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Abstract— In this paper, we propose an approach to construct
highly accurate 3D object models from range data. The main
advantage of sensor based model acquisition compared to
manual CAD model construction is the short time needed per
object. The usual drawbacks of sensor based model recon-
struction are sensor noise and errors in the sensor positions
which typically lead to less accurate models. Our method
drastically reduces this problem by applying a physical model
of the underlying range sensor and utilizing a graph-based

pptlm:jzatlon tecgn:;]llje.d\'/}_/fe presentlour ?é)proq(:h and e"a'Uﬁte method after 20 iterations. As can be seen, the resulting niateh smooth
it on data recorded In different real world environments wit surface. Furthermore our evaluation demonstrates that thelrisoalso very

an RGBD camera and a laser range scanner. The experimental accurate, given a mean error of 1.4 mm.
results demonstrate that our method provides more accurate
maps than standard SLAM methods and that it additionally and the local surface parameters. In this way, we can relax
compares favorable over the moving least squares method.  the assumptions that each range measurement is a rigid body
so that we obtain more accurate maps.

Figure 1 shows an example illustrating the accuracy that

Accurate 3D models are envisioned to be essential for tfk&n be achieved with our approach for the reconstruction
next generation of robotic applications. To accomplistirtheof a spherical object. The average error in the measured
tasks in the real world, robots require such models to perforradius between the model and the real object is always below
navigation, reasoning and manipulation. The problem ¢k.5mm, while its diameter is 75 mm.
learning models of the environment with a mobile robot is
known as simultaneous localization and mapping (SLAM).
There exists a variety of approaches that can be used to solvelhe goal of our approach is to construct a maximally
the SLAM problem based on 3D range data [8], [5], [6],consistent 3D model of the environment from a set of 3D
[4]. Most of the approaches split the SLAM problem intorange measurements of which we approximately know the
two separate tasks. The rst one consists of the estimatiggpse of the sensor. The input of our approach can be the
of the relative transformation between pairwise obseowvati output of a traditional SLAM algorithm. Our approach is
(often carried out using ICP [2], [10]). In the second stepgble to compensate for small errors in the sensor position
the maximum likelihood con guration of the robot poses isand it takes into account the noise affecting the measuremen
estimated based on these pairwise constraints. itself. Typical man-made environments consist of regular

Whereas the modern SLAM techniques produce highly asurfaces and a range reading can be understood as a sample
curate maps, the majority of approaches treats the individugenerated by the underlying observed surface. We expit th
scans as rigid bodies. This leads to an increased uncgrtaifiégularity assumption by approximating a surface by a set of
about the exact position of the surface and also introducésall locally planar patches, characterized by their nésma
errors in the robot pose estimates. In maps generated by sugtlirection to the sensor. In the remainder of this paper we
approaches one commonly observes artifacts such as blurt&d refer to these asurfels
walls for example. The main idea is to construct an optimization problem

In this paper we propose a graph-based approach fitat tries to adjust the poses of the sensor and of the surfels
re ning 3D SLAM solutions by considering it as a joint to nd a maximally consistent con guration. To achieve this
optimization task that simultaneously estimates the robd&sk, we assess the surfel structure from each individuat me
poses and the surfaces in the environment. Our approagrement endpoint. We then minimize the distance between
applies a physical model of the underlying range senséearby surfels acquired from different robot poses. This is
and considers the endpoints of a range measurement dgne by taking into account the uncertainties of the sensor
samplesgenerated by the surfaces of the environment. W&easurements via appropriate sensor models.
iteratively re ne the graph structure by recomputing théada
associati{)ns betwegn gach individuaﬁ distancrz)e mgasutem@h Surface Model

In our approach, we model the surface of a 3D range

All authors are with the Department of Computer Science, Usitieof  ghservation as a set of surfels. We assume the sensed surface
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Fig. 1. The left picture shows an accumulated model of a metsifere
used as input to our method. The right picture shows the redutiur

I. INTRODUCTION

Il. SPARSESURFACE ADJUSTMENT
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Fig. 2. This gure illustrates our surface model. The left ireaghows the 0.5 1 15 2 25 3
input point cloud. In the image on the right we show the surfpathes range [m]
extracted in correspondence of the measured points, tageitithe normal ~ Fig. 3. This gure shows the range dependent theoreticahtjzstion error
computed from the neighbors. in orange. The standard deviation calculated from expetiahdfinect data

is shown in black.
every single measurement endpoint by a small planar region, . . : .
which gives a local description of the surface. The Iocah:hafﬂe rtesnfjltln(? dsta_n?ard Se;]/lanon_ IS‘I SQOV\Q n Fl'gF"e 3.
acteristics of a surfel are modeled by Gaussian distribgtio e standard deviations behave similar to the analyticrerro

and are calculated from the neighboring endpoints of thfé’r_]l_cuon' truct the least bl imate th
same observation. These Gaussians encode the orientétion o, ° cONStruct tne least squares problem we approximate the

the normal and how well the local surface can be represent 8“‘0”’.‘ distribution aloqg the Fi|rect|on Qf an endpoth
by a plane. The meany, of a Gaussian represents the cente aussian, whose covariance is proportional to the variahce

of the surface patch that is measured by kife measured the uniform C![ISEE’IbUtIOH ?f W!{dtre?“am - To be r;]ore ddet_altled_,th
endpointry that originates from tha™ sensor posa,,. Its we represent the unceriainty of a measured endpoint with- a

1 meas 1 H 1
covariance is given by considering the endpoints within éovanance - The covariance 1; along the direction of

given region around px within the same measurement. ™ endpointjjryjj is modeled as

Once the Gaussian is computed, the estimated normal of 11 = ki1 (equant (iTii)) % (2
the surfacely is the eigenvector of the smallest eigenvalue . N
of the covariance matrix oriented towards the sensor. Tkygherekll is a weighting factor.

: . ) : We assume a range dependent error between neighbors
right picture of Figure 2 gives an example of the computed o Lt . .

_ In X-direction and Y-direction of the image, modeled in
local characteristics.

22, 33. This error depends on the size of the surface

B. Sensor Model for RGBD Cameras “covered” by a pixel. Given the angular resolutiong; vy

. - W n model the error
A detailed description of a laser sensor model can pec ca odel the error as

pbtained by an appropriate extension of the model proposed 0 = ko tan X it A3)
in our previous work [9] to 3D. In the case of an RGBD cam- 2
era, the depth values are calculated from correspondences _ Yo

33 = k33 tan — Irl)- (4)

between at least two sources. In the case of stereo the two 2
sources are images and in case of an active sensor “Ils‘%re,kll, ko», andkss are constant and sensor dependent
the Microsoft Kmept, one source is an infrared camera anﬂctors and 11, 22, and a3 are the respective entries in
the other source is a projector. In both cases the distan covariance matrix ™eas.
for a correspondence can be computed by considering the
disparity, the focal length, and the known offset between thC. Surface Correspondences
two sources. The measured disparity between corresponddn the previous sections we described a model for the indi-
ing points is quantized in sub-pixels, which introduces &idual endpoints of a single range measurement by assuming
systematic error. The depth is inversely proportional ® ththat the sensed surface is locally regular. In this sectian,
disparity. Therefore, the impact of the quantization eiror will explain how we determine potential correspondences
the disparity on the depth estimate increases with the rangsetween regions of surfaces sensed from different sensor

The quantization error can be assumed to be uniformiyositions.
distributed, and the widtleg,an: Of the distribution depends  To nd correspondences in a relatively large distance we
on the sensed range, according to the following equation: utilize the “normal-shooting” heuristic proposed by Chain

b f al. [3]. Given an initial con guration of a patch p; i,

€quant (Z) = %'X# (1) whose normal is well de ned, we search along its normal
2 direction to seek for the closest patch belonging thfferent
4 1 1 5. observation. Let this patch b m; ; mi. If the normals

Rnd qp.xzbf +0'5 Rnd qp.xzbf 05 of the two patches have a similar orientation, we add a

constraint between them, since it is very likely that they
Figure 3 illustrates the quantization error. We evaluatesd t belong to the same surface. If the normals differ more than a
statistical error of a Kinect facing a planar surface in aiven threshold (20 degrees in our current implementation)
range between 0.5m and 3.1 m. Every 0.1 m we acquirade assume that we hit another surface and we reject the
100 observations and calculated the error to a tted planenatch.



g

Fig. 4. This gure illustrates the graph structure of our ioptzation
problemxn andxm are the sensor poses from which two 3D measurements
have been acquired. Two corresponding surface patchgs and m; ,
extracted from the different measurements are connected byirtad!”
measuremengSy. . A measurement generated by a patch depends on the
patch characteristics and on the position of the sensohitnexample a
beam's measurement of the patch; sensed fronx; is captured by the
error functione®. Similarly, a measurement of ,; sensed fronx; is
captured by the error function error functi(-uﬁ}je .
D. Least Squares Optimization
We formulate a least squares minimization problem to nd
the con guration of sensor poses;., and surface patches _ ) ) -
M  that minimize the following fuhction' Fig. 5. The top picture shows an overview of the AASS Buildieaset.
: The middle picture shows particulars of the dataset befortanagation
X X and the bottom picture shows the same datasets after optiomzat/e
h>(1 ‘M i =argmin gcor 4 emke' (5) highlighted with rectangles regions where the effect of tmimization
n» nimj nK -

oM is particularly evident.
LM by i hnik i

A. Environment Models
Relevant 3D datasets typically have millions of measure- In our rst experiment we evaluated our method on the
ment and robot poses, which results in an optimizatiopublicly available AASS-loob[1] real world dataset. We ap-
problem with millions of variables. Nonetheless, the ai¢di  plied our method on the given SLAM solution for this dataset
optimizations problems are usually relatively sparse.réhe and computed the entropy on a 3D grid with cell size 5cm.
fore, we can ef ciently compute this minimum by utilizing Figure 5 shows an overview of the dataset(top), a detailed
the o framework [7], which applies sparse linear algebraiew of one example region before optimization(middle) and
libraries. the same region after the optimization procedure(bottom).
Since we do not know the true correspondences, wkable | gives the corresponding statistics.
have to iteratively re ne the correspondences after every Our approach substantially reduced the entropy by 7.6 %
optimization run. Additionally, we recompute the surfaceon the AASS dataset and was able to improve the local
patch properties for the updated system and construct a neansistency of the resulting model. Clearly, the better the
optimization problem. We perform this procedure until thenitial SLAM solution is, the more accurate the result of our
maximum number of iterations has been reached. model will be, since there will be less ambiguities in the
data association. Finally, the denser the dataset therbette

our approach can perform the alignment.
I1l. EXPERIMENTS

B. Object Models

In this section, we present experiments on real world |, our second experiment we demonstrate that our ap-
data to evaluate the performance of our approach and {9oach can also ef ciently build consistent object modegs u
discuss its advantages. The main purpose of our approagh resolution of 1 mm. Therefore, we applied our method
is to improve the consistency of models. We evaluate thisy an object model dataset, acquired with a Kinect on a
consistency visually and furthermore use the entropy to Obgtating turntable. For the initial registration of the pbi
tain quantitative results. To compute the entropy, we toje cjouds we applied incremental scan matching. Afterwards
the range measurements into a 3D grid, where we calculgfg applied our method and computed the entropy before
for each cell the number of times a beam intercepts a celhq after optimization with a grid size of 2mm.
without ending in it and the number of times a beam ends Figure 6 shows the input data (b) and the resulting model
in this cell. Based on these two quantities we can calculatg, 5 plack mug (d), computed on point clouds with a

the probability that a beam is re ected by the correspondingsso|ytion of 1 mm. In both cases the resulting models look
area in the environment. The entropy for the map is then

computed as the sum of all entropies of the individual cells. 1Courtesy of Martin Magnusson, AASSrebro University, Sweden



TABLE |

DETAILED OVERVIEW OF THE DATASETS USED IN OUR EXPERIMENTS

Dataset Figure | # Scans| # Points | comp. time | grid resolution | entropy input | entropy optimized| entropy reduction
AASS Building 5 60 2,266,519 48 min 50 mm 287,433 265,585 7.6%
Black Cup 6 51 107,281 6 min 2mm 8,184.52 6,781.88 17.1%

model reconstruction techniques. Video games and 3D
movies utilize virtual models of objects and also entire en-
vironments. In most cases models are manually constructed
right now and it seems reasonable to perform this task in
an autonomous or assisted fashion. Given one or two RGBD
cameras, a simple turntable and our method it is possible
to virtualize real world objects with a high accuracy and
equipment costs below 200$.

V. CONCLUSIONS

In this paper we presented a novel approach to reconstruct
environments or object models. Our method is able to
improve the consistency of 3D models by ef ciently solving
a least squares optimization problem that is constructed
based on an accurate model of the sensor. Experimental
results obtained with an RGBD camera and a laser range

<) d)

Fig. 6. This gure illustrates the differences between ourttme and

nder in real-world settings demonstrate that our approach
yields substantial improvements compared to state-cithe

MLS. We acquired multiple measurements of a cup, shown in the impge methods.

In b) we show the point clouds registered by using ICP. In c)sivew the
effect of MLS on the input data. Whereas the model looks smodtteer
the input it shows inconsistencies arising from errors i éistimate of the
initial positions of the sensor. In d) we show the resultsaot#d by our [1]
approach on the same input data. The result appears to be misteat. [2]

more consistent. The entropy of the black mug model was
reduced by 17.1%. Additionally, we compared the outcome®
of our method with the results of MLS. Figure 6(c) shows
the resulting point cloud for MLS applied on the input point [4]
cloud. Since MLS does not consider errors in robot poses,
the resulting model is not consistent. [5]

IV. APPLICATIONS

In this section we will brie y discuss possible applicaton [©!
of our method. The described technique is able to reduce
inconsistencies and the overall uncertainty in maps, whicli7]
improves the localization accuracy and therefore the divera
performance of a map based navigation system. The mark
for SLAM based navigation systems starts to evolve with the
next generation of vacuum-cleaner and lawn-mower robot
The proposed method makes it possible to either improv
the performance of the navigation system or utilize cheaper
sensors at a comparable performance level.

. . . . o [10]

In the context of mobile robots with manipulation abilities
our method is one key component for autonomous object
model acquisition. Such models are essential for object
detection, grasping and manipulation tasks. Given the aimou
of different objects a robot might face, it seems infeasible
construct object models manually or in an assisted fashion.
Right now this scenario is more relevant in a research contex
since robots with such skills are still years away from being
market ready.

But there are already possible application scenarios for
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