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Abstract— Various autonomous robotic systems require maps
for robust and safe navigation. Particularly when robots are
employed in dynamic environments, accurate knowledge about
which components of the robot perceptions belong to dynamic
and static aspects in the environment can greatly improve
navigation functions. In this paper we propose a novel method
for building 3D grid maps using laser range data in dynamic
environments. Our approach uses a neural network to estimate
the pointwise probability of a point belonging to a dynamic
object. The output from our network is fed to the mapping
module for building a 3D grid map containing only static parts
of the environment. We present experimental results obtained
by training our neural network using the KITTI dataset and
evaluating it in a mapping process using our own dataset.
In extensive experiments, we show that maps generated using
the proposed probability about dynamic objects increases the
accuracy of the resulting maps.

I. INTRODUCTION

Building maps is a fundamental requirement in many
robotic tasks. Maps are typically used to support different
navigation tasks including path planning and localization.
However, the presence of dynamic objects in the map
increases the difficulty of such a task. For this reason,
localization is usually done using a map that only represents
the static aspects of the environment. The generation of
such maps, however, requires a robust detection of dynamic
objects or measurements caused by such objects.

In this paper, we propose a novel mapping approach
to learning three-dimensional maps from 3D laser data.
Our approach predicts the probability of 3D laser points
being reflected by dynamic objects to build map of the
static components only. In our approach, we first apply a
neural network to learn a probability about the fact that a
measurement is reflected by a dynamic object. In contrast to
many other approaches, this probability is determined using
only a single 3D laser scan and does not rely on previous
scans or camera images. In a second mapping phase, our
approach considers the predicted probability to generate a 3D
grid map only containing the static parts of the environment.

Our approach has several features that improve localiza-
tion and navigation of mobile robots in highly dynamic
environment. First, as the probability is calculated from
individual scans, it does not require a comparison of pairs
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Fig. 1: An example of a range image (blue to red depicts
near to far) together with its computed probability of being
dynamic (orange shows a high dynamic probability). Note
that the camera image is not used by our algorithm.

or multiple scans to detect moving objects. Rather, it can
identify also dynamic objects that are currently not moving
like a standing pedestrian or a parked car. In the remainder
of this paper we refer to moving and movable objects as
dynamic objects. Generating maps without dynamic objects
typically yields maps that remain valid for longer periods of
time. The maps we generate are 3D grid maps in which cells
store the probability that a scan beam is reflected by a static
object. Second, as the prediction of the dynamic objects is
based on single 3D scans, our approach can also be applied
to robots with bad or no IMU or odometry data. Finally our
method is highly efficient and can operate online at 20 Hz.
Thus there also is a potential to utilize it to avoid dynamic
objects while navigating in dynamic environments.

The contribution of this paper is twofold. First we present
an approach using deep learning to efficiently predict the
probability that points represent dynamic objects in single
3D scans. Second we use the computed probabilities to build
a 3D grid map where each cell represents the probability
that a beam is reflected by a static object. Fig. 1 shows an
example of a proposed dynamic probability together with the
corresponding range image. Please note, that we do not use
camera images in our approach.



The remainder of this paper is organized as follows. After
presenting related work we present our approach to predict
the dynamic probabilities which is based on a modified
ResNet proposed by Valada er al. [1]. The network was
presented to be used with camera images. We show how
the 3D scans can be transformed into 2D images to be
suitable for the network. Afterwards we explain the mapping
process which is a modified version of the mapping approach
presented by Hihnel er al. [2]. This section is followed by
the experimental evaluation.

II. RELATED WORK

There has been a tremendous amount of work regarding
the detection of dynamic objects in either camera data [1],
[3], [4] or laser scans [5], [6], [7].

To detect dynamic objects in camera data Fan et al. [4]
as well as Reddy er al. [8] feed images into a neural
network to segment the scene into different classes while
also estimating which segments move. In a similar context
Vertens et al. [9] apply a neural network to jointly detect
cars and predict if these are moving. The network gets
consecutive camera images as well as optical flow as input.
Chabot et al. [3] propose a convolutional network to detect
cars in color images. They employ a coarse to fine approach
to predict bounding boxes for cars and additionally fit 3D
shape templates to the detection to even predict object parts
that are occluded. Chen et al. [10] use camera images as
well as different views of 3D scans to predict 3D bounding
boxes for different object classes. Xu et al. [11] combine
camera images with 3D scans for object detection. For each
detection in the camera images they assign a segment from
the 3D laser scan. Other than these methods our algorithm
does not use camera images. We convert the individual 3D
laser scans to two 2D images, one for range and one for
intensity. These images have a smaller resolution than a
camera image and hold less information. While the majority
of the previously developed methods for laser range data take
more than one scan to determine the measurements caused
by dynamic objects our method uses a single 3D scan to
predict its dynamic components.

Instead of images previous work also employed 3D range
scans together with neural networks for object detection.
Similar to our work, Li et al. [7] convert 3D scans into range
images before applying a neural network for object detection.
Engelcke et al. [6], [12] propose a fast network based on
a sliding window to detect objects directly in 3D scans.
In contrast to these works, which generate bounding boxes
around detected objects, we predict a pointwise probability
of belonging to a dynamic object.

Dewan et al. [5] propose a method to detect and dis-
tinguish moving and movable points in 3D laser scans.
While this approach first computes motion flow between two
consecutive scans and seeks to identify entire objects, our
method uses a single 3D scan as input.

Compared to other works about detecting dynamics our
method has several advantages. First, it only uses single
3D scans to determine a per point dynamic probability and

does not need to take previous measurements into account.
Thus, it does not require scan matching or tracking methods.
Second, our method does not use camera images and thus is
not limited to proper lightning conditions. Third, our method
can also identify movable objects that are not moving in the
current scan.

Héhnel et al. [2] introduced a probabilistic approach based
on the expectation maximization (EM) algorithm to estimate
the beams reflected by moving objects from entire laser scans
and to build a map of the static aspects in the scans only.
In this paper, instead of the EM-based estimation of static
objects, we learn a prior of movable objects and thus can
also remove measurements caused by dynamic objects that
are non-moving during the data collection process such as
parked cars or standing pedestrians. Meyer-Delius et al. [13]
introduced a variant of occupancy grids in which they utilize
a Hidden Markov Model for every cell to better keep track
of the potential changes in the occupancy of each cell.

III. MAPPING WITH DYNAMIC-OBJECT PROBABILITIES

The overall goal of our method is to create a 3D grid map
which only contains those components of the environment
that are static over a longer period of time. To achieve this,
we first use a neural network to compute a per-point proba-
bility of being dynamic from range and intensity images as
well as other modalities computed from a single 3D laser
scan. We then utilize this probability to build a grid map
thereby taking the dynamic-object probabilities into account.
In the remainder of this section, we will describe the neural
network used to compute the dynamic probability, how we
apply the network to 3D laser scans and how we build a 3D
grid map from the labeled scans.

A. Dynamic Probability

We apply a neural network to compute a probability for
each point in a single 3D laser scan that this point belongs
to a dynamic object. Our approach does not only consider
moving objects as dynamic objects but also movable objects
as they might move in future. In this work we apply the
neural expert network proposed by Valada et al. [1] to 3D
laser scans. It is a network for semantic segmentation of
images and builds upon a modified ResNet50 network. The
network follows the general principle of an encoder-decoder
network. In the first half it aggregates the image features
while in the second half it upscales the feature maps to the
original image size to get the segmentation. Compared to
ResNet50, the network employed in this work uses multi-
scale blocks to detect objects of different sizes. By applying
dilation instead of down-sampling the network allows for
a segmentation of higher resolution. For a more detailed
network description please refer to Valada et al. [1]. This
network was proposed to be used with RGB-color camera
images. To apply the neural network to a 3D laser scan,
we first have to transform it to a 2D image. We investigate
different modalities to fill the image channels, including
range and intensity generated from the 3D laser scan (see
Sec. IV-A.2). For a more robust learning process we compute
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Fig. 2: Overview of our proposed system. We first convert the 3D scan into 2D images, which we then feed into the network.

We then utilize the resulting dynamic probability with the scan poses to generate the 3D grid map of the static aspects of

the environment.

the mean for each channel over the whole training dataset
and use this to generate zero mean training data. The original
network predicts binary class labels only. In this work,
however, we are interested in obtaining a probability that
a point is dynamic. To achieve this, we remove the final
argmax-layer of the network and interpret the output of the
softmax-layer as an approximation of the desired probability.
After applying the trained network to our 2D representation
of the 3D scans we need to project the prediction back into
the 3D scan. To do so, we project each 3D scan point into the
range image and assign the corresponding predicted dynamic
probability to it.

B. Mapping

To compute a 3D grid map from the set of scans we adapt
the map building method proposed by Hihnel er al. [2].
This approach employs an expectation maximization (EM)
framework to decide which beams of a range scan are
reflected by static objects. These beams are then used to
compute a- and [-values for each cell of the map. Here,
« corresponds to the number of beams which end in this
cell and 3 counts the beams that pass through a cell without
ending in it. These values are then employed to compute the
reflectance probability of a grid cell according to
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In contrast to their work we do not need EM as we compute a
dynamic probability with our trained neural network. Instead
we directly incorporate our continuous dynamic probability
into the calculation of o and f.

Let p be the dynamic probability calculated by our network
for a beam that is not a maximum range measurement. For
the cell, in which that beam ends, we add 1 — p to the a-
value. In addition, we add p to the (S-value of that cell. If
the beam was a maximum-range measurement, we update
neither the a- nor the [-value. Independent of maximum
range measurements, we increment the S-value of every cell
traversed by the beam by one. More formally, for a beam that
has a predicted dynamic probability p and passes through the
cells j=1,...,k —1 and ends in cell k£ we calculate

Bj < Bj + 1. 2)

If the beam is not a maximum range measurement, we
calculate

ap < o+ (1 —p) 3)
Br < B +p. 4

IV. EXPERIMENTAL EVALUATION

In this section we provide experiments carried out with
the KITTI dataset to test the performance of the dynamic
probability prediction. We also present how our approach is
able to segment moving and movable objects using our dy-
namic probability. We furthermore present results indication
that our probability can be applied to create 3D grid maps
of static aspects only.

A. Dynamic-Object Probability

1) Training data from the KITTI dataset: We trained and
evaluated our neural network to predict the dynamic prob-
abilities using the publicly available KITTI object dataset
created by Geiger et al. [14]. This dataset contains camera
images with labeled object bounding boxes and 3D LiDAR
scans. To apply this data to our framework, we projected
the laser scans into the camera frame and transfered the
labels that fall into a bounding box to the 3D points. Each
bounding box encloses an object that can move such as cars,
vans, trucks, pedestrians, sitting persons, cyclists or trams.
For all these movable objects we treat points falling into the
corresponding bounding boxes as dynamic and all others as
static. Unfortunately, the provided ground truth labels were
limited to the field-of-view of the camera. Therefore, we only
use the part of a 3D scan that overlaps with the camera view.

As we found out during our experiments, the data set con-
tains a substantial amount of errors. Several bounding boxes
are missing and others are either displaced or too small. Two
examples are shown in Fig. 3. To reduce the impact of the
inaccuracies of the bounding boxes, we increase the box sizes
in both horizontal directions (not up and down) for the entire
dataset by 0.4m. For our experiments we split the labeled
training data into a test and a validation dataset, each with
roughly 3,700 scans, as proposed by Chen et al. [15].

2) Modalities: To apply our neural network, which works
on 2D images, to 3D laser scans we first need to transform
the data into 2D images. We thus generate 2D images filled
with modalities such as range or intensity obtained from the
3D scan. In our experiments we test different modalities and
evaluate combinations of modalities.

When recording 3D scans with a moving robot one has
to correct the 3D points based on IMU or odometry data
to compensate the motion of the robot. Accordingly, the
back-projection of the 3D points into the range image is
approximate and multiple or no points might fall into a single
pixel. In our current system, we use a laser scanner with



Fig. 3: Two scans (top) and the corresponding images (bot-
tom) with incorrect labels. The blue dots in the scan are
the labeled points. The marked car in the left is completely
missing, while for the truck on the right only the points of
the front side of the truck have been labeled. Brown dots
correspond to points not present in the camera image.

64 individual laser beams and the back-projection leads to
images with a size of 2,000 x 24 pixels.

To generate the different modalities we first collect all 3D
points that are projected into the pixel at position (x,y):
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where P = (X,Y,Z) is the 3D position and I is the
measured intensity of the 3D point. Using these we then
generate multiple modalities: First we calculate the minimum
distance of all 3D points falling into a cell:

T(z,y) = m]m ”P(x,y,j) I8 @)

which we denote as range. Furthermore, we calculate the
mean intensity of all points falling into a pixel:

iay) = L@y (6)
For the height we compute the mean z-value (up):
hay) = Z(ay.9)- (7

To get rid of the absolute distance value we compute the
rangeDiff modality given by the standard deviation from
the range of the pixel (z,y). More precisely, using all eight
neighboring 2D-pixels (z’,%’) of a cell (z,y) we calculate
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3) Data augmentation: To increase the diversity of our
training set we use data augmentation. When creating a range
image from a given 3D laser scan one has to provide the
sensor origin, which usually is (0, 0, 0). We create augmented
scans by moving the origin in a radius of 1m in the
horizontal plane while generating the range image. We then
further augment the resulting range images by applying aug-
mentations on image level. More precisely, for each image
and augmentation we select the corresponding augmentation
with a given pre-defined probability. Thereby we enforce
that at least one augmentation is chosen. Thus we apply
between on and all six augmentations to each image. In our

intersection over union
modalities static  dynamic  mean
range 0.956 0.632 0.794
rangeDiff 0.958 0.633 0.795
intensity 0.945 0.526 0.735
height 0.943 0.477 0.710
range, intensity 0.961 0.664 0.813
rangeDiff, intensity 0.964 0.688 0.826
range, intensity, height 0.961 0.667 0.814
rangeDiff, intensity, height | 0.965 0.695 0.830

TABLE I: Prediction quality of our learned dynamic proba-
bility trained on augmented data using different modalities.
The highlighted values show how the combination of modal-
ities increases the performance.

current system, we used the following augmentations with
parameters sampled from the denoted intervals (probability
of choosing that augmentation in brackets):

» Rotate the image by [-2, 2] degrees (p = 0.4).
o Scale the image by a factor of [0.8,1) (p = 0.4).
o Translate the image by

[(-50,-5), (50,5)] pixels (p = 0.2).
« Flip the image horizontally (p = 0.3).
 Crop the image by a factor of [0.8,0.9] (p = 0.4).
o Skew the image by [0.025,0.05] (p = 0.3).

For each scan we generate three range images by shifting
the origin. We then four times augment each of these images
plus the original range image by applying the augmentations
described above. Together with the non-augmented images
this yields 20 images per scan. For the training we generate
a multi-channel image where the different channels are filled
with all tested modalities.

4) Training the neural network: To train the neural net-
work we use the labels 0 = static, 1 =dynamic and the ignore
label 2 for unseen/unlabeled points. We pad the 2D images
with zeros such that width and height are a power of two.
We also crop the images from a size of 2,048 x 64 pixels
to the field of view of the camera (512 x 64 pixels).

5) IoU results: We use the validation dataset to compute
the per-class intersection over union (IoU) for our learned
neural networks. We train our network based on different
modalities and compare the results with and without aug-
mentation.

In our first experiment we demonstrate how well differ-
ent modalities perform individually and how they can be
combined to improve the prediction result. Tab. I shows the
intersection over union (IoU) score on the KITTI dataset for
different modalities trained using augmented data. As can be
seen, range and rangeDiff perform well as standalone modal-
ities. By combining modalities the result further improves.
The combination of rangeDIff, intensity and height yields the
best results. It performs better than the same combination
using range. This is due to the fact that rangeDiff shows
more contrast which seems to help the network.

We also evaluate how much the augmentation boosts the
performance of the network. Tab. II shows that the result
improves especially if we only use single modalities.



intersection over union mean loU

modalities static  dynamic  mean increase
range 0.945 0.573 0.506 0.288
rangeDiff 0.949 0.592 0.514 0.281
intensity 0.939 0.509 0.483 0.252
range, intensity, height 0.949 0.599 0.774 0.040
rangeDIff, intensity, height | 0.957 0.647 0.802 0.028

TABLE II: Prediction quality of our learned dynamic proba-
bility trained without augmented data using different modal-
ities. The last column shows the increase of the mean IoU
when using augmentation. The highlighted values indicate
that the augmentation increases the performance especially
for single modalities.

In the above experiments we compared modalities that use
only one scan and cannot sense the real motion of objects
in the dataset. In this experiment we test as to whether
additionally considering a second previously acquired scan
(1 m in robot motion) can improve our dynamic probability.
We evaluate a motion heuristic for how much parts of the
scan moved relative to the previous scan, accounting for
occlusions. For each point in the scan we search the nearest
point in the transformed previous scan. We then remove
motion over 60km/h as this is most likely the result of
an occlusion. Tab. III shows that only using the motion
heuristic performs worse than range or intensity (compare
to Tab. I) as it only has nonzero values for actually moving
objects. By combining the motion heuristic with range and
intensity we can improve the performance, but not over
similar combinations using a single scan (see Tab. I).

We also test how the network performs if we transform the
previous scan into the frame of the current one and add its
range image as modality. The result is shown in the last line
of Tab. III. As can be seen, adding it to range and intensity
decreases the performance (Tab. I line 5). This is due to the
fact, that differences between range and previous are mainly
due to occlusions while only small parts differ due to the
motion in the scene.

6) Runtime: In this experiment we demonstrate how much
time is spent on the individual components of our approach.
For this experiment carried out based on KITTI dataset,
we used a computer equipped with an i7-2700K and a
GeForce GTX 980 and ran the detection in a single thread.
To transform the laser scans into a range image we used the
PCL implementation [16] which requires 13.4 ms per scan.
Generating the different modalities takes between 0.3 ms
(height) and 5.2 ms (rangeDiff). Finally, predicting the dy-
namic probability given the modalities takes 28.7 ms. Our
approach allows to perform the detection of movable objectes
at a rate of 20Hz so that every scan can be processed. The
majority of the time required to create the range image can
be reduced to less than 1 ms by using ordered laser scans,
which are normally provided by Velodyne laser scanners.

B. Mapping

In this experiment we show how the dynamic probability
predicted by our trained network can be used to generate

intersection over union

modalities static  dynamic  mean
motion 0.923 0.357 0.640
range, intensity, motion 0.959 0.661 0.810
rangeDiff, intensity, motion | 0.953 0.621 0.787
range, intensity, previous 0.956 0.625 0.791

TABLE III: Prediction quality of our learned dynamic prob-
ability trained on augmented data using modalities computed
with a previous scan.

a 3D grid map that contains only the static parts of the
environment. We also show that our proposed mapping
algorithm is able to remove moving objects as well as
movable objects.

We used our robot Viona equipped with an Velodyne
HDL-64E LiDAR and an Applanix PosLV (IMU and GPS)
to record datasets on our campus parking lot. We applied
a SLAM system to correct the scan poses reported by
the Applanix system. Following the results of the previous
experiments we use the combination of rangeDiff, intensity,
height for dynamic probability prediction in the rest of this
work as it performs best.

To apply the neural network trained on the KITTI dataset
to our data we had to correct the intensities that are different
on both datasets. To generate data for training and testing
we compute the per channel mean of the training dataset and
subtract it channel-wise to get zero mean data. This mean
value per channel stays the same for training and testing. To
compensate for the different intensity values in both datasets
we recomputed the mean for this modality on one of our
parking lot dataset and used this value during testing. For
this experiment we use one of our recorded campus parking
lot datasets to build a map as proposed above. The mean
of the predicted probability per cell on the used dataset is
shown in Fig. 4.

We generate two different maps from the same dataset.
The first map incorporates points given their dynamic prob-
ability as well as a second map were we assume all points
are static. We choose a cell size of 0.25 m.

To show that our mapping process successfully removes
dynamic objects we manually generated a ground truth
labeling of static and dynamic objects for the dataset. Then,
we determined if a dynamic objects is represented in the map
by a cell with a reflectance value of at least 0.5. The ground
truth labeling as well as the two maps annotated with the
not included (green) and included dynamic cells (red) are
shown in Fig. 5. We can see that objects like the moving
person recording the dataset are not included in either map.
On the other hand the parked cars are only removed by
our mapping process using the dynamic probabilities. Our
mapping method using the dynamic probability is able to
remove 95.66% of all dynamic cells while the map generated
assuming all points are static is able to remove the moving
objects such as the pedestrians and cyclists but not the cars,
it removes 78.25% of all dynamic cells.
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Fig. 4: Mean predicted probability per cell on our parking
lot dataset. Dynamic objects are shown in blue (parked cars,
walking pedestrians) while static objects are red.

V. CONCLUSION

In this paper we presented a method to generate a 3D grid
map of the static aspects of the environment of a mobile
robot. We first predict a pixelwise dynamic probability that
a point is part of a dynamic object for range images generated
from single 3D laser scans using a neural network. Despite
we only use single scans we are capable of detecting moving
objects as well as parked cars and other movable objects.
We demonstrated the performance of our approach using the
publicly available KITTT dataset. In the experiments we also
demonstrated that the proposed dynamic probability can be
used to generate accurate maps of the static parts of the
environment.
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