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Abstract—In this paper, we propose an approach to construct
highly accurate 3D object models from range data. The main
advantage of sensor based model acquisition compared to
manual CAD model construction is the short time needed per
object. The usual drawbacks of sensor based model recon-
struction are sensor noise and errors in the sensor positions
which typically lead to less accurate models. Our method
drastically reduces this problem by applying a physical model
of the underlying range sensor and utilizing a graph-based
optimization technique. We present our approach and evaluate
it on data recorded in different real world environments with
an RGBD camera and a laser range scanner. The experimental
results demonstrate that our method provides more accurate
maps than standard SLAM methods and that it additionally
compares favorable over the moving least squares method.

I. INTRODUCTION

Accurate 3D models are envisioned to be essential for the

next generation of robotic applications. To accomplish their

tasks in the real world, robots require such models to perform

navigation, reasoning and manipulation. The problem of

learning models of the environment with a mobile robot is

known as simultaneous localization and mapping (SLAM).

There exists a variety of approaches that can be used to solve

the SLAM problem based on 3D range data [8], [5], [6],

[4]. Most of the approaches split the SLAM problem into

two separate tasks. The first one consists of the estimation

of the relative transformation between pairwise observations

(often carried out using ICP [2], [10]). In the second step

the maximum likelihood configuration of the robot poses is

estimated based on these pairwise constraints.

Whereas the modern SLAM techniques produce highly ac-

curate maps, the majority of approaches treats the individual

scans as rigid bodies. This leads to an increased uncertainty

about the exact position of the surface and also introduces

errors in the robot pose estimates. In maps generated by such

approaches one commonly observes artifacts such as blurred

walls for example.

In this paper we propose a graph-based approach for

refining 3D SLAM solutions by considering it as a joint

optimization task that simultaneously estimates the robot

poses and the surfaces in the environment. Our approach

applies a physical model of the underlying range sensor

and considers the endpoints of a range measurement as

samples generated by the surfaces of the environment. We

iteratively refine the graph structure by recomputing the data

associations between each individual distance measurement
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Fig. 1. The left picture shows an accumulated model of a metallic sphere
used as input to our method. The right picture shows the result of our
method after 20 iterations. As can be seen, the resulting model has a smooth
surface. Furthermore our evaluation demonstrates that the model is also very
accurate, given a mean error of 1.4 mm.

and the local surface parameters. In this way, we can relax

the assumptions that each range measurement is a rigid body

so that we obtain more accurate maps.

Figure 1 shows an example illustrating the accuracy that

can be achieved with our approach for the reconstruction

of a spherical object. The average error in the measured

radius between the model and the real object is always below

1.5 mm, while its diameter is 75 mm.

II. SPARSE SURFACE ADJUSTMENT

The goal of our approach is to construct a maximally

consistent 3D model of the environment from a set of 3D

range measurements of which we approximately know the

pose of the sensor. The input of our approach can be the

output of a traditional SLAM algorithm. Our approach is

able to compensate for small errors in the sensor position

and it takes into account the noise affecting the measurement

itself. Typical man-made environments consist of regular

surfaces and a range reading can be understood as a sample

generated by the underlying observed surface. We exploit the

regularity assumption by approximating a surface by a set of

small locally planar patches, characterized by their normals

in direction to the sensor. In the remainder of this paper we

will refer to these as surfels.

The main idea is to construct an optimization problem

that tries to adjust the poses of the sensor and of the surfels

to find a maximally consistent configuration. To achieve this

task, we assess the surfel structure from each individual mea-

surement endpoint. We then minimize the distance between

nearby surfels acquired from different robot poses. This is

done by taking into account the uncertainties of the sensor

measurements via appropriate sensor models.

A. Surface Model

In our approach, we model the surface of a 3D range

observation as a set of surfels. We assume the sensed surface

to be piecewise smooth and that we are able to extract local

normals around the measurement’s endpoints. We represent



Fig. 2. This figure illustrates our surface model. The left image shows the
input point cloud. In the image on the right we show the surface patches
extracted in correspondence of the measured points, together with the normal
computed from the neighbors.

every single measurement endpoint by a small planar region,

which gives a local description of the surface. The local char-

acteristics of a surfel are modeled by Gaussian distributions

and are calculated from the neighboring endpoints of the

same observation. These Gaussians encode the orientation of

the normal and how well the local surface can be represented

by a plane. The mean µnk of a Gaussian represents the center

of the surface patch that is measured by the kth measured

endpoint rk that originates from the nth sensor pose xn. Its

covariance is given by considering the endpoints within a

given region around µnk within the same measurement.

Once the Gaussian is computed, the estimated normal of

the surface n̂k is the eigenvector of the smallest eigenvalue

of the covariance matrix oriented towards the sensor. The

right picture of Figure 2 gives an example of the computed

local characteristics.

B. Sensor Model for RGBD Cameras

A detailed description of a laser sensor model can be

obtained by an appropriate extension of the model proposed

in our previous work [9] to 3D. In the case of an RGBD cam-

era, the depth values are calculated from correspondences

between at least two sources. In the case of stereo the two

sources are images and in case of an active sensor like

the Microsoft Kinect, one source is an infrared camera and

the other source is a projector. In both cases the distance

for a correspondence can be computed by considering the

disparity, the focal length, and the known offset between the

two sources. The measured disparity between correspond-

ing points is quantized in sub-pixels, which introduces a

systematic error. The depth is inversely proportional to the

disparity. Therefore, the impact of the quantization error in

the disparity on the depth estimate increases with the range.

The quantization error can be assumed to be uniformly

distributed, and the width equant of the distribution depends

on the sensed range, according to the following equation:

equant(z) =
qpix · b · f

2
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Figure 3 illustrates the quantization error. We evaluated the

statistical error of a Kinect facing a planar surface in a

range between 0.5 m and 3.1 m. Every 0.1 m we acquired

100 observations and calculated the error to a fitted plane.
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Fig. 3. This figure shows the range dependent theoretical quantization error
in orange. The standard deviation calculated from experimental Kinect data
is shown in black.

The resulting standard deviation is shown in Figure 3.

The standard deviations behave similar to the analytic error

function.

To construct the least squares problem we approximate the

uniform distribution along the direction of an endpoint with a

Gaussian, whose covariance is proportional to the variance of

the uniform distribution of width equant. To be more detailed,

we represent the uncertainty of a measured endpoint with a

covariance Σ
meas. The covariance σ11 along the direction of

kth endpoint ||rk|| is modeled as

σ11 = k11 · (equant(||rk||))
2, (2)

where k11 is a weighting factor.

We assume a range dependent error between neighbors

in X-direction and Y-direction of the image, modeled in

σ22, σ33. This error depends on the size of the surface

“covered” by a pixel. Given the angular resolutions βX , βY

we can model the error as

σ22 = k22 · tan

(

βX

2

)

· ||rk|| (3)

σ33 = k33 · tan

(

βY

2

)

· ||rk||. (4)

Here, k11, k22, and k33 are constant and sensor dependent

factors and σ11, σ22, and σ33 are the respective entries in

the covariance matrix Σ
meas.

C. Surface Correspondences

In the previous sections we described a model for the indi-

vidual endpoints of a single range measurement by assuming

that the sensed surface is locally regular. In this section, we

will explain how we determine potential correspondences

between regions of surfaces sensed from different sensor

positions.

To find correspondences in a relatively large distance we

utilize the “normal-shooting” heuristic proposed by Chen et

al. [3]. Given an initial configuration of a patch 〈µni,Σni〉,
whose normal is well defined, we search along its normal

direction to seek for the closest patch belonging to a different

observation. Let this patch be 〈µmj ,Σmj〉. If the normals

of the two patches have a similar orientation, we add a

constraint between them, since it is very likely that they

belong to the same surface. If the normals differ more than a

given threshold (20 degrees in our current implementation),

we assume that we hit another surface and we reject the

match.
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Fig. 4. This figure illustrates the graph structure of our optimization
problem. xn and xm are the sensor poses from which two 3D measurements
have been acquired. Two corresponding surface patches µni, and µmj ,
extracted from the different measurements are connected by a “virtual”
measurement ecornimj . A measurement generated by a patch depends on the
patch characteristics and on the position of the sensor. In this example a
beam’s measurement of the patch µni sensed from xi is captured by the
error function e

me

ni . Similarly, a measurement of µmj sensed from xj is
captured by the error function error function e

me

mj .

D. Least Squares Optimization

We formulate a least squares minimization problem to find

the configuration of sensor poses x
∗
1:n and surface patches

M∗ that minimize the following function:

〈x∗
1:n,M

∗〉 = argmin
x1:n,M

∑

〈n,m,i,j〉

ecornimj +
∑

〈n,k〉

eme
nk . (5)

Relevant 3D datasets typically have millions of measure-

ment and robot poses, which results in an optimization

problem with millions of variables. Nonetheless, the obtained

optimizations problems are usually relatively sparse. There-

fore, we can efficiently compute this minimum by utilizing

the g2o framework [7], which applies sparse linear algebra

libraries.

Since we do not know the true correspondences, we

have to iteratively refine the correspondences after every

optimization run. Additionally, we recompute the surface

patch properties for the updated system and construct a new

optimization problem. We perform this procedure until the

maximum number of iterations has been reached.

III. EXPERIMENTS

In this section, we present experiments on real world

data to evaluate the performance of our approach and to

discuss its advantages. The main purpose of our approach

is to improve the consistency of models. We evaluate this

consistency visually and furthermore use the entropy to ob-

tain quantitative results. To compute the entropy, we project

the range measurements into a 3D grid, where we calculate

for each cell the number of times a beam intercepts a cell

without ending in it and the number of times a beam ends

in this cell. Based on these two quantities we can calculate

the probability that a beam is reflected by the corresponding

area in the environment. The entropy for the map is then

computed as the sum of all entropies of the individual cells.

Fig. 5. The top picture shows an overview of the AASS Building dataset.
The middle picture shows particulars of the dataset before optimization
and the bottom picture shows the same datasets after optimization. We
highlighted with rectangles regions where the effect of the optimization
is particularly evident.

A. Environment Models

In our first experiment we evaluated our method on the

publicly available AASS-loop1 [1] real world dataset. We ap-

plied our method on the given SLAM solution for this dataset

and computed the entropy on a 3D grid with cell size 5 cm.

Figure 5 shows an overview of the dataset(top), a detailed

view of one example region before optimization(middle) and

the same region after the optimization procedure(bottom).

Table I gives the corresponding statistics.

Our approach substantially reduced the entropy by 7.6 %

on the AASS dataset and was able to improve the local

consistency of the resulting model. Clearly, the better the

initial SLAM solution is, the more accurate the result of our

model will be, since there will be less ambiguities in the

data association. Finally, the denser the dataset the better

our approach can perform the alignment.

B. Object Models

In our second experiment we demonstrate that our ap-

proach can also efficiently build consistent object models up

to a resolution of 1 mm. Therefore, we applied our method

on an object model dataset, acquired with a Kinect on a

rotating turntable. For the initial registration of the point

clouds we applied incremental scan matching. Afterwards

we applied our method and computed the entropy before

and after optimization with a grid size of 2 mm.

Figure 6 shows the input data (b) and the resulting model

for a black mug (d), computed on point clouds with a

resolution of 1 mm. In both cases the resulting models look

1Courtesy of Martin Magnusson, AASS, Örebro University, Sweden



TABLE I

DETAILED OVERVIEW OF THE DATASETS USED IN OUR EXPERIMENTS.

Dataset Figure # Scans # Points comp. time grid resolution entropy input entropy optimized entropy reduction
AASS Building 5 60 2,266,519 48 min 50 mm 287,433 265,585 7.6%

Black Cup 6 51 107,281 6 min 2 mm 8,184.52 6,781.88 17.1%

a) b)

c) d)

Fig. 6. This figure illustrates the differences between our method and
MLS. We acquired multiple measurements of a cup, shown in the image a).
In b) we show the point clouds registered by using ICP. In c) we show the
effect of MLS on the input data. Whereas the model looks smoother than
the input it shows inconsistencies arising from errors in the estimate of the
initial positions of the sensor. In d) we show the results obtained by our
approach on the same input data. The result appears to be more consistent.

more consistent. The entropy of the black mug model was

reduced by 17.1 %. Additionally, we compared the outcome

of our method with the results of MLS. Figure 6(c) shows

the resulting point cloud for MLS applied on the input point

cloud. Since MLS does not consider errors in robot poses,

the resulting model is not consistent.

IV. APPLICATIONS

In this section we will briefly discuss possible applications

of our method. The described technique is able to reduce

inconsistencies and the overall uncertainty in maps, which

improves the localization accuracy and therefore the overall

performance of a map based navigation system. The market

for SLAM based navigation systems starts to evolve with the

next generation of vacuum-cleaner and lawn-mower robots.

The proposed method makes it possible to either improve

the performance of the navigation system or utilize cheaper

sensors at a comparable performance level.

In the context of mobile robots with manipulation abilities,

our method is one key component for autonomous object

model acquisition. Such models are essential for object

detection, grasping and manipulation tasks. Given the amount

of different objects a robot might face, it seems infeasible to

construct object models manually or in an assisted fashion.

Right now this scenario is more relevant in a research context

since robots with such skills are still years away from being

market ready.

But there are already possible application scenarios for

model reconstruction techniques. Video games and 3D

movies utilize virtual models of objects and also entire en-

vironments. In most cases models are manually constructed

right now and it seems reasonable to perform this task in

an autonomous or assisted fashion. Given one or two RGBD

cameras, a simple turntable and our method it is possible

to virtualize real world objects with a high accuracy and

equipment costs below 200$.

V. CONCLUSIONS

In this paper we presented a novel approach to reconstruct

environments or object models. Our method is able to

improve the consistency of 3D models by efficiently solving

a least squares optimization problem that is constructed

based on an accurate model of the sensor. Experimental

results obtained with an RGBD camera and a laser range

finder in real-world settings demonstrate that our approach

yields substantial improvements compared to state-of-the-art

methods.
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