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Abstract

Indoor environments can typically be divided into
places with different functionalities like kitchens, of-
fices, or seminar rooms. We believe that such semantic
information enables a mobile robot to more efficiently
accomplish a variety of tasks such as human-robot in-
teraction, path-planning, or localization. This paper
presents a supervised learning approach to label differ-
ent locations using boosting. We train a classifier using
features extracted from vision and laser range data. Fur-
thermore, we apply a Hidden Markov Model to increase
the robustness of the final classification. Our technique
has been implemented and tested on real robots as well
as in simulation. The experiments demonstrate that our
approach can be utilized to robustly classify places into
semantic categories. We also present an example of lo-
calization using semantic labeling.

Introduction

In the past, many researchers have considered the problem of
building accurate metric or topological maps of the environ-
ment from the data gathered with a mobile robot. Only a few
approaches considered the problem of integrating semantic
information into a map. Whenever robots are designed to
interact with their users, semantic information about places
can be important. For a lot of applications, robots can im-
prove their service if they are able to recognize places and
distinguish between them. A robot that possesses semantic
information about the type of the places can easily be in-
structed, for example, to go to the kitchen.

In this paper, we address the problem of semantic classifi-
cation of the environment using range finder data and vision
features. Indoor environments, like the one depicted in Fig-
ure 1, can typically be divided into areas with different func-
tionalities such as seminar rooms, office rooms, corridors, or
kitchens. Some of these places have a different structure and
others can be distinguished due to their furniture. For exam-
ple, the bounding box of a corridor is usually longer than the
one of a room. Furthermore, a coffee machine is typically
located in the kitchen.

The key idea of this paper is to classify the position of
the robot based on objects extracted from the camera im-
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Figure 1: An environment with offices, doorways, a corri-
dor, a kitchen, a laboratory, and a seminar room. Addition-
ally, the figure shows typical laser and vision observations
obtained by a mobile robot at different places.

ages and the scan obtained from the range sensor. Examples
for typical observations obtained in an office environment at
different locations are shown in Figure 1.

Our approach uses the AdaBoost algorithm (Schapire &
Singer 1999) to boost simple features extracted from laser
and vision data, which on their own are insufficient for a re-
liable categorization of places, to a strong classifier. Since
the original AdaBoost algorithm provides only binary deci-
sions, we determine the best decision list of binary classi-
fiers. To reduce the number of outliers during the classifi-
cation, we apply a Hidden Markov Model (HMM), which
filters the current classification result based on previously
calculated labels. Experimental results given in this paper
illustrate that the resulting classification system can deter-
mine the type of a place with a recognition rate of more than
87%.

Related Work

In the past, several authors considered the problem of adding
semantic information to places. Buschka & Saffiotti (2002)
describe a virtual sensor that is able to identify rooms from
range data. Also Koenig & Simmons (1998) use a pre-
programmed routine to detect doorways from range data.
Althaus & Christensen (2003) use line features to detect
corridors and doorways. Some authors also apply learn-
ing techniques to localize the robot or to identify distinctive



states in the environment. For example, Oore, Hinton, &
Dudek (1997) train a neural network to estimate the loca-
tion of a mobile robot in its environment using the odometry
information and ultrasound data. Kuipers & Beeson (2002)
apply different learning algorithms to learn topological maps
of the environment.

Additionally, learning algorithms have been used to iden-
tify objects. For example, Anguelov et al. (2002; 2004)
apply the EM algorithm to cluster different types of ob-
jects from sequences of range data. Treptow, Masselli, &
Zell (2003) use the AdaBoost algorithm to track a ball with-
out color information in the context of RoboCup. In a recent
work, Torralba et al. (2003) use Hidden Markov Models for
learning places from image data.

Compared to these approaches, our algorithm does not
require any pre-defined routines for extracting high-level
features. Instead, it uses the AdaBoost algorithm to boost
simple features to strong classifiers for place categorization.
Our approach is also supervised, which has the advantage
that the resulting semantic labels correspond to user-defined
classes.

In our previous work (Martı́nez Mozos, Stachniss, & Bur-
gard 2005), we presented an approach which also applies the
AdaBoost algorithm to classify places based on laser range
data only. In this paper, we extend this approach by also
taking into account vision features. This allows to distin-
guish between a greater variety of places, especially such
with a similar geometric structure. Furthermore, we apply
an HMM to filter the output of the resulting classifier which
yields more robust classification results.

Boosting
Boosting is a general method for creating an accurate strong
classifier by combining a set of weak classifiers. The re-
quirement to each weak classifier is that its accuracy is
better than a random guessing. In this work, we will use
the AdaBoost algorithm originally introduced by Freund &
Schapire (1995). The input to this algorithm is a set of la-
beled training examples (xn, yn), n = 1, . . . , N , where each
xn is an example and yn ∈ {−1, +1} is a value indicating
whether xn is negative or positive respectively. In a series
of rounds t = 1, . . . , T , the algorithm repeatedly selects a
weak classifier ht(x) using a distribution Dt over the train-
ing examples. The selected weak classifier is expected to
have a small classification error in the training data. The
idea of the algorithm is to modify the distribution Dt in-
creasing the weights of the most difficult training examples
on each round. The final strong classifier H is a weighted
majority vote of the T best weak classifiers.

Throughout this work, we will use the approach presented
by Viola & Jones (2001) in which the weak classifiers de-
pend on single-valued features fj . Two kinds of weak clas-
sifiers are created. The first type is used for laser and vision
features and has the form

hj(x) =

{

+1 if pjfj(x) < pjθj

−1 otherwise,
(1)

where θj is a threshold and pj is either −1 or +1 and thus
represents the direction of the inequality. We designed a

second type of weak classifiers only for our set of vision
features. These classifiers have the form

hj(x) =

{

pj if θ1
j < fj(x) < θ2

j

−pj otherwise,
(2)

where θ1
j and θ2

j define an interval and pj is either +1 or
−1 indicating whether the examples inside the interval are
positive or negative.

For both types of weak classifiers, the output is +1 or
−1 for depending on whether the classification is positive or
negative. In each round t = 1, . . . , T , each weak classifier
hj(x) determines the optimal values for its respective pa-

rameters (pj ,θj) or (pj ,θ1
j ,θ2

j ), such that the number of mis-
classified training examples is minimized. Then the one with
smallest error is selected. The final AdaBoost algorithm is
shown in Table 1 in the generalized form given by Schapire
& Singer (1999) and modified for the concrete task of this
work.

The approach described so far is able to distinguish be-
tween two classes of examples, namely positives and neg-
atives. In typical indoor environments, however, we have
to deal with more than two types of places. As proposed
by Martı́nez Mozos, Stachniss, & Burgard (2005), we create
a sequential multi-class classifier using K − 1 binary clas-
sifiers, where K is the number of classes we want to recog-
nize. Each element in the sequence determines if an example
belongs to one specific class. If the classification is positive,
the example is assigned the corresponding class. Otherwise,
the example is passed to the next element in the sequence.

Features from Vision and Laser Data

In this section, we describe the features used to create the
weak classifiers in the AdaBoost algorithm. Our robot is
equipped with a 360 degrees field of view laser sensor and
a camera mounted on a pan/tilt unit. Each laser observation
consists of 360 beams and each vision observation consists
of 8 images which form a panoramic view. Examples of
laser scans obtained in a doorway and in a corridor as well
as images taken in different places are shown in Figure 1.

Each training example for the AdaBoost algorithm consist
of one laser observation l, one vision observation v and its
classification y. Thus, the set of training examples is given
by

E = {(l, v, y) | y ∈ Y = {Office, Corridor, . . .}} , (3)

where Y is the set of classes.
In our current system, we follow the approach of our pre-

vious work (Martı́nez Mozos, Stachniss, & Burgard 2005)
and use single-valued features extracted from laser and vi-
sion data. In the case of laser data, we extract a variety of
simple geometric properties from the range scans such as
the area covered by the scan or the average distance of con-
secutive beams. In the case of vision, the selection of the
features is motivated by the fact that typical objects appear
at different places with different probabilities. For example,
the probability of finding a computer monitor in an office
is larger than finding one in a kitchen. For each type of
object, a vision feature is defined as a function that takes



Table 1: Generalized version of AdaBoost for place catego-
rization.

• Input: Set of examples (x1, y1), . . . , (xN , yN), where
yn = +1 for positive and yn = −1 for negative.

• Let l and m be the number of positive and negative
examples respectively. Initialize weights D1(n) =
1

2l
, 1

2m
depending of the value of yn.

• For t = 1, . . . , T :

1. Normalize the weights Dt(n):

Dt(n) =
Dt(n)

∑N

i=1
Dt(i)

2. Train each weak classifier hj using distribution Dt.

3. For each classifier hj calculate:

rj =

N
∑

i=1

Dt(i)yihj(xi)

where hj(xi) ∈ {−1, +1}.

4. Choose the classifier hj that maximizes |rj | and set
(ht, rt) = (hj , rj).

5. Update the weights:

Dt+1(n) = Dt(n) exp(−αtynht(xn))

where αt = 1

2
log(1+rt

1−rt

).

• The final strong classifier is given by:

H(x) = sign

(

T
∑

t=1

αtht(x)

)

as argument a panoramic vision observation and returns the
number of detected objects of this type in it. In our current
system, we consider the following types of objects: “moni-
tor on”, “monitor off”, “coffee machine”, “office cupboard”,
“frontal face”, “face profile”, “full human body”, and “up-
per human body”. Typical instances of these objects in our
environment are shown in Figure 1. The different objects
are detected using classifiers based on Haar-like features as
proposed by Lienhart, Kuranov, & Pisarevsky (2003).

Probabilistic Place Recognition

The approach described so far is only able to classify single
observations and does not take into account past classifica-
tions when determining the class of the current observation.
In the particular domain, however, observations obtained at
nearby places are typically identical. Furthermore, certain
transitions between classes are rather unlikely. For example,
if the classification of the current pose is “kitchen”, then it
is rather unlikely that the classification of the next pose is
“office” given the robot moved only a short distance. To get
from the kitchen to the office, the robot has to move through
a doorway first.

To utilize these dependencies between the individual

officelabkitckenseminarcorridordoorway

office

lab

kitcken

seminar

corridor

doorway

Figure 2: Probabilities of possible transitions between
places in the environment. To increase the visibility, we used
a logarithmic scale. Dark values indicate low probability.

classes, we use a Hidden Markov Model (HMM) and main-
tain a posterior Bel (ξt) about the type of the room ξt ∈ Y
the robot is currently in

Bel(ξt) = αP (zt|ξt)
∑

ξt−1

P (ξt|ξt−1, ut−1)Bel (ξt−1). (4)

In this equation, α is a normalizing constant ensuring that
the left-hand side sums up to one over all ξt. To implement
such an HMM, three components need to be known. First,
we need to define the observation model P (zt|ξt), which is
the likelihood that the classification output is zt ∈ Y given
the actual class is ξt. Second, we need to specify the transi-
tion model P (ξt|ξt−1, ut−1), which corresponds to the prob-
ability that the robot moves from class ξt−1 to class ξt by
executing action ut−1. Finally, we need to define how the
belief Bel (ξ0) is initialized.

In our current system, we choose a uniform distribution
to initialize Bel(ξ0). To determine the quantity P (zt|ξt), we
generated statistics about the output of the sequential multi-
class classifier given the robot was at a place corresponding
to ξt. To realize the transition model P (ξt|ξt−1, ut−1), we
only consider the two actions ut−1 ∈ {MOVE ,STAY }.
The transition probabilities were estimated by running 1,000
simulation experiments, in which we started the robot at a
randomly chosen point and orientation in the environment
and commanded it to move 20-50cm forward. This value
corresponds to the distance typically traveled by the robot
between two consecutive updates of the HMM. The finally
obtained transition probability matrix P (ξt|ξt−1, ut−1) for
the action MOVE is depicted in Figure 2. As can be seen,
the probability of staying in a place with the same classifi-
cation is higher than the probability of changing the place.
Moreover, the probability of moving from one room to a
doorway is higher than the probability of moving from a
room to a corridor. This indicates that the robot must first
cross a doorway in order to reach a different room. Further-
more, the matrix shows a lower probability of staying in a
doorway than moving into a room. This is due to the fact
that a doorway is usually a small area in which the robot
never rests for a longer period of time.

Experimental Results

The approach described above has been implemented and
tested using simulated and real robot data obtained in our of-
fice environment. The goal of the experiments is to demon-
strate that our approach provides a robust classification of
places in indoor environments into typical categories. We
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Figure 3: Likelihood of detecting n coffee machines inside
and outside a kitchen using Haar-like classifiers.

Table 2: Number T of weak classifiers and training error for
the individual binary classifiers.

Binary Classifier T Training error [%]

lab 440 0.99
corridor 165 2.02
doorway 171 2.10
kitchen 68 2.46
seminar 334 2.58
office 288 7.31

furthermore describe results indicating that the filtering of
the classification output using an HMM significantly in-
creases the performance of the overall approach. Addition-
ally, we analyze the benefits of using vision features for the
classification. Finally, we present an application example
which illustrates that the semantic classification results can
be used to speed-up global localization of a mobile robot.

To train the classifier used throughout the experiments, we
used 38,500 training examples. For each training example,
we simulated the laser observations given an occupancy grid
map of the environment. To generate the features extracted
from vision data, we used 350 panoramic views recorded
with our B21r robot, which is equipped with a SICK laser
range finder and a camera system mounted on a pan/tilt unit.
Each panoramic view consists of 8 images covering the 360
degrees field of view around the robot. For each simulated
laser scan, we then randomly drew a panoramic view from
those corresponding to the type of the current place and used
the vision features extracted from this view. Figure 3 shows
two distributions over the number of coffee machines de-
tected in the database images.

One important parameter of the AdaBoost algorithm is the
number T of weak classifiers used to form the final strong
binary classifier. For each strong binary classifier, we per-
formed several experiments with up to 500 weak classifiers
and analyzed the classification error. The number T of weak
classifiers used to carry out the experiments has then been
determined as the minimum in the error function. The result-
ing numbers T of weak classifiers used to form the strong
binary classifiers and the classification errors of the finally
obtained strong classifiers on the training data are given in
Table 2.

In our current system, we determine the optimal sequence
of strong binary classifiers by considering all possible se-
quences of strong binary classifiers. Although this approach

Figure 4: Ground truth labeling of the individual areas in the
environment.

Figure 5: Typical classification obtained for a test set using
only the output of the sequential classifier (top) and in com-
bination with the HMM (bottom).

is exponential in the number of classes, the actual number
of permutations considered is limited in our domain due to
the small number classes. In practice, we found out that the
heuristic which sorts the classifiers in increasing order ac-
cording to their classification rate also yields good results
and at the same time can be computed efficiently. In several
situations, the sequence generated by this heuristic turned
out to be the optimal one.

Classifying Places along Trajectories

The first experiment is designed to demonstrate that the clas-
sifier learned from the training data in combination with
the HMM can be used to robustly classify observation se-
quences acquired with a mobile robot in a real office envi-
ronment. This environment contains six different types of
places, namely offices, doorways, a laboratory, a kitchen,
a seminar room, and a corridor. The ground truth for the
different places in this environment is shown in Figure 4.



Figure 6: Classification obtained without (left) and with
HMM filtering (right) for a different part of the building.

We steered our robot through the environment and collected
laser and image data along its trajectory. We then calculated
the classification output without and with the HMM filtering
and compared this to the ground truth information.

The classification rate of the sequential classifier with-
out applying the HMM is 74.8%. The labels generated are
shown in the upper image of Figure 5. If we additionally use
the HMM to filter the output of the sequential classifier, the
classification rate increases to 83.8%. The labels obtained
after applying the HMM are shown in the lower image of
Figure 5. A two-sample t test revealed that the improve-
ments are significant on the α = 0.01 level. This illustrates
that by using the HMM the overall classification rate can be
improved seriously.

A second experiment was carried out using test data
from a different part of the same building. We used the
same sequential classifier as in the previous experiment.
Whereas the sequential classifier yields a classification rate
of 77.19%, the HMM generated the correct answer in
87.72% of all cases (see Figure 6). This improvement is
also significant on the α = 0.01 level.

Improvement Obtained by Combining Laser and
Vision Data

Additionally we analyzed whether the integration of vision
and laser data yields any improvements over our previous
approach (Martı́nez Mozos, Stachniss, & Burgard 2005). To
perform this experiment, we trained AdaBoost only with the
three classes office, corridor, and doorway, because the other
classes kitchen, seminar room, and lab can only hardly be
distinguished from offices using proximity data only. The
classification obtained by integrating both modalities is sum-
marized in Table 3. As can be seen, the combination of laser
and vision data yields better results than the classifier only
relying on laser range data.

We furthermore evaluated how much the vision informa-
tion improves the classification rate for classes that can only
hardly be distinguished using laser data only. A typical ex-
ample are seminar and laboratory rooms which have a sim-
ilar structure and therefore cause similar laser range scans.
For the seminar room the classification error decreased from
46.9% to 6.3%, and for the laboratory it decreased from
34.4% to 3.1%. This serious reduction of the classification
error is due to the fact, that both rooms can mainly be distin-

Table 3: Classification error obtained when using only laser
data or both laser and vision data.

Sequential Error [%] Error [%]
Classifier laser laser & vision

corridor-doorway 3.21 1.87
doorway-room 3.74 2.67

doorway-corridor 3.21 2.14
room-corridor 1.60 1.34
corridor-room 1.60 1.34
room-doorway 1.60 1.60

average 2.50 1.83

guished by objects like monitors, which cannot be perceived
with the laser scanner. A two-sample t test revealed that this
improvement is significant on the α = 0.01 level.

Localization Using Place Recognition

The last experiment is designed to illustrate how semantic
information about places can be used to improve the local-
ization of a mobile robot in its environment. In this exper-
iment, we used an ActivMedia Pioneer II robot. Note that
the laser data is only fed into the AdaBoost and not used for
metric localization.

To estimate the pose xt at time t of the robot, we used
the popular Monte-Carlo localization approach (Dellaert et
al. 1998), which applies a recursive Bayesian scheme to
maintain a posterior about xt given the map m of the envi-
ronment, the odometry information u0:t−1, and the observa-
tions z1:t

p(xt | m, z1:t, u0:t−1) = η · p(zt | m, xt) · p(xt | m)

·

∫

x′

p(xt | x′, ut−1) · p(x′ | m, z1:t−1, u0:t−2) dx′.(5)

In our application, m is a occupancy grid map, in which
each cell also stores the assigned semantic class. As obser-
vations z1:t, we use the output of the sequential classifier and
determine the quantity p(zt | m, xt) as p(zt | ξt), where ξt

is the class assigned to xt in m. Additionally, we weight the
particles inversely proportional to the occupancy probability
at xt in m.

Figure 7 illustrates the evolution of two particle sets over
time. In the first row, the semantic information was avail-
able whereas in the second row only the odometry informa-
tion was used. Both filters were initialized with a uniform
distribution with 10, 000 particles and the robot initially was
located in the second left office, north of the corridor. There-
fore, particles located in office received higher importance
weights compared to the other samples. Whereas the ap-
proach utilizing semantic information converges quickly to
the correct solution, the particle filter that solely relies on the
pose information p(xt | m) ultimately diverged.

Conclusions

In this paper, we presented a novel approach to classify dif-
ferent places in the environment into semantic classes. Our
technique uses a combination of simple geometric features



Figure 7: Global localization using semantic information and odometry (first row) compared to an approach using the odometry
information only (second row). The images in one same column depict the corresponding filter at the same time. The arrow
indicates the ground truth position. As can be seen, semantic information can be used to speed up global localization.

extracted from a laser range scans as well as features ex-
tracted from camera images. It applies the AdaBoost al-
gorithm to form a strong classifier. To distinguish between
more than two classes, we use a sequence of binary clas-
sifiers arranged in a decision list. To incorporate the spa-
tial dependency between places, we apply a Hidden Markov
Model that is updated upon sensory input and movements of
the robot.

Our algorithm has been implemented and tested using a
mobile robot equipped with a laser range finder and a cam-
era system. Experiments carried out on a real robot as well
as in simulation illustrate that our technique is well-suited
to classify places in indoor environments. The experiments
furthermore demonstrate that the Hidden Markov Model sig-
nificantly improves the classification performance. Addi-
tional experiments revealed that the combination of vision
and laser data increases the robustness and at the same time
allows to distinguish between more classes compared to pre-
vious approaches. We believe that semantic information can
be utilized in a variety of applications. As an example, we
presented a experiment illustrating that semantic labels can
be used to speed up global localization.
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