
1

Towards an
Experimental Autonomous Blimp Platform

Axel Rottmann∗ Matthias Sippel‡ Thorsten Zitterell∗ Wolfram Burgard∗ Leonard Reindl‡ Christoph Scholl∗

∗Albert-Ludwigs-University ‡Albert-Ludwigs-University
Department of Computer Science Department of Microsystem Technology

Freiburg, Germany Freiburg, Germany
{rottmann, tzittere, burgard, scholl}@informatik.uni-freiburg.de {sippel, reindl}@imtek.uni-freiburg.de

Abstract— In this paper, we present the design of an au-
tonomous indoor blimp. We describe the individual low-weight
components of an embedded system including actors and sensors
which achieve a total weight of less than 200 grams. Both, the
modular hardware components and the use of generic hardware
interfaces facilitate the adaption to different actor and sensor
systems. Similar to the flexibility of the hardware components,
the user benefits from a generic software framework. Here, anon-
board Linux operating system and device driver interface ease
the implementation of robotic applications and control tasks.
The main challenge of designing a small blimp in regard to
autonomous operation is the efficient interplay of the individual
software and hardware components. In this work, we show
approaches to achieve this and to obtain a system which can
easily be applied to other robotic systems with constraintsin
weight and available space. We evaluate the performance of the
components and demonstrate their integration in a reinforcement
learning setting.

Index Terms— reinforcement learning and navigation

I. I NTRODUCTION

The development of small size autonomous flying vehicles
represents one of the current frontiers of research in mobile
robotics. In this context, aerial blimps have the advantage
that they operate at low speed, do not spend energy to keep
their position, and are not overly sensitive to control errors
compared to other flying vehicles. On the other hand, they
are sensible to outside influences like air flow and are subject
to a three dimensional motion model with translations and
rotations. Therefore, they are a common platform to evaluate
robotic algorithms for autonomous flight and navigation.

In this paper, we describe how such a blimp system includ-
ing an embedded microsystem and software framework can be
build up. In this regard, we aim to keep the system as small
and agile as possible in order to operate indoors.

This size constraint also limits the possible weight of the
blimp. With a maximum possible payload of 200 grams in
our configuration the system must include the gondola, actors,
sensors, engine control unit, system unit, and battery. Due
to these characteristics, blimps are not only interesting for
robotics but also for microsystem technology as the attached
devices should be both small and efficient. Such performance
aspects are evaluated in the experiments.

In order to demonstrate the operational reliability of our
blimp system (see Figure 1) we describe a reinforcement

Fig. 1. This images shows the completely build blimp with a length of1.8 m
and a diameter of0.8 m.

learning approach to control the altitude. Here, the blimp au-
tonomously learns the optimal policy from scratch to stabilize
its height after it has been switched on.

This paper is organized as follows. After discussing related
work in the following section, we will describe in detail
our blimp system including the hardware components and
the software framework in Section III. Afterwards, we will
illustrate a controlling approach based on reinforcement learn-
ing in Section IV. In Section V, we will present our first
experiences with our blimp system and a practical application
which integrates the components in a reinforcement learning
setting. Finally, Section VI concludes the paper.

II. RELATED WORK

The scientific research on autonomous blimps has constantly
been increasing over the last few years. Most of these blimps
are large-scale systems with a payload of several kilograms.
Hygounencet al. [4] provided a good overview of how to
construct such an outdoor blimp and how to apply it to some
fundamental robotic tasks. They illustrated how to control
several flight phases from takeoff to landing based on the
non-linear system dynamics. Jung and Lacroix [5] presented
an approach to simultaneous localization and mapping using
low altitude stereo-vision. Also Kimet al. [6] illustrated an
approach to point to point navigation of an outdoor blimp.
Compared to these papers, the blimp described in this paper
has been designed for indoor scenarios. It is much smaller
than the outdoor systems and has a total weight including
the envelope of only 420 grams. Therefore, the challenge is
to integrate low-weight sensors in an embedded microsystem



2

Fig. 2. This image shows the gondola with two rotors for pitchand thrust
control. They can be rotated by 180 degrees.

and to provide a software framework for complex tasks like
autonomous navigation and localization.

Furthermore, blimps have been studied in various contexts.
Varella Gomes and Ramos [14] described the physical prin-
ciples of airship operations often used to design a controller.
Zhang and Ostrowski [16], for instance, used a vision-guided
blimp in combination with a PID controller. Raoet al. [9]
proposed a fuzzy logic controller which was based on the
dynamics of the vehicle. Whereas Wyeth and Barron [15]
presented a low level reactive controller, Fukaoet al. [2]
illustrated an image-based tracking control for an indoor
blimp. Moreover, reinforcement learning has successfullybeen
applied to learn the control policy of an indoor blimp. Koet
al. [7] used Gaussian Processes to estimate the residuals of
the dynamics and learn to control the yaw and the yaw rate.
Other applications such as indoor navigation with one camera
were presented by Greenet al. [3] and a surveillance system
by Kukaoet al. [1].

III. B LIMP SYSTEM

The characteristics of an aerial robot result in various
restrictions considering the assembled hardware. For a blimp
system, the higher the volume of the envelope and therefore the
ascending force, the higher the possible payload. However,a
bigger envelope makes it less applicable for indoor navigation
and results in more inertial flight characteristics. For our
blimp system, the goal was to minimize both the size of the
blimp and consequently the weight of the needed hardware
equipment. The challenges under such constraints are to find
a trade-off between agility, range, and energy consumption,
and to develop appropriate algorithms for small aerial robots
which are highly sensitive to outside influences (e.g., air flow).

In addition, high flexibility and maintainability of the soft-
ware components have been a matter of particular interest
for us. The embedded system has to be powerful enough to
process on-board calculations for autonomous flights while
also allowing to transparently perform these computations
on external computers. Basically, the same piece of control
software must be executable on-board and also on an external
development system without code modifications.

A commercial1.8 m blimp envelope [8] builds the basis
for our blimp as depicted in Figure 1. The blimp is equipped
with three motors. One motor is mounted in the tail fin to
control the yaw. The other two are mounted on each side of
the gondola to control the pitch and thrust. The latter two are
attached to a shaft which can be rotated up to 180 degree
by a servo (see Figure 2). The gondola includes all hardware
components used to control the speed of the motors using

TABLE I

WEIGHTS OF THE INDIVIDUAL COMPONENTS.

Component Weight [g]
Envelope 230
Gondola 15

Fins, Propellers, & Cables 75
Gumstix 8

Gumstix Peripheral Interface Card 21
Blimp Engine Control Board 7
Inertial Measurement Unit 10

USB hub & WLAN 16
Battery 33

Sum 415

PWMs, to change the position of the servo, and to process
the sensor data. The weights of all components are listed in
Table I.

A. Hardware Equipment

One of the main aspects in the design phase of our system
was to keep the flexibility of the individual system components
to a maximum. Therefore, we separated the system into several
main parts, such as: the system core unit, the peripheral
interface card, and the motor control and sensor board. To
obtain this flexibility all parts can be exchanged and adapted to
other systems and tasks. For instance, we also plan to use this
hardware on other flying robots like a small-scaled helicopter.
The main components are shown in Figure 3 and described in
the following sections.

1) System Core Unit and Communication: The core unit
of the blimp is an Intel XScale PXA270 based system-on-a-
chip (SoC), or more precisely aGumstix verdex XL6P board
with 600 MHz and 128 MB RAM. An on-board32 MB flash
memory serves as storage for the Linux operating system.
The SoC provides various low-level communication buses
and protocols (e.g., I2C, four independent UARTs, SPI) as
well as General Purpose Inputs/Outputs (GPIOs) and an USB
host port to access peripheral devices (e.g. WLAN stick).
The Gumstix board provides these circuit points over separate
connectors (Figure 3). The 60-pin connector is used to plug a
self-assembled peripheral interface card described in thenext
section.

2) Gumstix Peripheral Interface Card (GPIC): The Gum-
stix Peripheral Interface Card (GPIC) was designed for an easy
exchange of the motor control and sensors. This provides the
opportunity to use our hardware system to several other robots.
The GPIC forms the interface between the system core unit
and the actors and sensors. Referring to this point of view the
GPIC needs various connectors to handle different external
modules. Therefore, the GPIC provides:

• 8 ports for generic devices communicating via UART or
SPI,

• 4 connectors for I2C devices,
• charge control and power supply for the complete system,
• sensor to monitor battery state and power consumption,
• 2 additional UARTs for further purposes, and
• one USB connector for Gumstix’ system maintenance and

a second one to attach common USB devices.
In order to apply our system on different robots eight ports

for generic devices are provided. These ports communicate



3

Fig. 3. The main components of the hardware top down: Gumstixboard,
Gumstix Peripheral Interface Card (GPIC), and right at the bottom from left to
right the Blimp Engine Control Board (BECB) and the InertialMeasurement
Unit (IMU). The GPIC is attached via the 60-pin connector to the Gumstix
board.

via UART or SPI and hence can be used for miscellaneous
applications. In our system, we attached a motor control board
and an inertial measurement unit. In general, this providesthe
opportunity to easily extend the system with sensors or actors
or transfer it to other robots.

Our system is powered by one3.7 V lithium polymer
battery. The power supply unit for the complete system is
placed on the GPIC and provides multiple voltages (3.3 V,
5 V, and6 V). A power management unit offers several advan-
tages. First, it prevents total discharge of the battery (battery
management) and provides different stabilized voltages for
other modules (power supply unit). Second, the system can be
extended by additional boards and sensors without taking the
power requirements into account. Finally, the electric current,
the current over time, and the actual battery voltages are
monitored. A systematic layout of the GPIC including the
various connections and ports is shown in Figure 4. In our
current system, we use a3.7 V/1500 mAh battery which offers
an operating time-span of 50 minutes with an engine utilization
of 80%.

3) Blimp Engine Control Board (BECB): To have a wide
range of use we also constructed an external Blimp Engine
Control Board (BECB). In case the GPIC should be applied to
other robots it can easily be replaced with a new actor-specific
control board attached to one port for the generic devices. The
core unit of the BECB is a microcontroller which handles
simple string commands from the system unit and controls
the percental power of the motors and the setting of the servo.

Considering the engines, their power depends on the supply
voltage. As the supply voltage decreases during operation,
the thrust of the motors would vary for identical high-level
command. Therefore, we determine a power correction factor
based on the current battery voltage and the characteristics
of the motor to guarantee a constant thrust of the engine.
Consequently, the user can expect the same physical effects
of an action independent of the system state.

4) Inertial Measurement Unit (IMU): A fundamental re-
quirement for autonomous navigation of robots is the ability to

GPIC
Power

Data

Shutdown

Battery state

Various buses

Battery

4 I²C
Connectors

2 Additional
UARTs

8 Generic
Ports

Power Supply
Unit

Gumstix

2 USB
Connectors

Battery
Management

Fig. 4. The Gumstix Peripheral Interface Card (GPIC) consists of a power
supply and battery management unit. Several ports are provided to attach
actors and sensors.

localize itself. In the case of flying robots, information about
its flight attitudes, namely the Tait-Bryan angles roll, pitch,
and yaw, are required. These flight attitudes can be obtained
by an inertial measurement unit (IMU). In addition, we use the
data of the IMU as input for predictive filters to estimate the
current position based on the prior position and to increasethe
accuracy of the absolute position measurement. In this regard,
GPS-based localization is not applicable as our blimp system
is targeted on indoor environments.

Our self-made IMU is a highly integrated, planar, strapdown
system based on sensors in MEMS technology. To achieve our
complete state space with adequate accuracy we measured the
following physical units: acceleration, angular rate, magnetic
field, and pressure. The acceleration is measured in three
axis with four different selectable sensitivities. With these
sensitivities one can determine the static sensor offset atzero
gravitation to perform an auto-calibration. The pressure sensor
is used to obtain changes in the altitude.

5) Additional Sensors: In addition to the sensors of the
IMU we equipped our system with an ultrasonic sensor and a
miniature USB camera. Both are downward-facing mounted at
the bottom of the gondola to measure the altitude of the blimp
and to prepare the application of a visual navigation system.
The sonar sensor module SRF10 is attached to the I2C bus
and has a weight of 8 grams. The measurements are integrated
by means of a Kalman filter which sequentially estimates the
altitude and the vertical velocity of the blimp. The attached
USB camera has a weight of 9 grams and provides JPEG
pictures with a resolution of up to640 × 480 pixels.

B. Software Architecture

This section considers the software environment of our
blimp system. Similar to the hardware framework, our aim was
to apply standard software which provides easy maintainabil-
ity, configuration, and flexibility with regard to the operating
system, hardware access, and communication. Figure 5 shows
the interplay of the software framework, i.e., of the operating
system, drivers, and interprocess communication.

1) Operating system: Despite its small dimensions the
Gumstix board runs a full-fledged Linux operating system
which provides interfaces to access the connected hardware
and eases the configuration of the blimp as a wireless client



4

Intel XScale PXA270

Operating system

Hardware Interface Library Networking

Device Access
IPC Client

Central IPC Server

Blimp Control
IPC Client

Gumstix Peripheral Interface Card (GPIC)

SensorsActors

WLAN card

external 
IPC ClientsIMU

Fig. 5. The Figure shows the individual core components of the blimp
system. The operating system including the interface library provides higher-
level access for the IPC framework and application processes.

and of the TCP/IP network. The latter allows easy exchange of
application software during operation. Although the operating
system provides generic access to our hardware, i.e., I2C,
UART, and SPI, we implemented a hardware interface library
to provide higher-level access to the GPIC and the connected
sensors and actors.

2) Hardware Interface Library: The hardware interface
library is responsible for correctly controlling the sensors and
actors attached to the GPIC and providing high-level routines
to access them. The library provides a generic device type and
routines to send and receive data once the programmer has
configured the communication port and protocol. Upon this
generic device communication layer we implemented more
specific routines to access actors and sensors. New sensors
and actors can be easily attached to the GPIC and configured
during run-time if needed. The generality of the library makes
it easily applicable in other robotics systems.

3) Interprocess Communication: As mentioned above the
Linux operating system provides all necessary support for
TCP/IP networking. In order to control the blimp we use the
interprocess communication (IPC) framework of [12] based on
TCP/IP. The IPC framework allows to separate the processes
which accesses the actors and sensors of the blimp and
which actually control the blimp. In our configuration, a
central server process runs on the blimp and manages the
communication between several IPC client processes. One IPC
client process accesses the devices by the hardware interface
library and has to be executed on the blimp. However, other
controlling client processes can either be executed on the local
system for autonomous flights or externally. Another reason
for us to use the IPC framework is its platform independence,
i.e., it can be compiled for different architectures (e.g. ARM
on the blimp) and takes care of marshaling and unmarshaling
data.

IV. REINFORCEMENTLEARNING AS ONLINE

APPLICATION

In this section, we introduce how the blimp described so
far can be used as an autonomous platform. A fundamental

requirement for autonomous navigation in indoor environ-
ments are efficient controllers. Therefore, we consider the
task of stabilizing the blimp at a given goal altitude without
knowing the specific dynamics of the system or any parameter
of the environment. In practice, height control is already a
complex task as blimps are very sensitive and the behavior
highly depends on outer influences like payload, battery level,
temperature, and air flow. In the past, blimp controllers are
mainly based on standard controllers, e.g., PID or fuzzy logic,
or on the dynamics of the system. The disadvantages of such
approaches are the direct dependency on the parameter of
the dynamics. The optimal behavior cannot be guaranteed
if the conditions of the environment are not constant. In
general, it is hard to determine a globally suitable policy
applicable to several conditions. Therefore, we seek to learn
the best policy from scratch for the current conditions while
the blimp is in operation. If the real system learns online
without requiring any pre-defined controller or parameter,it
is robust against outside influences and independent of the
current conditions. For this task, we suggest the Monte Carlo
learning approach using Gaussian Processes to reinforcement
learning as proposed in [11].

Reinforcement learning [13] is based on the idea that
an agent interacts with a potentially unknown environment
and gets rewarded or penalized according to the actions it
performs. In this setting, the agent receives rewards for actions
that are beneficial in certain states for achieving a long-
term goal. The agent thus seeks to behave in a way that
maximizes its numerical reward. The goal is to determine a
policy function π, which maps each state to an action, such
that the overall reward is maximized.

The used learning approach apply the Monte Carlo method
to reinforcement learning. This has the advantage to learn
directly from experience while interacting online with a com-
pletely unknown environment. This enables us to learn without
prior knowledge and also in situations in which no simulation
environment is available. Formally, we seek to learn the state-
action function Q(s, a) : S × A → R, representing the
expected future reward when selecting actiona in states. In
our case, the statesS consist of the altitude and the vertical
velocity of the blimp and the actionsA represent the vertical
thrust of the propellers. To learn this function we gener-
ate episodese1, . . . , eN from a sequence of measurements
(s1, a1), . . . , (sT , aT ) obtained while the blimp is moving
through the environment. For each state-action pair(st, at)
in the sequence an episodeet =

(

(st, at), . . . , (st+p, at+p)
)

is generated consisting of thep successor states. The lengthp

of an episode is defined by a factorγ. An episode ends if the
factorγp is smaller than a given threshold of 0.1. The expected
long time reward for a state-action pair is finally calculated by

R(st, at) =

p
∑

i=0

γirt+i , (1)

where γ ∈ [0, 1) is a discount factor andr the immediate
reward received when executing actiona in states. Finally,
the best policy is given by the maximum over theQ-value



5

function

π(s) = arg max
a

Q(s, a) . (2)

Another advantage of this learning approach is the usage of
Gaussian Processes [10] to approximate theQ-function. With
this framework, we are able to retain our observed data during
online learning and to predict theQ-values for previously
unseen states-action pairs. Therefore, not all states haveto
be explored during the learning task and good policies can
be estimated even after a few learning steps. Furthermore,
in contrast to common Monte Carlo learning approaches, no
discretization of the state and action space have to be made.
This allows it to learn in continuous spaces which leads to
no discretization errors and better policies are expected.For
details about this learning approach, we refer to the work of
Rottmannet al. [11].

V. EXPERIMENTS AND EVALUATION

The following experiments describe our first experiences
with our blimp system. In order to get an overview of the
hardware performance we measured achievable throughput
rates to communicate with sensors and actors. Moreover, we
show that the assembled hardware and software framework are
applicable for complex tasks and evaluate the reinforcement
learning approach proposed in Section IV.

A. Performance Measurements

The progress of learning the behavior of an autonomous
robot in an unknown environment highly depends – apart from
the implemented models and algorithms – on the character-
istics of the attached actors and sensors and the latency of
actions and their effects. In the same way, the performance
of filter algorithms applied in dynamic systems is influenced
by the sampling rate of measurements. In order to get an
overview of the characteristics of the hardware equipment we
performed experiments considering throughput, sample rates,
and response times of the assembled devices.

The first experiment was to evaluate the direct commu-
nication performance between our system core unit and the
motor control unit. In our current configuration, the following
steps are performed to set the speed of a single motor: calling
the corresponding function of the hardware interface library,
creating a string command, selecting a port by setting the
corresponding GPIO address lines, and sending the string
command to the motor control unit via UART. The limiting
element considering performance in our configuration is the
115200 Baud UART bandwidth and the computation perfor-
mance of the attached hardware. As we have a maximum
length of six bytes for each command and two bytes for an
acknowledgment message we could transmit approximately
1440 commands per second to the motor control unit. Due to
the computation overhead we achieve a value of approximately
607.5± 9.9 commands per second, in practice. However, we
are convinced that this rate can be increased by optimizing the
code and the communication protocol.

In another experiment, we additionally considered the IPC
performance, i.e., motor control commands are initiated by

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500  600

nu
m

be
r 

of
 m

ea
su

rm
en

ts
 [1

/s
ec

] 

object distance [cm]

theoretical rate
measured rate

Fig. 6. Sonar sample rate: The curve for theoretical rate is derived from
the sonic speedv = 333 m/s and does not take the system overhead into
account. The measured rate reflects the performance of the system including
the hardware and software.

an external Blimp Control IPC client and the local Device
Access IPC client calls the function of the hardware interface
library. In this scenario, we get an additional overhead forthe
TCP/IP communication via the wireless link and can transmit
on average 187.8± 7.0 commands per second.

Due to the specification of our ultrasonic sensor, the latency
between triggering a measurement and availability of the result
is at most65 ms for a maximum distance range of11 m. How-
ever, this is only valid for the worst case. If the distancesobj

to the nearest object in the cone of the sensor is smaller, the
measurement result is available earlier and more measurements
can be performed in the same time interval. Additionally, the
sensor can be reprogrammed to operate in a lower maximum
distance rangesmax which would result in better sampling
rates. If we consider a distances = min(sobj, smax) to an
object and a sonic speedv, the theoretical number of samples
per time intervalT is n(s) = T ·v

2s
. Figure 6 illustrates the

theoretical and measured sample rate. The smaller the distance
s the more the overhead of the operating system and device
drivers become visible. For a typical indoor operating range
of 6 m we get a minimum sample rate of 27 measurements
per second.

We can summarize that the achieved rates should be suf-
ficient for most applications. However, our embedded sys-
tem and software framework is not limited to a blimp but
can also be applied in other aerial robots. Considering an
autonomous helicopter, for example, the latency should be
minimal between retrieving a sensor value, computation, and
performing an action. In this case, the communication between
external actors and sensors and the system core unit could be
switched to the SPI protocol which achieves much higher data
throughput.

B. Online Learning

This experiment demonstrates that our blimp system can
learn to control the altitude based on the experience gathered
during moving in the environment. We used the reinforce-
ment learning approach extended with Gaussian Processes
for approximating theQ-function. It also illustrates that our



6

 0

 1

 2

 3

 4

 0  50  100  150  200  250

al
tit

ud
e 

(m
)

time (sec)

online learning

Fig. 7. Evolution of the altitude during the learning progress to stabilize at
2 m.

approach efficiently learns on a completely model-free, real
system with unknown dynamics. To perform this experiment
we run the blimp in a factory building with a vertical explo-
ration space of5 m. Figure 7 plots the altitude movement of
the blimp during the learning task. As can be seen, at the
beginning the blimp is exploring the states and in the course
of time the blimp is more and more exploiting the current
policy and finally stabilizing at the goal altitude of2 m. In
an additional run as depicted in Figure 8 we compare the
policy of our learning approach with a standard controller.
We used a controller based on both the difference to the goal
altitude and the vertical velocity which leads in our setting
to a much better performance than a standard PID controller.
Anyway, the standard controller behaves suboptimal as the
current environmental conditions were unknown while the
parameters were established. Otherwise, the policy learned for
the current conditions stabilize the blimp much better at the
given goal altitude of1 m.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a powerful, low-weight, and
embedded microsystem which is applicable for autonomous
blimps and other systems with size and weight constraints.
The modular structure of the hardware components and the
use of generic hardware interfaces and common bus protocols
facilitate the adoption of other actor and sensor systems. The
user benefits from a flexible software framework consisting
of a common Linux operating system and peripheral device
drivers. Finally, we demonstrated the capabilities of our blimp
system in the context of a reinforcement learning task.

Despite these encouraging results, there are several as-
pects that warrant future research. For example, we plan
to evaluate the use of dead reckoning algorithms for our
inertial measurement unit and consider further localization
techniques for aerial robots. In this context, the challenge
is to integrate appropriate algorithms which allow accurate
position estimations. Using localization techniques we also
plan to extend our reinforcement learning approach for 3D
worlds. Additionally, we plan to investigate how the learning
system reacts if the environmental parameters change abruptly
during online learning.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120  140

al
tit

ud
e 

(m
)

time (sec)

online learned control policy
standard controller

Fig. 8. Progress of applying the online learned control policy and a PID
controller while stabilizing at1 m.

ACKNOWLEDGMENT

This work has partly been supported by the German Re-
search Foundation (DFG) within the Research Training Group
1103.

REFERENCES

[1] T. Fukao, K. Fujitani, and T. Kanade. An autonomous blimpfor a
surveillance system. InProc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2003.

[2] T. Fukao, K. Fujitani, and T. Kanade. Image-based tracking control of
a blimp. In Proc. of the IEEE Conf. on Decision and Control, 2003.

[3] W. Green, K. Sevcik, and P. Oh. A competition to identify key challenges
for unmanned aerial robots in near-earth environments. InProc. of the
Int. Conf. on Advanced Robotics (ICAR), 2005.

[4] E. Hygounenc, I-K. Jung, P. Soueres, and S. Lacroix. The autonomous
blimp project at laas/cnrs: Achievements in flight control and terrain
mapping. InInternational Journal of Robotics Research, 2003.

[5] I-K. Jung and S. Lacroix. High resolution terrain mapping using low
altitude aerial stereo imagery. InInt. Conf. on Computer Vision, 2003.

[6] J. Kim, J. Keller, and V. Kumar. Design and verification ofcontrollers
for airships. InProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2003.

[7] J. Ko, D. Klein, D. Fox, and D. Hähnel. Gaussian processes and
reinforcement learning for identification and control of anautonomous
blimp. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2007.

[8] RCGuys Radio Control Models http://www.rcguys.com.
[9] J. Rao, Z. Gong, J. Luo, and S. Xie. A flight control and navigation

system of a small size unmanned airship. InProc. of the IEEE
Int. Conf. Mechatronics and Automation, 2005.

[10] C.E. Rasmussen and C. Williams.Gaussian Processes for Machine
Learning. MIT Press, 2006.

[11] A. Rottmann, C. Plagemann, P. Hilgers, and W. Burgard. Autonomous
blimp control using model-free reinforcement learning in acontinuous
state and action space. InProc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2007.

[12] R. Simmons and D. James.Inter-Process Communication: A Reference
Manual (for IPC Version 3.6), 2001.

[13] R.S. Sutton and A.G. Barto.Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[14] S. Varella Gomes and J. Ramos. Airship dynamic modelingfor
autonomous operation. InProc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 1998.

[15] G. Wyeth and I. Barron. An autonomous blimp. InProc. of the IEEE
Int. Conf. on Field and Service Robotics, 1997.

[16] H. Zhang and J. Ostrowski. Visual servoing with dynamics: Control of
an unmanned blimp. InProc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 1999.


