
Close drawer 90% 70% 20%
Open drawer 70% 50% 10%

Move slider left 75% 30% 0%
Move slider right 70% 10% 0%
Turn red light on 60% 30% 0%
Turn red light off 50% 20% 0%

Turn green light on 70% 60% 10%
Turn green light off 65% 50% 10%
Turn blue light on 50% 50% 5%
Turn blue light off 50% 30% 10%

Average over tasks 61% 40% 11%

Table 4. The average success rate of the multi-task goal-conditioned models running roll-outs in the real world.

We also tested our approach to perform sequential tasks with the real robot to verify that our ap-
proach can be scaled for long-horizon tasks. For this experiment we use a goal image for each task
that the robot executes. See the supplementary video for qualitative results that showcase the diver-
sity of tasks and the long-horizon capabilities of the different methods. Our agent trained completely
from unlabeled play data is able to successfully perform most of these sequential tasks, by inferring
how to transition between tasks and reach the state depicted by the goal image. More details in
Appendix F.3.

Finally, we evaluate TACO-RL performing complex tasks with a single goal image, such as lifting
the block and moving it to a desired position, and stacking a block on top of another. These tasks
requires the agent to reason in a long-horizon manner, as if the robot imitates only the end effector
position, the objects would not be arranged correctly in the scene. By stitching together the learned
latent behaviors, our model was able to perform these tasks consistently.

6 Conclusion and Limitations
In this paper, we introduced Task-Agnostic Offline Reinforcement Learning (TACO-RL), which ex-
ploits a latent plan representation estimated from unstructured play data to effectively limit the hori-
zon of a high-level offline RL policy acting upon this latent plan space. By dividing sequential
multi-tier tasks into chunks of implicit subtasks solved by imitation learning, TACO-RL showed up
to an order-of-magnitude improvement in performance compared to state-of-the-art both imitation
learning and offline reinforcement learning baselines in both, simulated and real robot control tasks.

While TACO-RL is quite capable, it does have a number of limitations. Specifying a task to the
requires providing a suitable goal image at test-time, which should be consistent with the current
scene. Besides, tracking task progress might be useful when sequencing skills of different time
horizons. We discuss limitations in more detail in Appendix H. But overall, we are excited about the
confluence of imitation and offline RL methods towards scaling robot learning.

8

Acknowledgments

This work has been supported partly by the German Federal Ministry of Education and Research
under contract 01IS18040B-OML.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[3] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. van de Wiele, V. Mnih,
N. Heess, and J. T. Springenberg. Learning by playing solving sparse reward tasks from
scratch. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 4344–
4353. PMLR, 10–15 Jul 2018.

[4] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep
reinforcement learning. In Proceedings of Robotics: Science and Systems, 2019.

[5] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[6] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[7] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, pages 2052–2062. PMLR, 2019.

[8] S. Fujimoto and S. Gu. A minimalist approach to offline reinforcement learning. In Advances
in Neural Information Processing Systems, 2021.

[9] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-
based offline policy optimization. In Advances in Neural Information Processing Systems,
volume 33, pages 14129–14142. Curran Associates, Inc., 2020.

[10] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
In International Conference on Learning Representations, 2022.

[11] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline rein-
forcement learning. In NeurIPS, 2020.

[12] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. C. Julian, C. Finn, et al. Actionable models: Unsupervised offline reinforcement learning of
robotic skills. In International Conference on Machine Learning, pages 1518–1528. PMLR,
2021.

[13] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on robot learning, pages 1113–1132. PMLR, 2020.

[14] A. Kumar, J. Hong, A. Singh, and S. Levine. Should i run offline reinforcement learning or
behavioral cloning? In International Conference on Learning Representations, 2022.

[15] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, 2021.

[16] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters (RA-L), 7(3):7327–7334, 2022.

9

[17] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In ICML, volume 139 of Proceedings of Machine Learning
Research, pages 5774–5783. PMLR, 2021.

[18] A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, and K. Hausman. Demonstration-
bootstrapped autonomous practicing via multi-task reinforcement learning. arXiv, 2022.

[19] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. Mcp: Learning composable hi-
erarchical control with multiplicative compositional policies. Advances in Neural Information
Processing Systems, 32, 2019.

[20] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

[21] O. Rybkin, C. Zhu, A. Nagabandi, K. Daniilidis, I. Mordatch, and S. Levine. Model-based
reinforcement learning via latent-space collocation. In ICML, volume 139 of Proceedings of
Machine Learning Research, pages 9190–9201. PMLR, 2021.

[22] K. Pertsch, O. Rybkin, F. Ebert, S. Zhou, D. Jayaraman, C. Finn, and S. Levine. Long-horizon
visual planning with goal-conditioned hierarchical predictors. In NeurIPS, 2020.

[23] K. Pertsch, O. Rybkin, J. Yang, S. Zhou, K. G. Derpanis, K. Daniilidis, J. J. Lim, and A. Jaegle.
Keyframing the future: Keyframe discovery for visual prediction and planning. In L4DC,
volume 120 of Proceedings of Machine Learning Research, pages 969–979. PMLR, 2020.

[24] S. Nair and C. Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via
visual subgoal generation. In International Conference on Learning Representations,, 2020.

[25] D. Jayaraman, F. Ebert, A. A. Efros, and S. Levine. Time-agnostic prediction: Predicting
predictable video frames. In International Conference on Learning Representations, 2019.

[26] K. Fang, Y. Zhu, A. Garg, S. Savarese, and L. Fei-Fei. Dynamics learning with cascaded
variational inference for multi-step manipulation. In CoRL, volume 100 of Proceedings of
Machine Learning Research, pages 42–52. PMLR, 2019.

[27] B. Ichter, P. Sermanet, and C. Lynch. Broadly-exploring, local-policy trees for long-horizon
task planning. In CoRL, volume 164 of Proceedings of Machine Learning Research, pages
59–69. PMLR, 2021.

[28] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. arXiv
preprint arXiv:2207.07560, 2022.

[29] K. Pertsch, Y. Lee, and J. J. Lim. Accelerating reinforcement learning with learned skill priors.
In CoRL, volume 155 of Proceedings of Machine Learning Research, pages 188–204. PMLR,
2020.

[30] K. Fang, P. Yin, A. Nair, and S. Levine. Planning to practice: Efficient online fine-tuning by
composing goals in latent space. arXiv preprint arXiv:2205.08129, 2022.

[31] S. Nasiriany, V. Pong, S. Lin, and S. Levine. Planning with goal-conditioned policies. In
NeurIPS, pages 14814–14825, 2019.

[32] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. In CoRL, volume 100 of Proceed-
ings of Machine Learning Research, pages 1025–1037. PMLR, 2019.

[33] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In NeurIPS, pages 3307–3317, 2018.

[34] T. Shankar and A. Gupta. Learning robot skills with temporal variational inference. In Inter-
national Conference on Machine Learning, pages 8624–8633. PMLR, 2020.

[35] J. Borja-Diaz, O. Mees, G. Kalweit, L. Hermann, J. Boedecker, and W. Burgard. Affordance
learning from play for sample-efficient policy learning. In ICRA, Philadelphia, USA, 2022.

10

[36] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei. GTI: learning to general-
ize across long-horizon tasks from human demonstrations. In Robotics: Science and Systems,
2020.

[37] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In ICRA, pages 1–8. IEEE, 2018.

[38] D. Shah, P. Xu, Y. Lu, T. Xiao, A. T. Toshev, S. Levine, et al. Value function spaces: Skill-
centric state abstractions for long-horizon reasoning. In International Conference on Learning
Representations, 2021.

[39] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine. Parrot: Data-driven behavioral
priors for reinforcement learning. In International Conference on Learning Representations,
2021.

[40] D. Ghosh, A. Gupta, and S. Levine. Learning actionable representations with goal conditioned
policies. In ICLR (Poster). OpenReview.net, 2019.

[41] O. Nachum, M. Ahn, H. Ponte, S. S. Gu, and V. Kumar. Multi-agent manipulation via locomo-
tion using hierarchical sim2real. In Conference on Robot Learning, pages 110–121. PMLR,
2020.

[42] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embed-
ding space for transferable robot skills. In International Conference on Learning Representa-
tions, 2018.

[43] O. Mees, M. Merklinger, G. Kalweit, and W. Burgard. Adversarial skill networks: Unsuper-
vised robot skill learning from videos. In ICRA, Paris, France, 2020.

[44] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. OPAL: offline primitive discov-
ery for accelerating offline reinforcement learning. In International Conference on Learning
Representations, 2021.

[45] L. Wang, X. Meng, Y. Xiang, and D. Fox. Hierarchical policies for cluttered-scene grasping
with latent plans. IEEE Robotics and Automation Letters, 2022.

[46] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[47] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick, S. Mohamed, and
A. Lerchner. beta-vae: Learning basic visual concepts with a constrained variational frame-
work. In International Conference on Learning Representations, 2017.

[48] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In International Conference on Learning Representations, 2020.

[49] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics and Automation Letters (RA-L), 7(4):11205–
11212, 2022.

[50] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural
information processing systems, 30, 2017.

[51] S. Tian, S. Nair, F. Ebert, S. Dasari, B. Eysenbach, C. Finn, and S. Levine. Model-based visual
planning with self-supervised functional distances. In International Conference on Learning
Representations, 2021.

[52] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pix-
elcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

[53] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

11

[54] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[55] O. Mees and W. Burgard. Composing pick-and-place tasks by grounding language. In Pro-
ceedings of the International Symposium on Experimental Robotics (ISER), La Valletta, Malta,
2021.

12

Appendix
A Teleoperation Interface
A.1 Simulation
To collect data for simulation the human teleoperator uses the HTC VIVE Pro headset to visualize
the CALVIN environment and its controller to collect play data. Clicking the application menu
button emits a signal to start recording a play data episode, since then the robot arm tracks the
controller’s position and orientation and maps it to the gripper end effector position and orientation.

Control Function
Application menu Starts or finishes recording a play data episode

Trigger When pressed it closes the gripper end effector, otherwise it opens

A.2 Real World
For the real world we use the HTC VIVE Pro controller. At the beginning of the teleoperation,
we calibrate our X axis position by clicking the grip button and moving towards its positive axis,
we then click the application menu to indicate that we finished the calibration movement. This
calibration procedure allows us to define the reference frame in which the global coordinates from
the robot end effector is be recorded. In this setting, the teleoperator is facing the table in the same
direction as the robot, hence if the controller moves right so does the robot. This way we can map
the position of the controller to an absolute action defining the desired robot arm end effector 3D
position. Additionally, we must press continuously the grip button to enable movement of the robot
arm, this is to avoid involuntary hand tracking and prevent possible accidents.

Control Function
Grip Starts calibration; enables robot movement

Application menu Finishes calibration; Starts or finishes recording a play data episode
Trigger When pressed it closes the gripper end effector, otherwise it opens

B Experimental Setup Details
For both our real and simulated robot environments we use the following 7-dimensional action
scheme:

[δx, δy, δz, δalpha, δbeta, δgamma, gripperAction]

The δx, δy, δz action dimensions corresponds to a change in the end effector’s position in 3D space.
The δalpha, δbeta, δgamma action dimensions specifies a change in the end-effector’s orientation
in the robot’s base frame. All these 6 dimensions accept continuous values between [−1, 1]. Finally,
the gripperAction command can have two discrete values −1.0 and 1.0. An action of −1.0 in this
dimension commands the robot to open the gripper and 1.0 indicates that we desire to close it.

B.1 Data Collection Details
For the real world robot, we collected nine hours of play data by teleoperating a Franka Emika
Panda robot arm, were we also manipulate objects in a 3D tabletop environment. This environment
consists of a table with a drawer that can be opened and closed. The environment also contains a
sliding door on top of a wooden base, such that the handle can be reached by the end effector. On top
of the drawer, there are three led buttons with green, blue and orange coatings to be able to identify
them, on the recorded play data we only interacted with the led button with green coating. When the
led button is clicked, it toggles the state of the light. Additionally, there are three different colored
blocks with letters on top. We visualize the data collection and setup in Figure 5.

In every time step we record the measurements from the robot proprioceptive sensors, as well as an
static RGB-D image of size 150× 200 from the Azure Kinect camera and a gripper RGB-D image
of size 200 × 200 emitted by the FRAMOS Industrial Depth Camera D435e and the commanded
absolute action. For this project we only use the static RGB image and the gripper camera RGB
image as part of the observation. We visualize the input observations in Figure 6.
We extract the relative action at from the change in the absolute actions from time steps at and at−1
as in practice, reproducing the relative actions computed this way showed a better performance than

13

Figure 5. Visualization of the real world data collection procedure (left) and the full robot setup (right).

when computed from the noisy measurements of the proprioceptive sensors.
The data is collected at 30 Hz, but given that there is relatively a very small change in the end effector
position between frames, we downsample the processed data to a frequency of 15 Hz.

Figure 6. Visualization of the observations obtained in the real world environment. On the left we show the RGB image captured by the static
camera. On the right we show the RGB image captured by the gripper camera.

C Network Architecture
C.1 Hyperparameters for TACO-RL
Low-Level Policy: To learn the low-level policy we trained the model using 8 gpus with Distributed
Data Parallel. Throughout training, we randomly sample windows between length 8 and 16 and pad
them until reaching the max length of 16 by repeating the last observation and an action equivalent to
keeping the end effector in the same state. We visualize the low-level policy architecture in Figure 7.
Additional hyperparameters are listed below:

• Batch size of 64

• Latent plan dim of 16

• Learning rate of 1e− 4

• The KL loss weight β is 1e− 3 and uses KL balancing

These hyperparameters were chosen in order to make the action space of the high-level policy
tractable for reinforcement learning, as the latent plan z is used as an action when learning the
high-level policy.

High-Level Policy: Similarly as in the low-level policy, we also trained the model using 8 gpus
with Distributed Data Parallel. We visualize the architecture in Figure 8. We use the following
hyperparameters:

• Batch size of 64

• Learning rates − Q-function: 3e− 4, Policy: 1e− 4,

• Target network update rate of 0.005

• Ratio of policy to Q-function updates of 1 : 1

• Number of Q-functions: 2 Q-functions, min(Q1, Q2) used for Q-function backup and pol-
icy update

14

• Automatic entropy tuning: True, with target entropy set to − log |A|
• CQL version: CQL(H) (Using deterministic backup)
• α in CQL: 1.0 (we used the non-Lagrange version of CQL(H))
• Number of negative samples used for estimating logsumexp: 4

• Initial BC warmstart epochs: 5

• Discount factor of 0.95

It is important to mention that the model performance is robust to slight changes in the hyperparam-
eter selection.

Initial state

Static camera

Gripper camera

Visual
Encoder

Visual
Encoder

Sequence

Goal state Goal
Encoder

Prior

Encoder

KL
loss

Sampled
 plan

Decoder action
likelihood

Encoded static cam image

Encoded gripper cam image

Encoded goal state

Latent plan distribution

Sampled latent plan

Figure 7. Overview of the architecture used in the real world to learn the low-level policy.

Goal Sampling Strategy: We use the same geometric distribution probability of p = 0.3 for all
experiments. When this hyperparameter is closer to 0 it will be able to stitch plans to achieve
longer horizon tasks, but it will encounter less often a reward of 1 which makes the optimization
problem harder. For the 3D tabletop environment in both simulation and real world, we sample
positive examples (goals from the future) 90% of the time and negative examples (goals with similar
proprioceptive state) 10% of the time.

C.2 Encoder
The encoder (aka Posterior) qφ(z|τ) encodes the trajectory τ of state-action pairs into a distribution
in latent space and gives out parameters of that distribution. In our case, we represent qφ(z|τ) with a
transformer network, which takes τ and outputs parameters of a Gaussian distribution (µencz , σencz).
We encode the sequence of visual observations with our vision encoder. Then, we add positional
embeddings to enable the experience window to carry temporal information. Finally, we fed the
result into the transformer to learn temporally contextualized global video representations. In par-
ticular, our transformer encoder architecture consists of 2 blocks, 8 self-attention heads, and a hidden
dimension of 2048.

C.3 Decoder
The decoder (aka Low-Level Policy): πω(a|sc, z) is the latent-conditioned policy. It maximizes the
conditional log-likelihood of actions in τ given the state and the latent vector. In our implementation,
we parameterize it as a recurrent neural network which takes as input the current state and the
sampled latent plan and gives out parameters of a discretized logistic mixture distribution [52].
For our experiments, we use 2 RNN layers each containing a hidden dimension of 2048. In the
discretized logistic mixture distribution we use 10 distributions, predicting 10 classes per dimension.
We predict an action where the 6 first dimensions are continuous in a range between −1.0 and 1.0
and its last dimension contains the gripper action, which is a discrete value optimized by cross
entropy loss.

C.4 Prior
The prior πδ(z|sc, sg) tries to predict the encoded distribution of the trajectory τ from its initial
state and its goal state. Our implementation uses a feed-forward neural network which takes in the
embedded representation of the initial state and goal state and predicts the parameters of a Gaussian
distribution (µprz , σ

pr
z). The prior network consists of 3 fully connected layers with a size of 256.

15

C.5 Visual Encoder
To obtain the current state embedded representation we pass each input modality observation through
a convolutional encoder and we perform late fusion by concatenating the embedded representations
of all the observation modalities.

Simulation
In simulation we only use the RGB static image as input, this is passed through the same convolu-
tional encoder proposed in the original Play LMP implementation with 3 convolulational layers and
a spatial softmax layer, after flattening its representation it is fed through two fully connected layers
which output an embedded latent size of 32.

Real World
For the real world we use both RGB static image and the RGB gripper image as input. We send
the RGB gripper image to a convolutional encoder as in original Play LMP implementation, with an
embedded latent size of 32. For the RGB static image we used the pretrained R3M [53] Resnet18
networks with fixed weights, afterwards we passed it through 2 feedforward networks with a hidden
size of 256 and an embedded latent size of 32.

C.6 Goal Encoder
We obtain a compact perceptual representation from the goal observation by passing it through the
visual encoder. Then, we use 2 hidden layers with a size of 256 and an output layer that maps its
representation to 32 latent features.

Sequence

Goal
Encoder

Actor

Fixed encoder

 sampled
 plan

Decoder action
likelihood

Goal stateGoal
distribution

Critic

Optional finetuning

High level policy transitions generation

reward

Last state

Transition

goal state

Policy
evaluation

update

Policy
improvement

update Encoded static cam image

Encoded gripper cam image

Encoded goal state

Latent plan distribution

Sampled latent plan

Reward

Gripper camera

Initial stateInitial state Last state Goal state

Fixed
Visual

Encoder

Static camera

Fixed
Visual

Encoder

Gripper camera

Visual
Encoder

Visual
Encoder

Static cameraSample a batch
of transitions

Last state

Goal state

Initial stateInitial state

Figure 8. Overview of the architecture used in the real world to learn the high-level policy. We first used the learned low level policy to generate
transitions using latent plans, afterwards we sample a batch of transitions and use CQL to learn the high level policy.

C.7 Actor
To learn the high level policy we use CQL. In particular, The actor network uses the same network
architecture as the prior πδ(z|sc, sg), as we can use the pre-learned weights as a good initialization.
It has 3 hidden fully connected layers with a size of 256 and an output layer that predicts the mean
and standard deviation of a latent plan Gaussian distribution.

C.8 Critic
The critic network takes as input the embedded representation of the current state, the encoded goal
state and a sampled latent plan. All the inputs are concatenated and passed through a feed forward
network with 3 hidden layers with a size of 256 and an output layer which predicts the expected
state-action value of the policy.

D Policy Training Details
In this section we specify some implementation details of our baseline models used as comparison
against TACO-RL.

16

D.1 Play-supervised Latent Motor Plans (LMP)
For our reimplementation of LMP we used the same network architecture described in C, the main
differences with the original implementation is that the latent goal representation is only added to
the prior, but not to the decoder. Additionally, we apply a tanh transformation to the sampled latent
plan to ensure that every dimension is between −1.0 and 1.0. Another difference with respect to
the original formulation is that we implement a KL balancing. As the KL-loss is bidirectional, we
want to avoid regularizing the plans generated by the posterior toward a poorly trained prior. To
solve this problem, we minimize the KL-loss faster with respect to the prior than the posterior by
using different learning rates, α = 0.8 for the prior and 1− α for the posterior, similar to Hafner et
al. [48]. These architectural changes were made to do a fair comparison against our implementation,
and to make sure the improvements of our method were due to the plan stitching capabilities and
our self-supervised reward function.
Additionally, the decoder predicts relative actions instead of absolute actions as this leads to an
overall better performance. We note that our LMP baseline is implemented in the same way.

D.2 Conservative Q-Learning with Hindsight Experience Replay (CQL + HER)
We use the same visual encoder architecture as in TACO-RL. The critic networks are made with 3
fully connected layers using a hidden dimension of 256. The actor network also uses 3 fully con-
nected layers with a size of 256 and predicts in the last dimension a discrete action to open and close
the parallel gripper. This last dimension is predicted through a Gumbel Softmax distribution.
The self-supervised reward function is done similarly as in our method with a small difference
when sampling goal states from the future. The CQL transitions are (st, a, st+1) instead of
(st, zt, st+k−1), therefore when we sample a goal from discrete-time offset ∆ ∼ Geom(p), we
use the observations at the time step t + ∆ as a goal instead of the observation at the timestep
t+ ∆ ∗ (k− 1), where k is the window size and p is the same value for both implementations. This
change is required as CQL needs to take isolated decisions every time step. In contrast, our for-
mulation allows TACO-RL to reduce the effective episode horizon by predicting high-level actions
(latent plans).

D.3 Relay Imitation Learning (RIL)
We use the same visual encoder architecture as in TACO-RL to do a fair comparison. For the policy
architecture, we first tried the architecture proposed by the original authors of each policy using
two layer neural networks with 256 units each and ReLu nonlinearities. This architecture obtained
poor performance for our application, we noticed that the respective loss objectives were not being
correctly optimized for which we solved this issue by training a bigger network. For our tested
implementation, for both the high-level and low-level policy we used four layer neural networks
with 1024 units each.

E Data Preprocessing
E.1 Simulation
In simulation we only use the static camera RGB image as input, we first resize the RGB image
from 200× 200 to 128× 128. Then we perform stochastic image shifts of 0− 6 pixels to the static
camera images and a bilinear interpolation is applied on top of the shifted image by replacing each
pixel with the average of the nearest pixels. Then we apply a color jitter transform augmentation
with a contrast of 0.1, a brightness of 0.1 and hue of 0.02. Finally, we normalize the input image to
have pixels with float values between −1.0 and 1.0.

E.2 Real World
In the real world as there are several occlusions only using the static camera RGB image, we also
add the gripper camera RGB image to the observation. For the static camera RGB image we use the
original size of 150× 200, we then apply a color jitter transform with contrast of 0.05, a brightness
of 0.05 and a hue of 0.02. Finally, we use the values for the pretrained R3M normalization, i.e.,
mean = [0.485, 0.456, 0.406] and a standard deviation, std = [0.229, 0.224, 0.225].
For the gripper camera RGB image we resize the image from 200× 200 to 84× 84, we then apply a
color jitter transform with contrast of 0.05, a brightness of 0.05 and a hue of 0.02. Then we perform
stochastic image shifts of 0 − 4 pixels to the and a bilinear interpolation is applied on top of the
shifted image by replacing each pixel with the average of the nearest pixels. Finally, we normalize
the input image to have pixels with float values between −1.0 and 1.0.

17

F Additional Results

F.1 CALVIN

We add the rest of the results of all the different tasks that could be made in the CALVIN environment
where the goal image does not need to contain the robot end effector performing the task in Figure 9.
We run 50 rollouts for each task. Each rollout uses a different goal image which was not seen
throughout training.

0,00%

25,00%

50,00%

75,00%

100,00%

Turn on led Open drawer Push block into
drawer

Move slider left Place block in
drawer

Turn off led Turn on
lightbulb

TACO-RL LMP CQL+HER

0,00%

25,00%

50,00%

75,00%

100,00%

Move slider right Place in slider Close drawer Turn off lightbulb Unstack block Stack block

Figure 9. The average success rate of goal-conditioned models running 50 rollouts where the goal image does not contain the end effector
performing the task. Results were calculated using 3 seeds.

F.2 Maze2D
We also evaluate our algorithm in the Maze2D environments from D4RL [54]. These tasks are de-
signed to provide a simple test that the model is capable of stitching together various subtrajectories
such that the agent is capable of reaching the goal in the smallest amount of steps. For TACO-RL,
we learn the policy by relabeling the transitions instead of using the rewards given by the dataset.
Additionally, given that the scene does not change through time, we only add positive examples
in our goal sampling approach. We perform the rollouts of both LMP and TACO-RL by exposing
the desired target position. TACO-RL outperforms both LMP and CQL as it is able to stitch plans
through dynamic programming as shown in Table 5.

F.3 Real World
To make sure that our method can be scaled for long-term tasks, we used our framework to control
a real robot to carry out consecutive tasks. For the purposes of this experiment, we assign a goal

18

Environment TACO-RL LMP [13] CQL [6]

maze2d-umaze 110±2.2 81.9±14.9 5.7
maze2d-medium 88.9±2 77±18 5.0

maze2d-large 76.7±9.7 20.1±29.3 12.5

Table 5. The average normalized score for three different random seeds. The CQL results were obtained from the D4RL whitepaper [54].

image for each of the robot’s tasks. Our agent, which was trained entirely from unlabeled play data,
can complete all of these sequential tasks by inferring how to transition between them, achieving the
state depicted by the goal image. Examples of these sequential tasks are listed below:

• Moving the sliding door to the right and then opening the drawer
• Lifting the block and putting it on top of the drawer
• Lifting the block and placing it on a plastic container
• Turning the blue light on and then opening the drawer
• Turning the green light on and then open the drawer

G Negative Results
We present an incomplete list of experiments tried throughout the course of the research project.
These ideas were tried a couple of times, but they in general do not improve performance. It is
possible that they could work better with a more thorough investigation. We hope this experience
will be helpful to researchers building on top of this work.

• Predicting absolute actions instead of relative actions with the decoder decreases the low-
level policy performance. We believe that using relative actions might be easier for the
agent to learn, as it does not have to memorize all the locations where an interaction has
been performed.

• Decoder designed only with fully connected layers instead of a recurrent neural network
lead to a slightly worse performance. We speculate that this could be due to the environment
not completely following the Markov assumption.

• Using a gaussian mixture model instead of a mixture of logistics to predict the decoder
actions lead to a similar performance.

• Using a pretrained ResNet18 in the imagenet dataset as visual encoder in simulation de-
creases performance for the low-level policy. More experiments by using the R3M pre-
trained model in simulation might offer different results.

• In the real world experiments, training the visual encoder from scratch for the static camera
network decreases performance for the low-level policy. This can be explained due to the
small amount of data present in the real-world dataset.

H Limitations
Despite the promising ability to learn diverse goal-reaching tasks even reasoning over long-horizon
tasks, our method has a few aspects that warrant future research. Specifying a task to the goal-
conditioned policy, requires providing a suitable goal image at test-time, which should be consistent
with the current scene. An exciting direction for future work is to use natural language processing
techniques to command the robot policy [55, 49]. If one wishes to sequence various tasks in the real
world, an open question we did not address in this work is tracking task progress, in order to know
when to move to the next task. In this work we acted with a fixed time-horizon for sequencing tasks
in the real world, but this implicitly assumes that all tasks take approximately the same timesteps
to complete. In addition, recent results [14] show that, in general, pure offline RL methods tend to
offer better data-efficiency compared to behavioral cloning, which could be counted as one general
limitation of imitation learning methods and derivatives of it, as the approach introduced in this
work. However, since one of the most appealing properties of play lies in the simplicity of data
collection, this limitation appears to be rather minor. Our method has a specific limitation in that
we must first train the low-level policy before training the high-level policy, which requires more
training time than training them together. However, because we train our approach offline, the robot
does not need to perform rollouts in the environment during this time, making this a minor issue.

19

	Introduction
	Related Work
	Mathematical Foundation
	Offline goal-conditioned RL with TACO-RL
	Learning the low-level policy
	Offline RL with Hindsight relabeling

	Experimental Results
	Experimental Setup
	Simulation Results
	Real-Robot Experiments

	Conclusion and Limitations
	Teleoperation Interface
	Simulation
	Real World

	Experimental Setup Details
	Data Collection Details

	Network Architecture
	Hyperparameters for TACO-RL
	Encoder
	Decoder
	Prior
	Visual Encoder
	Goal Encoder
	Actor
	Critic

	Policy Training Details
	Play-supervised Latent Motor Plans (LMP)
	Conservative Q-Learning with Hindsight Experience Replay (CQL + HER)
	Relay Imitation Learning (RIL)

	Data Preprocessing
	Simulation
	Real World

	Additional Results
	CALVIN
	Maze2D
	Real World

	Negative Results
	Limitations

