Localization on OpenStreetMap Data using a 3D Laser Scanner
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Abstract—To determine the pose of a vehicle is a funda-
mental problem in mobile robotics. Most approaches relate the
current sensor observations to a map generated with previously
acquired data of the same system or by another system with
a similar sensor setup. Unfortunately, previously acquired data
is not always available. In outdoor settings, GPS is a very
useful tool to determine a global estimate of the vehicles pose.
Unfortunately, GPS tends to be unreliable in situations in which
a clear view to the sky is restricted. Yet, one can make use of
publicly available map material as prior information. In this
paper, we describe an approach to localize a robot equipped
with a 3D range scanner with respect to a road network created
from OpenStreetMap data. To successfully localize a mobile
robot we propose a road classification scheme for 3D range
data together with a novel sensor model, which relates the
classification results to a road network. Compared to other
approaches, our system does not require the robot to actually
travel on the road network. We evaluate our approach in
extensive experiments on simulated and real data and compare
favorably to two state-of-the-art methods on those data.

I. INTRODUCTION

One essential prerequisite for autonomous navigation for
cars or mobile robots is to know the pose of the vehicle in
the world. For example, without this information a mobile
robot would not be able to plan a path to a desired goal.
The most common localization method in outdoor settings
is the global positioning system (GPS). While GPS provides
a global position, the accuracy of the pose estimate depends
on the number and distribution of visible satellites. Especially
in cities with high buildings or under tree canopies GPS can
suffer from severe outages. The goal of this work is to enable
mobile robots to perform robust navigation even under such
circumstances.

To overcome this problem, many autonomous mobile
robots or self-driving cars localize themself within highly
accurate maps of the environment, built with range or vision
sensors [15], [9]. While this approach yields highly accurate
results, it requires a substantial effort to obtain such maps
from the sensor data of the mobile robot in advance and to
maintain them afterwards.

In this paper, we propose an alternative solution and
present an approach to localize a mobile robot given publicly
available maps, like OpenStreetMap [12], which provide a
dense description of the public road network around the
planet. To achieve this, our approach performs a classification
of the observations obtained with a 3D laser scanner. In
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Fig. 1. Our system localizes a mobile robot equipped with a 3D range
scanner in a publicly available OpenStreeMap.

addition, it contains a dedicated sensor model for a proba-
bilistic approach based on a particle filter. Compared to other
approaches that perform localization on publicly available
maps [2], [4], we do not make the assumption that the robot
has to drive on the road network. It only has to be in a
reasonable proximity to be able to observe the road network
from time to time. Figure 1 illustrates the basic principle of
our approach.

II. RELATED WORK

Localization in road networks has received quite some
attention in the context of autonomous navigation with cars.
For example during the DARPA urban challenge all teams
had to localize their vehicle on a road network [8], [11],
[16]. Most of the systems in this context used a fused
localization estimate based on GPS, odometry, and a very
accurate inertial measurement unit (IMU). Such methods
typically provide locally very accurate motion estimates and
can determine the global pose within a few meters, but rely
on very expensive, specialized hardware to do so. One of the
first methods using a Monte Carlo filter to localize a robot
was proposed by Dellaert et al. [3]. In their experiments they
used sonar readings or laser scans to localize a robot in an
occupancy grid map. Since then many different approaches
employed Monte Carlo Localization (MCL) to localize a
robot [7], [13], [17]. Floros et al. [4] localize a robot on an
OpenStreetMaps road network using visual odometry. They
use a history of odometry poses to match against the road
network using fast oriented chamfer matching. The authors
assume that the shape of this odometry path resembles
the shape of the road. While this approach enables fast
and robust localization it is restricted to robots driving on
roads. Brubaker et al. [2] provide a method for graph based
localization on OpenStreetMaps using visual odometry. They
represent the robots pose explicit on the edges of the road



graph. The authors provide a probabilistic transition model
to move the particles on the graph. Hentschel et al. [6]
use OpenStreetMap data for localization, to perform path
planning, and autonomous vehicle control in an urban en-
vironment. In contrast to our approach, they mostly use the
shape of buildings to localize the robot using 2D laser scans.
This approach allows the robot to leave the road but needs
an urban environment with known shapes of the buildings.
Kiimmerle et al. [10] present an approach to localize a
mobile robot equipped with a 3D range scanner in an aerial
image, using Monte Carlo Localization. Compared to our
approach, aerial images contain richer information of the
environment, e.g., buildings or trees, compared to just a road
network.

In this paper, we propose a system to localize a robot,
equipped with a 3D laser scanner, with respect to a road net-
work from OpenStreetMap. We apply a supervised classifica-
tion approach to classify laser scans into road and non-road.
This classification is then used in a corresponding sensor
model to weight the particles of a Monte Carlo Localization.
In contrast to the above-mentioned methods, which localize
a robot on a road network using only odometry, our method
does not require that the robot actually travels on the road
network.

III. MCL-BASED LOCALIZATION ON ROAD NETWORKS

The goal of our system is to find the pose of a robot
relative to a given road network, based on a sequence of
3D laser scans, odometry measurements, and a rough initial
position of the robot (within a few hundred meters).

In the following we will describe our Monte Carlo Local-
ization approach, including a novel sensor model, as well as
the classifier we use to distinguish road from non-road in the
robot’s measurements.

A. Monte Carlo Localization

In our work, we use a particle filter [14] to perform
Monte Carlo Localization. A particle filter in the context of
localization represents the probability distribution over the
pose x; of the robot with a finite set of weighted hypotheses
called particles. To maintain a believe about the pose of the
system, a particle filter performs two steps. The first step
is the motion update, which modifies the pose hypothesis of
each particle using the action u;, the map m and the previous
state x;_1 by sampling z; according to p(x: | us, xt—1,m).
In the second step, we relate the measurements to the map
according to our sensor model. More precisely, we weight the
particles using the measurement z; according to our sensor
model p(z; | x4, m). Afterwards, we resample a new set of
particles from the old ones, where the chance of survival for
each particle is proportional to its weight in the old particle
set.

B. Our Implementation of the Monte Carlo Filter

One general problem of approximating a probability dis-
tribution with a finite set of particles is that good hypotheses
might not survive the resampling step. Therefore, we use the

number of effective particles to measure the quality of the
particle distribution and resample only when this number is
below a given threshold. The number of effective particles [5]
is computed as

N 2
New =1/ (w®)". (M
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Resampling is only performed if Negr < N/2, where N is the
number of particles. For the motion update we use odometry
readings from the wheel encoders or equivalent simulated
data.

C. Classification

Since our map encodes only road information we first
need to retrieve this information from the 3D range readings.
Therefore, we have to decide whether regions in range
scans observe road or non-road surfaces. Throughout our
experiments we perform road classification on single scans
from a Velodyne HDL-32E Lidar, but any kind of 3D laser
scanner (e.g., tilting/rotating 2D scanners) can be used with
our method. Our method expects 3D scans that include
additional reflectance values. Our classification is defined as
a function mapping from discretized cells z; to the classes
road or non-road

¢: z; — {road, —road} .

To calculate this classification, we project the scan into a two
dimensional grid and classify the single cells independently.
From all points falling into one cell, we calculate the
following features: the mean and standard deviation of the
height values, the mean of the squared intensity values, the
standard deviation of the intensities, the distance to a fitted
plane, the normal vector of the fitted plane, and the maximum
difference in height values. Based on those local features we
learn a classifier using boosting [1] in a supervised fashion.
Cells with no or too few points to calculate features are
neglected.

To train the classifier, we first collected a dataset (different
from the one used in the experiments) with a robot and
manually labeled the regions in the scans as being road and
non-road. This leads to a classified set of features which we
use to train our classifier.

D. Weighting / Sensor Model

The task of the sensor model is to determine the likelihood
p(z | ,m) of a measurement z, given the robot is at pose
z in the map m. In our approach, the input to our sensor
model is the road classification in form of a 2D grid map, in
which each cell is either unobserved, road or, non-road. In the
following, we explain how we relate the road classification
to the provided road network.

Under the assumption that the grid cells from our sensor
measurement are independent, the likelihood of a measure-
ment z, composed of the classified grid cells z1, ..., 2|, can
be calculated as

||
p(z | z,m) x Hf(zi,m), (2)

i=1



where f(z;,m) is the likelihood of one cell in the mea-
surement given the map. We model the likelihood for each
observed point as a Gaussian

f(ziam) = N(E(Zi,m),O,O'Zi), (3)

with mean 0 and a user defined standard deviation that is
individually defined for road and non-road measurements.
The term &(z;,m) is an error based on the distance to the
next road in the map, which can be efficiently determined
using pre-computed distance transform maps.

1) Cost for Road Cells: The calculation of €"(z;,m) for
road cells is supposed to penalize measured road cells that
do not correspond to the roads appearing in the map. Such
regions lead to a higher distance to the road and thereby
increase the error for this match. The error €”(z;, m) for cells
classified as road is calculated for all cells z; with ¢(z;) =
road as follows

€"(z;,m) = min (d, max (0, |z; — s|)), 4

where s is the closest point on the road network and d is the
maximum allowed distance to a road. The term €"(z;, m)
therefore describes the distance between the observed cell
and the closest road in the road network. Cells with a higher
distance to the closest road than d will not be penalized
further. The usage of the error " in the particle filter leads
to a situation that particles are kept in regions where most of
the cells that are classified as road are close to a road in the
map. The effect of this error can be seen in Figure 2[left].
Removing the dotted side road results in higher errors for all
cells, classified as road (green) which are in the blue ellipse.
The closest road in the map is now further away, which will
increase the error for this match. On the other hand, particles
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Fig. 2.  Classified example scans. Red cells are classified as non-road,
green cells are classified as road, and black lines show the road network.
Removing the dotted road in the left figure increases the errors €” as the
next road in the map for the cells in the blue ellipse is now further away.
Adding the dotted road in the right figure increases the error €™ as the next
road in the map for the cells in the blue ellipse is now closer.

tend to stick in regions with several nearby-roads or multi-
lane crossings, because many roads in the vicinity tend to
decreases the error for false classifications and side roads in
contrast to single lanes.

2) Cost for Non-Road Cells: For non-road cells the calcu-
lation of €™ (z;, m) is supposed to penalize situations where
there are more roads in the map than can be explained by the
scan, such as a side road that does not appear in the scan.
Equivalently to the case for road cells we define

e"(z;,m) = d — min (d, max (0, |z; — s]|)) . (5)

This term is small for points that are far away from the
closest road in the road network and large for points that are

close to roads. If we have a scan with only a straight road
segment as shown in Figure 2[right], we increase the error
for this match whenever we try to match it against a region
of the map including an additional side road (dotted line).
This is due to the fact, that the cells inside the blue ellipse
now have a smaller distance to the next road and thereby a
higher value of £™(z;, m).

3) Computing the Likelihoods: Formula 2 can be effi-
ciently computed using log-likelihoods as follows

er)? en)?
p(z | &,m) o< exp —Z%— > % , (6
; o7 . g5
4,road 7,—road
whereas £ = ¢"(z;,m), e = &"(z;,m), o1 being the

assumed standard deviation for road cells, and o2 being
the assumed standard deviation for non-road cells. Larger
values of o; or o9 lead to more peaked, thereby stricter
distributions.

IV. EXPERIMENTAL EVALUATION

To evaluate our method, we performed extensive experi-
ments on three different datasets. In the first experimental
setting, we decided to evaluate our method in simulation
since this provides us with ground truth, which is hard to
obtain for real world experiments. In a second experimental
setting, we evaluated our method on a real world dataset
providing evidence that both the classification scheme and
the sensor model are robust to the typical noise introduced
by real 3D range scanners. Furthermore, we compared our
method against two other state-of-the-art approaches on three
different datasets. In the following, we briefly explain those
methods.

A. Distance to Road

The first method calculates the weight for a particle
involving its distance to the next road in the map. More
precise we define the weight as w = exp (| — s|/o) , where
x is the position of the particle and s is the next point
on a road. As in our approach, o defines the shape of the
weighting distribution. This method favors regions of the
map with a lot of roads close to each other.

B. Chamfer Distance Based

The second method is based on chamfer matching and
is comparable to the method by Flores et al. [4]. For this
method the particle filter stores the path calculated from the
odometry readings over a fixed time or distance window. To
weight a particle we calculate the distance from each point
on this path ending at the particle pose to the road map.
This is comparable to the chamfer matching score of the
path (template image) to the road map (query image) at the
position and orientation given by the pose of the particle.

C. Initialization and Parameters

For our tracking experiments we initialize the particle
filter by sampling 2,000 particles from a Gaussian with a
standard deviation of 20 m around the true or GPS position.
We then sample the orientation from a Gaussian with a
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Fig. 4. Position error for the weighted mean of the particles for tracking (left) and global localization (right) shown for different rates of the classification
error. Our method allows up to 22% classification error without a substantial decrease in the localization accurancy.

standard deviation of 0.15rad around the true orientation
or the measurement from the compass of the robot. For
the global localization we use 20,000 particles which we
distribute evenly in a radius of 250 m around the true position
and sample the orientation randomly. For each experiment
we use ten runs per method. For all experiments we use the
same parameters. To discretize the scans we use a cell size of
I m. We choose 1/0 =1/ = 0.0003 and 1/02 = 0.00015.
For the maximum distance to the road we use d = 10 m.

D. Simulation Experiments

In the simulation experiments we want to investigate the
performance of the weighting given a perfect classification.
We therefore create scans by copying a local surrounding in
a radius of 15m around the requested pose from the roads
of an OpenStreetMap. We then generate an odometry path
with additional white noise and ground truth poses which
we use for evaluation. In these simulation-based experiments
we want to demonstrate that a classified scan can increase
the localization performance in contrast to methods using
odometry only. This increase is due to the fact that we are
able to observe roads that we did not (yet) drive on. These

experiments are carried out on a cutout of the OpenStreetMap
for Manhattan. We evaluated how the methods perform on
the task of tracking the position of the robot on the map.
The paths created by the different methods are shown in
Figure 3(a). The trajectory estimated by our method (red)
generates paths that closely resemble the ground truth path.
Our method can take advantage of observations of crossings,
especially with the diagonal road (running horizontal in the
center of this map area), whereas the other two methods
suffer from the long straight paths and the ambiguities.
Figure 3(c) shows the distance from the weighted mean of
the particles to the true pose over time. We also performed
global localization on the same dataset. Figure 3(b) shows
the paths, while Figure 3(d) shows the corresponding errors.
In the error plot we can see that after around 30 iterations
our approach is able to find the right road, whereas the other
methods are not able to resolve the ambiguities.

In this paper we use a very basic classifier to distinguish
between road and non-road in the scans. To see how much
our method suffers from classification errors, we randomly
flipped a defined amount of cells of the perfect classification
and repeated the previous experiment. A plot of the resulting
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difference of the weighted mean of all particles to the ground
truth is shown in Figure 4. We can see that our method
performs well even if 20% of the cells are falsely classified.
Since the Particle filter only relies on the classification
result and the odometry of the robot, any classification
method using arbitrary sensors could be used, even if the
classification is sub-optimal.

E. Simulated Offroad Data

Using laser scans we are able to localize the robot even if
it does not drive on the road network. In this experiment, we
simulated a run on a map of Freiburg. As before we copy a
local surrounding of 15m from a road network to simulate
perfect classified scans. We compare our method against two
other approaches that use only odometry and assume that the
robot drives on the road. This assumption is violated during
this experiment. On the tracking task our method outperforms
the other two methods, as shown in Figure 5(a). As expected,
the other methods are able to follow the shape of the path
but are always drawn towards the next roads, which leads to
a higher error (see Figure 5(c)). The global localization (see
Figures 5(a) and 5(c)) also performs as expected. Our method
is able to converge to the correct position after roughly half
of the trajectory, whereas the other two methods diverge.

F. Robot Experiments

Furthermore, we evaluated our approach on data from one
of our robots. We use the robot Obelix which is shown

in Figure 1 on the right side. This robot provides odom-
etry from wheel encoders and 3D scans with reflectance
from a Velodyne HDL-32E. We collected data in an urban
environment. The classification was trained on a separate
data set collected with the same robot. Since no ground
truth is available for this real-world experiment, we use the
result of a graph-based SLAM system that also incorporates
GPS meassurements instead. As in the simulated setting
we perform two experiments using the same data set. The
first experiment evaluates the tracking performance while the
second one tests the global localization. Please note that the
odometry of the robot is not properly calibrated and suffers
from high deterministic rotational errors. Figures 6(a) and
6(c) show the result for all three methods for tracking. We
see that our approach is able to keep the correct track. The
other methods suffer from the high rotational errors of the
odometry and some of the particles incorrectly turn right
early in the trajectory. Our method is able to recover from
this situations. Figures 6(b) and 6(d) show the results for
global localization. In this dataset the robot first drives on
a small straight pedestrian path. On this path the robot is
able to perceive two junctions. These junctions allows our
method to improve the filter belief with respect to the correct
position. After the first turn the filter is able to converge. The
other methods just see the two turns, which is insufficient
to localize the robot. The runtime of our approach was 95
seconds on a standard i7 desktop machine. Note that the
robot traveled for about 13 minutes to collect the dataset.
Therefore our system is applicable for online operation.
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V. CONCLUSION

In this paper, we presented an approach to localize a
mobile robot with respect to a road network such as the
one provided by OpenStreetMap using 3D range scans. In
our approach we employ a classifier to distinguish road
from non-road in the scans and use the classified scans as
the sensory input of a Monte Carlo Localization approach.
In practical experiments, both in simulation and on real
world data, we showed that our method can reliably perform
global localization as well as pose tracking for a robot
even in challenging situations where other state-of-the-art
approaches fail. The presented method has the advantage that
it does not require the robot to actually travel on a road.
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