Towards an
Experimental Autonomous Blimp Platform

Axel Rottmanri Matthias Sippél Thorsten Zitterell Wolfram Burgard Leonard Reindl Christoph Schofl

*Albert-Ludwigs-University fAlbert-Ludwigs-University
Department of Computer Science Department of Microsystem Technology
Freiburg, Germany Freiburg, Germany

{rottmann, tzttere, burgard, scholl } @informatik.uni-freiburg.de  {sippel, reindl } @imtek.uni-freiburg.de

i

Abstract—In this paper, we present the design of an au-
tonomous indoor blimp. We describe the individual low-weidnt
components of an embedded system including actors and senso
which achieve a total weight of less than 200 grams. Both, the
modular hardware components and the use of generic hardware
interfaces facilitate the adaption to different actor and €nsor
systems. Similar to the flexibility of the hardware componets,
the user benefits from a generic software framework. Here, aon-
board Linux operating system and device driver interface eae
the implementation of robotic applications and control taks.
The main challenge of designing a small blimp in regard to
autonomous operation is the efficient interplay of the indivdual
software and hardware components. In this work, we show Fig. 1. This images shows the completely build blimp withragk of 1.8 m
approaches to achieve this and to obtain a system which can and a diameter 06.8 m.
easily be applied to other robotic systems with constraintsn
weight and available space. We evaluate the performance ohé¢

comp.onents.and demonstrate their integration in a reinforement learning approach to control the altitude. Here, the blirap a
learning setting. tonomously learns the optimal policy from scratch to staeéil
Index Terms— reinforcement learning and navigation its height after it has been switched on.
This paper is organized as follows. After discussing relate
work in the following section, we will describe in detail
. INTRODUCTION our blimp system including the hardware components and

The development of small size autonomous flying vehicléd€ software framework in Section Ill. Afterwards, we will
represents one of the current frontiers of research in raobfifustrate a controlling approach based on reinforcemestri-
robotics. In this context, aerial blimps have the advanta§®d in Section IV. In Section V, we will present our first
that they operate at low speed, do not spend energy to k&&periences with our blimp system. and a.pract|cal appbnan_
their position, and are not overly sensitive to control esroWhich integrates the components in a reinforcement legrnin
compared to other flying vehicles. On the other hand, th&@tting. Finally, Section VI concludes the paper.
are sensible to outside influences like air flow and are stibjec
to a three dimensional motion model with translations and Il. RELATED WORK
rotations. Therefore, they are a common platform to eveluat The scientific research on autonomous blimps has constantly
robotic algorithms for autonomous flight and navigation.  been increasing over the last few years. Most of these blimps

In this paper, we describe how such a blimp system includre large-scale systems with a payload of several kilograms
ing an embedded microsystem and software framework caniggounencet al. [4] provided a good overview of how to
build up. In this regard, we aim to keep the system as smabnstruct such an outdoor blimp and how to apply it to some
and agile as possible in order to operate indoors. fundamental robotic tasks. They illustrated how to control

This size constraint also limits the possible weight of theeveral flight phases from takeoff to landing based on the
blimp. With a maximum possible payload of 200 grams inon-linear system dynamics. Jung and Lacroix [5] presented
our configuration the system must include the gondola, actoan approach to simultaneous localization and mapping using
sensors, engine control unit, system unit, and battery. Diggv altitude stereo-vision. Also Kingt al. [6] illustrated an
to these characteristics, blimps are not only interestiolg fapproach to point to point navigation of an outdoor blimp.
robotics but also for microsystem technology as the atich€ompared to these papers, the blimp described in this paper
devices should be both small and efficient. Such performartegs been designed for indoor scenarios. It is much smaller
aspects are evaluated in the experiments. than the outdoor systems and has a total weight including

In order to demonstrate the operational reliability of ouhe envelope of only 420 grams. Therefore, the challenge is
blimp system (see Figure 1) we describe a reinforcemedntintegrate low-weight sensors in an embedded microsystem




TABLE |
WEIGHTS OF THE INDIVIDUAL COMPONENTS

- \J
f NG 7 Component Weight [g]
8 Envelope 230
! ‘ ; j Gondola 15

Fins, Propellers, & Cables 75

Gumstix 8

Gumstix Peripheral Interface Carfd 21

Fig. 2. This image shows the gondola with two rotors for pigsid thrust Blimp Engine Control Board 7
control. They can be rotated by 180 degrees. Inertial Measurement Unit 10
USB hub & WLAN 16

Battery 33
Sum 415

and to provide a software framework for complex tasks like
autonomous navigation and localization.

Furthermore, blimps have been studied in various context3VMs, to change the position of the servo, and to process
Varella Gomes and Ramos [14] described the physical prifie sensor data. The weights of all components are listed in
ciples of airship operations often used to design a coeiroll Table I.

Zhang and Ostrowski [16], for instance, used a vision-giiide
blimp in combination with a PID controller. Raet al. [9] A. Hardware Equipment

proposed a fuzzy logic controller which was based on the One of the main aspects in the design phase of our system
dynamics of the vehicle. Whereas Wyeth and Barron [1§]as to keep the flexibility of the individual system compoisen
presented a low level reactive controller, Fukeoal. [2] to a maximum. Therefore, we separated the system into devera
illustrated an image-based tracking control for an indo@hain parts, such as: the system core unit, the peripheral
blimp. Moreover, reinforcement learning has successtulgn interface card, and the motor control and sensor board. To
applied to learn the control policy of an indoor blimp. 0  obtain this flexibility all parts can be exchanged and adafiie
al. [7] used Gaussian Processes to estimate the residuals®fer systems and tasks. For instance, we also plan to sse thi
the dynamics and learn to control the yaw and the yaw ratgardware on other flying robots like a small-scaled helienpt
Other applications such as indoor navigation with one camerhe main components are shown in Figure 3 and described in
were presented by Grea al. [3] and a surveillance systemthe following sections.
by Kukaoet al. [1]. 1) System Core Unit and Communication: The core unit
of the blimp is an Intel XScale PXA270 based system-on-a-
[1l. BLIMP SYSTEM chip (SoC), or more precisely @umstix verdex XL6P board
The characteristics of an aerial robot result in varioudith 600 MHz and 128 MB RAM. An on-board32 MB flash

restrictions considering the assembled hardware. Fornapblimemory serves as storage for the Linux operating system.
system, the higher the volume of the envelope and therdfere fhe SoC provides various low-level communication buses
ascending force, the higher the possible payload. Howeverand protocols (e.g.,’C, four independent UARTS, SPI) as
bigger envelope makes it less applicable for indoor naidgat Well as General Purpose Inputs/Outputs (GPIOs) and an USB
and results in more inertial flight characteristics. For oudtost port to access peripheral devices (e.g. WLAN stick).
blimp system, the goal was to minimize both the size of thEhe Gumstix board provides these circuit points over s¢para
blimp and consequently the weight of the needed hardwai@nnectors (Figure 3). The 60-pin connector is used to plug a
equipment. The challenges under such constraints are to f®if-assembled peripheral interface card described iméxe
a trade-off between agility, range, and energy consumptigi¢ction.
and to develop appropriate algorithms for small aerial tsbo 2) Gumstix Peripheral Interface Card (GPIC): The Gum-
which are highly sensitive to outside influences (e.g., ain)l Stix Peripheral Interface Card (GPIC) was designed for ag ea

In addition, high flexibility and maintainability of the gef €xchange of the motor control and sensors. This provides the
ware components have been a matter of particular inter@9Portunity to use our hardware system to several othettsobo
for us. The embedded system has to be powerful enough'iee GPIC forms the interface between the system core unit
process on-board calculations for autonomous flights whi@d the actors and sensors. Referring to this point of view th
also allowing to transparently perform these computatioﬁ%PlC needs various connectors to handle different external
on external computers. Basically, the same piece of contfBpdules. Therefore, the GPIC provides:
software must be executable on-board and also on an external 8 ports for generic devices communicating via UART or
development system without code modifications. SPI,

A commercial1.8m blimp envelope [8] builds the basis « 4 connectors foriC devices,
for our blimp as depicted in Figure 1. The blimp is equipped « charge control and power supply for the complete system,
with three motors. One motor is mounted in the tail fin to « sensor to monitor battery state and power consumption,
control the yaw. The other two are mounted on each side ofs 2 additional UARTSs for further purposes, and
the gondola to control the pitch and thrust. The latter twe ar « one USB connector for Gumstix’ system maintenance and
attached to a shaft which can be rotated up to 180 degree a second one to attach common USB devices.
by a servo (see Figure 2). The gondola includes all hardwardn order to apply our system on different robots eight ports
components used to control the speed of the motors usiiog generic devices are provided. These ports communicate
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Fig. 4. The Gumstix Peripheral Interface Card (GPIC) cdssi$ a power
supply and battery management unit. Several ports are d@dvto attach
actors and sensors.

Fig. 3. The main components of the hardware top down: Gunigiard,
C_Eumstix Pe;ripheral _Inten‘ace Card (GPIC), and right at thitdon from left to
right the Blimp Engine Control Board (BECB) and the Inerfidbasurement |ocalize itself. In the case of flying robots, informationoaib

LJg;trélMU). The GPIC is attached via the 60-pin connector e Gumstix its fIight attitudes, namely the Tait-Bryan angles I‘0||,Chi,t
and yaw, are required. These flight attitudes can be obtained
by an inertial measurement unit (IMU). In addition, we use th

via UART or SPI and hence can be used for miscellaneo@igta of the IMU as input for predictive filters to estimate the
applications. In our system, we attached a motor controfcbozurrent position based on the prior position and to incrélase
and an inertial measurement unit. In general, this proviles accuracy of the absolute position measurement. In thisdega
opportunity to easily extend the system with sensors oracté>PS-based localization is not applicable as our blimp syste
or transfer it to other robots. is targeted on indoor environments.

Our system is powered by on&7V lithium polymer Our self-made IMU is a highly integrated, planar, strapdown
battery. The power supply unit for the complete system fyStem based on sensors in MEMS technology. To achieve our
placed on the GPIC and provides multiple voltagassy, Ccomplete state space with adequate accuracy we measured the
5V, and6 V). A power management unit offers several advariollowing physical units: acceleration, angular rate, metie
tages. First, it prevents total discharge of the batterytépa field, and pressure. The acceleration is measured in three
management) and provides different stabilized voltages fxis with four different selectable sensitivities. Withetre
other modules (power supply unit). Second, the system candsdsitivities one can determine the static sensor offse¢rat
extended by additional boards and sensors without takiag @favitation to perform an auto-calibration. The presseressr
power requirements into account. Finally, the electricent, S Used to obtain changes in the altitude.
the current over time, and the actual battery voltages are®) Additional Sensors: In addition to the sensors of the
monitored. A systematic layout of the GPIC including th&VU we equipped our system with an ultrasonic sensor and a
various connections and ports is shown in Figure 4. In ofJfiniature USB camera. Both are downward-facing mounted at
current system, we use3a7 /1500 mAh battery which offers the bottom of the gondolla to measure_the aItitque qf the blimp
an operating time-span of 50 minutes with an engine utitzat @nd to prepare the application of a visual navigation system
of 80%. The sonar sensor module SRF10 is attached to ¥6ebus

3) Blimp Engine Control Board (BECB): To have a wide and has a weight of 8 grams. The measurements are integrated

range of use we also constructed an external Blimp EngiR¥ méans of a Kalman filter which sequentially estimates the

Control Board (BECB). In case the GPIC should be applied gititude and the vertlcal_velomty of the blimp. The. attatthe

other robots it can easily be replaced with a new actor-peciVSB camera has a weight of 9 grams and provides JPEG

control board attached to one port for the generic devichs, TRICtures with a resolution of up 640 x 480 pixels.

core unit of the BECB is a microcontroller which handles

simple string commands from the system unit and contrdls Software Architecture

the percental power of the motors and the setting of the servoThis section considers the software environment of our
Considering the engines, their power depends on the supplimp system. Similar to the hardware framework, our aim was

voltage. As the supply voltage decreases during operatien,apply standard software which provides easy maintainabi

the thrust of the motors would vary for identical high-leveity, configuration, and flexibility with regard to the openraf

command. Therefore, we determine a power correction factystem, hardware access, and communication. Figure 5 shows

based on the current battery voltage and the characteristige interplay of the software framework, i.e., of the opiagat

of the motor to guarantee a constant thrust of the engingstem, drivers, and interprocess communication.

Consequently, the user can expect the same physical effects) Operating system: Despite its small dimensions the

of an action independent of the system state. Gumstix board runs a full-fledged Linux operating system
4) Inertial Measurement Unit (IMU): A fundamental re- which provides interfaces to access the connected hardware

quirement for autonomous navigation of robots is the ghitit and eases the configuration of the blimp as a wireless client



evice Access EREe requirement for autonomous navigation in indoor environ-
ments are efficient controllers. Therefore, we consider the
| [ pE—— [ | task of stabilizing the blimp at a given goal altitude witthou
yy knowing the specific dynamics of the system or any parameter
of the environment. In practice, height control is already a
4 SEEER R 4 complex task as blimps are very sensitive and the behavior
| Haraware Interface Library | Networking | highly depends on outer influences like payload, battergllev
temperature, and air flow. In the past, blimp controllers are
mainly based on standard controllers, e.g., PID or fuzziclog
or on the dynamics of the system. The disadvantages of such
A 2 ) 2 approaches are the direct dependency on the parameter of
the dynamics. The optimal behavior cannot be guaranteed
| | [ A oema if the conditions of the environment are not constant. In
| beEs | | SEiETE | LY | cctens general, it is hard to determine a globally suitable policy
applicable to several conditions. Therefore, we seek tmlea
Fig. 5. The Figure shows the individual core components af Bhmp o hast policy from scratch for the current conditions ehil
system. The operating system including the interface fjbpmovides higher- . . . .
level access for the IPC framework and application processe the blimp is in operation. If the real system learns online
without requiring any pre-defined controller or parametier,
is robust against outside influences and independent of the
and of the TCP/IP network. The latter allows easy exchange@frrent conditions. For this task, we suggest the MontecCarl
application software during operation. Although the ofiaca learning approach using Gaussian Processes to reinfonteme
system provides generic access to our hardware, %€, |learning as proposed in [11].
UART, and SPI, we implemented a hardware interface library Reinforcement learning [13] is based on the idea that
to provide higher-level access to the GPIC and the connectasl agent interacts with a potentially unknown environment
sensors and actors. and gets rewarded or penalized according to the actions it
2) Hardware Interface Library: The hardware interface performs. In this setting, the agent receives rewards fooms
library is responsible for correctly controlling the sersand that are beneficial in certain states for achieving a long-
actors attached to the GPIC and providing high-level r@agtinterm goal. The agent thus seeks to behave in a way that
to access them. The library provides a generic device type afaximizes its numerical reward. The goal is to determine a
routines to send and receive data once the programmer paficy function«, which maps each state to an action, such
configured the communication port and protocol. Upon thifat the overall reward is maximized.

generic device communication layer we implemented moreThe ysed learning approach apply the Monte Carlo method
specific routines to access actors and sensors. New Sengorssinforcement learning. This has the advantage to learn
and actors can be easily attached to the GPIC and configuaq;q,cﬂy from experience while interacting online with anco
during run-time if needed. The generality of the library 8k pjetely unknown environment. This enables us to learn witho
it easily applicable in other robotics systems. prior knowledge and also in situations in which no simulatio
~3) Interprocess Communication: As mentioned above the g ironment is available. Formally, we seek to learn theesta
Linux operating system provides all necessary support fotiion functionQ(s,a) : S x A — R, representing the
TCP/IP networking. In order to control the blimp we use th@xpected future reward when selecting actiom states. In
interprocess communication (IPC) framework of [12] based qy; case, the state$ consist of the altitude and the vertical
TCP/IP. The IPC framework allows to separate the processggocity of the blimp and the actiond represent the vertical
which accesses the actors and sensors of the blimp gffst of the propellers. To learn this function we gener-

which actually control the blimp. In our configuration, ay, episodes:,...,en from a sequence of measurements
central server process runs on the blimp and manages QE a1),...,(sv,ar) obtained while the blimp is moving
communication between several IPC client processes. ADe | rough the environment. For each state-action paira;)

client process accesses the devices by the hardware teertq o sequence an episode — ((St ar) (St Gt ))

. . - ) Yt y23) vy
library and has to be executed on the blimp. However, oth@ryenerated consisting of thesuccessor states. The length
controlling client processes can either be executed orotte | ¢ 5, episode is defined by a facter An episode ends if the
system for autonomous flights or externally. Another reas@fi.o~» js smaller than a given threshold of 0.1. The expected

for us to use the IPC framework is its platform independenq%ng time reward for a state-action pair is finally calcudabsy
i.e., it can be compiled for different architectures (e.qRM

on the blimp) and takes care of marshaling and unmarshaling

| H Intel XScale PXA270 H |

| Gumstix Peripheral Interface Card (GPIC) | | WLAN card

p
data. R(Staat) — Z/ert-ﬁ—ia (1)
i=0
IV. REINFORCEMENTLEARNING AS ONLINE '
APPLICATION wherey € [0,1) is a discount factor and the immediate

In this section, we introduce how the blimp described seward received when executing actienin states. Finally,
far can be used as an autonomous platform. A fundamerita¢ best policy is given by the maximum over thevalue



function 500

g theoretical rate
m(s) = arg max Q(s, a) . (2) £ measured rate -
a =400 |

Another advantage of this learning approach is the usage of 5
Gaussian Processes [10] to approximate@iinction. With % 300 1
this framework, we are able to retain our observed data durin § 200 |
online learning and to predict th@-values for previously E
unseen states-action pairs. Therefore, not all states tmave ; 100 |
be explored during the learning task and good policies can £
be estimated even after a few learning steps. Furthermore, 2 0 ‘ ‘ ‘ ‘ ‘
in contrast to common Monte Carlo learning approaches, no 0 100 200 300 400 500 600
discretization of the state and action space have to be made. object distance [cm]

This allows it to learn in continuous spaces which leads to

no discretization errors and better policies are expedted. the sonic speed = 333m/s and does not take the system overhead into

details about this learning approach, we refer to the work gdcount. The measured rate reflects the performance of sensyncluding
Rottmannet al. [11]. the hardware and software.

Sonar sample rate: The curve for theoretical rateersved from

V. EXPERIMENTS AND EVALUATION ] ) )
an external Blimp Control IPC client and the local Device

.;Lhe foItI)cl)_vvmg extperlmlentsddes::rlbetour first ?Xpe”?qﬁ%ccess IPC client calls the function of the hardware inteafa
with our blimp system. In order to get an overview o (ﬁbrary. In this scenario, we get an additional overheactlier

hardware performance yve measured achievable throuqh{?&ﬁ?/IP communication via the wireless link and can transmit
rates to communicate with sensors and actors. Moreover, Wﬁaverage 187.8 7.0 commands per second

show that the assembled hardware and software framework B e to the specification of our ultrasonic sensor, the Iatenc

apph(_:able for complex tasks_ and eyaluate the relnforcem%rétween triggering a measurement and availability of thalte
learning approach proposed in Section V. : : :
is at most65 ms for a maximum distance range lof m. How-
ever, this is only valid for the worst case. If the distaneg

A. Performance Measurements to the nearest object in the cone of the sensor is smaller, the

The progress of learning the behavior of an autonomomseasurement result is available earlier and more measateme
robot in an unknown environment highly depends — apart frooan be performed in the same time interval. Additionallg th
the implemented models and algorithms — on the characteensor can be reprogrammed to operate in a lower maximum
istics of the attached actors and sensors and the latencydistance rangemax which would result in better sampling
actions and their effects. In the same way, the performaneges. If we consider a distance = min(sepj, Smax) 10 a@n
of filter algorithms applied in dynamic systems is influencegbject and a sonic speed the theoretical number of samples
by the sampling rate of measurements. In order to get per time intervalT is n(s) = % Figure 6 illustrates the
overview of the characteristics of the hardware equipment wheoretical and measured sample rate. The smaller thendésta
performed experiments considering throughput, sampksrats the more the overhead of the operating system and device
and response times of the assembled devices. drivers become visible. For a typical indoor operating mng

The first experiment was to evaluate the direct commof 6 m we get a minimum sample rate of 27 measurements
nication performance between our system core unit and ther second.
motor control unit. In our current configuration, the follioy We can summarize that the achieved rates should be suf-
steps are performed to set the speed of a single motor:gallficient for most applications. However, our embedded sys-
the corresponding function of the hardware interface fijgra tem and software framework is not limited to a blimp but
creating a string command, selecting a port by setting tan also be applied in other aerial robots. Considering an
corresponding GPIO address lines, and sending the striagtonomous helicopter, for example, the latency should be
command to the motor control unit via UART. The limitingminimal between retrieving a sensor value, computatiod, an
element considering performance in our configuration is thrforming an action. In this case, the communication betwe
115200 Baud UART bandwidth and the computation perfogxternal actors and sensors and the system core unit could be
mance of the attached hardware. As we have a maxim@witched to the SPI protocol which achieves much higher data
length of six bytes for each command and two bytes for ahroughput.
acknowledgment message we could transmit approximately
1440 commands per second to the motor control unit. Due to , i
the computation overhead we achieve a value of approximatg' Online Learning
607.5+ 9.9 commands per second, in practice. However, weThis experiment demonstrates that our blimp system can
are convinced that this rate can be increased by optimikiag fearn to control the altitude based on the experience gadher
code and the communication protocol. during moving in the environment. We used the reinforce-

In another experiment, we additionally considered the IP@ent learning approach extended with Gaussian Processes
performance, i.e., motor control commands are initiated bgr approximating theQ-function. It also illustrates that our
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approach efficiently learns on a completely model-freel rea
system with unknown dynamics. To perform this experiment
we run the blimp in a factory building with a vertical explo-
ration space ob m. Figure 7 plots the altitude movement of
the blimp during the learning task. As can be seen, at i
beginning the blimp is exploring the states and in the course
of time the blimp is more and more exploiting the current

policy and finally stabilizing at the goal altitude @m. In  [1]
an additional run as depicted in Figure 8 we compare the
policy of our learning approach with a standard controllerp,
We used a controller based on both the difference to the goal
altitude and the vertical velocity which leads in our segtin 8]
to a much better performance than a standard PID controller.
Anyway, the standard controller behaves suboptimal as the]
current environmental conditions were unknown while the

parameters were established. Otherwise, the policy lddore (5
the current conditions stabilize the blimp much better at th

given goal altitude ofl m. [6]

VI. CONCLUSIONS ANDFUTURE WORK 7]

In this paper, we presented a powerful, low-weight, and
embedded microsystem which is applicable for autonomous
blimps and other systems with size and weight constraint§]
The modular structure of the hardware components and thd
use of generic hardware interfaces and common bus protocols
facilitate the adoption of other actor and sensor systerhs. T10]
user benefits from a flexible software framework consistirlgl]
of a common Linux operating system and peripheral device
drivers. Finally, we demonstrated the capabilities of dimp
system in the context of a reinforcement learning task. [12

Despite these encouraging results, there are several as-
pects that warrant future research. For example, we plaa]
to evaluate the use of dead reckoning algorithms for OHL]
inertial measurement unit and consider further localarati
techniques for aerial robots. In this context, the chakkeng
is to integrate appropriate algorithms which allow accarat!®!
position estimations. Using localization techniques weoal g
plan to extend our reinforcement learning approach for 3D
worlds. Additionally, we plan to investigate how the leaui
system reacts if the environmental parameters change thbrup
during online learning.

controller while stabilizing at m.
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