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Abstract—In this paper we describe an algorithm for learn-
ing highly accurate laser-based maps that treats the overall
mapping problem as a joint optimization problem over robot
poses and laser points. We assume that a laser range finder
senses points sampled from a regular surface and we utilize an
improved likelihood function that accounts for two phenomena
affecting the laser measurements that are often neglected: the
conic shape of the laser beam and the incidence angle. To solve
the entire problem we apply an optimization procedure that
jointly adjusts the position of all the robot poses and all points
in the scans. As a result, we obtain highly accurate maps. We
evaluated our approach using simulated and real-world data
and we show that utilizing the estimated maps greatly improves
the localization accuracy of robots. The results furthermore
suggest that the accuracy of the resulting map can exceed the
resolution of the laser sensors used.

I. INTRODUCTION

The problem of learning environment models is well

known in the domains of robotics and of computer vision. In

robotics, the problem is known as simultaneous localization

and mapping (SLAM), and it has been deeply investigated

in the last decades. The idea of SLAM is to simultaneously

estimate the robot position and a map of the environment

from the measurements acquired by a robot. A wide variety

of approaches has been proposed to solve SLAM and they

differ by the underlying estimation technique as well as by

the representation of the map [25], [15], [11], [10], [20],

[18]. Many state-of-the-art SLAM algorithms seek to find the

minimum of a graph-based error function [14], [13], [8], [21],

[12]. Every node in the graph represents a robot position,

while an edge represents the relative transformation between

two robot poses. This relative transformation is usually

modeled as a Gaussian distribution and it is determined by

matching observations acquired at nearby poses. The task of

a SLAM algorithm consists of (simultaneously) constructing

the graph from the raw sensor measurements and to find the

poses of the nodes that best explain the spatial constraints

encoded by the edges. This is usually done by utilizing

nonlinear minimization techniques that search in the space

of the node configurations.

Traditional laser-based SLAM algorithms typically treat

the laser scans as rigid bodies. They calculate the constraints

by estimating the relative transformation between adjacent

scans once and keeping this fixed during the optimization.

The overall map is then obtained by integrating these scans

into an occupancy grid map, given the obtained maximum
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Fig. 1. This figure illustrates the accuracy of the maps achievable by our
approach. The left image shows a magnified view of a map obtained with
a state-of-the-art traditional on-line SLAM algorithm and the right image
shows a magnified view of a map rendered from the result of the joint
optimization of the robot poses and the individual scan points.

likelihood robot positions. Whereas this has been proven to

yield sufficiently accurate maps, but it does not improve

the data associations given the results of the optimization

procedure and furthermore does not optimize the scan-points

themselves, which may be affected by the sensor noise.

The goal of the approach presented in this paper is jointly

to determine the optimal position of the points in the scans

and of the robot poses. It relies on the assumption that the

laser scanner samples points from a surface that is locally

smooth in most cases. It utilizes a dedicated observation

model that treats the laser beams as cones and takes into ac-

count the incidence angle of a beam to the surface to compute

the uncertainty of a measure. Our algorithm performs a full

optimization of all the points in the scans and all robot poses

based on this refined observation model. Despite the high

number of variables involved, the problem can be efficiently

solved by using a highly efficient optimization technique for

sparse systems.

Figure 1 shows an example illustrating the advantages of

our approach compared to previous techniques. We show a

particular view of a map estimated with a standard approach

and with the method proposed in this paper, which appears

to be substantially more accurate. We evaluated the accuracy

of the maps generated by our approach both in simulated and

real world datasets. Furthermore, we carried on localization

experiments using these maps to evaluate the benefit of the

increased accuracy in the maps for standard navigation tasks.

In experiments we furthermore found out that the resulting

maps have a higher resolution than the range scanner used.

II. RELATED WORK

Several approaches have been proposed in the past to

characterize the error affecting the result of scan-matching

algorithms and thus to accurately estimate the constraints

of the optimization problem. Bengtsson et al. [1], proposed

to analyze the residual of the re-projection error around the



minimum by either sampling the error function or by ap-

proximating it by a quadratic form. Subsequently, Censi [5]

presented a closed form minimization algorithm to determine

this covariance. All these approaches rely on point-to-point

correspondences. Olson [23] proposed a hierarchical correl-

ative algorithm derived from [16] that can compute the his-

togram of the possible robot positions around the minimum.

This method does not rely on specific point-to-point corre-

spondences. Instead it uses a histogram approximation of the

likelihood function on a grid. Segal et al. [24] presented a

variant of 3D ICP scan matching that minimizes the matching

error between corresponding planar patches extracted from

the input scans. Biber et al. [3] proposed to solve the scan-

matching problem by approximating the reference scan by a

set of Gaussians. In this way, the alignment can be computed

in closed form given the data association. Compared to the

point-to-point criterion minimized by traditional IPC scan

matchers [17], [2] using the Gaussians allows to weight

the error along different directions based on the shape of

the matched surfaces. Subsequently, Magnusson et al. [19]

extended this approach to 3D.

All these methods focus on accurately registering two

scans, but they threat them as rigid bodies. They can be

used to construct the pairwise constraints of a graph-based

problem. However, they do not attempt to refine the points of

the individual scans. In this paper we present an approach to

determine the optimal position of both the points in the scans

and the robot poses. Our method is similar in spirit to tradi-

tional bundle adjustment problems in computer vision [26]. A

bundle adjustment algorithm seeks to find the configuration

of a set of world points and camera poses that minimizes the

re-projection error over the measured sequence of images.

The main difference between a bundle-adjustment algorithm

and our method is that we do not explicitly rely on point-to-

point correspondences as it is done in traditional BA or ICP

because a scan point is not a distinguishable physical point

as usually in BA but just a sample of the surface. We globally

minimize a local plane-to-plane error metric similar to Segal

et al. [24]. Furthermore, we refine the data associations after

every optimization run. This yields maps whose resolution

goes beyond the resolution of the sensor.

III. ESTIMATING IMPROVED ENVIRONMENT MODELS BY

USING SURFACE-BASED SENSOR MODELS

Our approach aims at obtaining models of the environment

that are more accurate than models obtained by considering

the plain data provided by the sensor. To this end, we exploit

the fact that a range sensor measures the distance to a surface

in the environment. The model that we use for our sensor

utilizes the fact that in man-made environments the surface

is usually smooth and therefore can be approximated in

many regions by the corresponding tangent line segment.

In the remainder of this paper we will refer to these tangent

segments as “surface patches” or simply “patches”.

The overall goal of our approach is to determine the robot

positions and the global positions of the surface patches

that are maximally consistent. To this end, we construct an

optimization problem that seeks to minimize the distance

between corresponding surface patches. This leads to a

sparse optimization problem that can be efficiently solved

as described in Section III-C. To determine the correspon-

dences in the optimization problem, we account for the

local characteristics of the surfaces, like the normal and the

tangent direction, thus reducing the number of outliers. This

procedure is described in Section III-D.

After every optimization run, we re-estimate the properties

of the surfaces based on the new configuration of the points.

For efficiency reasons we skip the sensor model update for

changed surface point configurations since the changes in

direction of the well defined normals are typically small.

Subsequently, we construct a new optimization problem

by re-computing the correspondences based on the new

configuration. We repeat this process until convergence or

a maximum number of iterations is reached.

A. Surface Model

We represent a range scan as a set of surface tangents: one

for each point in the scan. The local characteristics of the

tangents around the sampled points are captured by Gaussian

distributions. These Gaussians represent the orientation of the

normal and how well the local surface can be represented by

a segment.

In our approach, we assume the sensed surface to be

piecewise smooth, and that we are able to determine the

normals in small regions of this surface. To this end, we

determine an approximation of the characteristics of the

surface by considering the neighboring surface patches. More

precisely, we describe the local characteristics of every point

in a scan by a Gaussian. The Gaussian estimates the location

µnk of a surface patch that is measured by the kth noisy

range reading rk that originates from the nth robot pose xn.

Its covariance is given by considering the scan points patches

within a given region around µnk.

Once the Gaussian is computed, the estimated normal of

the surface n̂k is the eigenvector of the smallest eigenvalue

of the covariance matrix in the direction of the laser scanner.

The ratio between the two eigenvalues tells us if the normal

is well defined. In case the ratio between the smaller and

the bigger eigenvalue is below a given threshold, the points

are distributed along a “flat” area, thus the normal is well

defined. If this is not the case, we do not compute any local

characteristic for that point.

The left picture of Figure 2 illustrates our surface model.

To compute it, we start from a laser scan (see left image

in Figure 2) and then extract the local characteristics of the

surface by grouping neighboring points. This leads to a set of

Gaussian distributions that locally approximate the surface.

B. Sensor Model

A laser scanner measures the length of a set of light beams

emitted by a laser source. The length of a beam is obtained

by measuring the time elapsed between the emission of a

laser pulse and the return of its reflection. Due to the optical

characteristics of the laser, a beam has a conic shape. For this



Fig. 2. Evaluation of the likelihood of the points. The left image shows
the confidence ellipses representing local planar segments extracted from a
scan by applying our surface model. The right image depicts the likelihood
of the surface points, given the scan.

reason, a single laser beam does not measure the surface at a

specific point, but rather returns some aggregated measure of

the distances of the surface within the spot of the beam. This

effect is usually negligible when one is interested in low-

resolution maps or the robot operates in narrow environments

only, but it becomes evident in all other situations.

Furthermore, the incidence angle on the surface usually

plays a major role in the error affecting a laser beam. This is

another consequence of the conic shape of the beam: the area

of the spot on the surface increases with the angle between

the normal of the surface and the center of the beam. Since

the distance measure is obtained by averaging over a larger

region, it tends to be less accurate.

The uncertainty affecting a single laser beam hitting a

surface typically depends on the quantization error of the

device and the diameter of the spot at a given range. The

quantization error ηquant is usually uniformly distributed

over a small range (e.g., ±1 cm for the SICK LMS). The

diameter dk of the beam’s spot on the surface increases

with the length of the measured beam and it depends on

the incidence angle αk to the surface. The spot diameter is

proportional to the beam’s aperture ka and to the norm ||rk||
of the beam’s vector r. The diameter will then be ka||rk||,
and its projection onto the surface will be

dk ≃ ka||rk|| · tan(|αk|). (1)

If we have a rough estimate of the normal n̂k from our

surface model and we obtain a laser measurement rk, the

potential measurements will be distributed approximately as

a Gaussian oriented along the beam’s direction. The mean

will lie at the center of the surface patch and the uncertainty

is represented by the covariance Σmeas. The standard devi-

ation σ11 along the beam’s direction is proportional to the

projection of the spot dk on the surface along the beam’s

direction plus a quantity proportional to the quantization

error

σ11 = k11dk sin |αk|+ ηquant. (2)

The standard deviation σ22 along the direction orthogonal to

rk will depend on the diameter of the spot:

σ22 = k22ka||rk||. (3)

In the above equations the constant factors k11 and k22
are laser dependent parameters and σ11 and σ22 are the

respective entries in the covariance matrix Σmeas. Figure 3

illustrates how we compute the distribution of the point on

a surface that generated a range measurement.

surface

d

r
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α

α

dk

Fig. 3. The sensor model of smooth surfaces. For convenience we dropped
the indices. r: the beam of the laser vector. n̂ the normal of the surface.
α: incidence angle. ka: the aperture of the beam’s cone. d: diameter of
the beam’s spot on the surface r. σ11: standard deviation along the beam’s
direction (not shown) and σ22: standard deviation along the beam’s tangent
direction (not shown).

C. Objective Function and Optimization

The goal of our approach is to determine the map and

the configuration of robot poses that is maximally consistent

with the measurement. The map M is represented as a set of

tangent segments, or points where the tangent is not defined.

Each tangent is described by a Gaussian 〈µnk,Σnk〉, where
µnk denotes the kth beam of the nth robot pose xn, as

described in Section III-A. The robot positions x1:N are

constrained by the odometry measurements u1:N .

If we know the pairwise correspondences between two

surface patches extracted from different scans, we can define

the error vector for this correspondence as the difference

between the centroids of the ellipsoids representing the

tangents:

e
surf
ij (µniki

, µnjkj
) = µniki

− µnjkj
= ∆µij . (4)

When constructing a quadratic optimization problem, we

need to weigh the errors between the surface patches ac-

cording to the orientation of the surfaces. More specifically

we want to allow the surfaces to “slide” along the tangential

direction, but we want them to be more rigid along the

direction of their normal. This can be effectively accounted

by the sum of the inverses of the covariance matrices of the

ellipsoids.

Ωij = Σ−1
niki

+Σ−1
njkj

. (5)

The quadratic error introduced by this correspondence will

then be:

e
surf
ij = ∆µ⊤

ijΩij∆µij . (6)

Figure 4 illustrates the calculation of this component of our

error function.

Each surface patch 〈µnk,Σnk〉 is connected to the laser

pose by a measured laser beam rnk. This error is distributed

according to the covariance Σmeas computed in Section III-

B:

e
meas
nk = ((µnk⊖xn)−rnk)

⊤(Σmeas
nk )−1((µnk⊖xn)−rnk).

(7)

An odometry measurement un between two consecutive

robot poses xn and xn+1 contributes to the error function

by the following term:

e
od
n = (un ⊖ (xn+1 ⊖ xn))

⊤Σ−1
n (un ⊖ (xn+1 ⊖ xn)). (8)



xi xj

〈µni
,Σni

〉

〈

µnj
,Σnj

〉

∆µij

tangent error

normal error

Fig. 4. This figure illustrates the computation of the error function between
two corresponding surface patches extracted from two different scans. xni

and xnj
are the two positions of the laser scans. µniki

, µnjkj
are the

centroids of the surface patches. Σ
−1

niki
and Σ

−1

njkj
are the covariance

matrices of the ellipses and ∆µij is the error vector.

Here, ⊖ is the usual inverse motion composition operator

as described in [25] and Σ−1
n is the covariance matrix that

captures the uncertainty of the odometry.

Assuming a known set of correspondences, we can set up

a least squares minimization problem that seeks to find the

configuration of robot poses x
∗
1:n and surface patches M∗

as:

〈x∗
1:n,M

∗〉 = argmin
x1:n,M

N
∑

n=1

e
od
n +

∑

〈i,j〉

e
surf
ij +

∑

〈n,k〉

e
meas
nk . (9)

To find this minimum we utilize the Gauss-Newton al-

gorithm. Whereas the number of variables to optimize is

typically large (in the order of one million of elements),

the resulting linear system is typically sparse. The objective

function is the sum of factors involving only pairs of state

variables. Thus the approximated Hessian contains a number

of non-zero entries that is proportional to the number of con-

straints. Since the range of the sensor is limited, this results

in a sparse approximated Hessian. We can achieve the desired

performance by solving the linear system by sparse Cholesky

decomposition using the CHOLMOD algorithm [7]. Given

this algorithm, our current system can perform one iteration

of non-linear optimization of a system consisting of 172,522

surface patches acquired from 616 robot positions, 996,451

surface constraints, and 671,550 constraints between surface

patches in less than 5 seconds using one core of a Core

Quad running at 2.6Ghz. Figure 5 shows the typical non-

zero pattern of the sparse Hessian.

In the Gauss-Newton algorithm we do not directly opti-

mize the covariances of the patches Σniki
, since we inter-

nally store them relative to the robot position from where

they have been acquired. In this way, when a robot position

is updated, we implicitly rotate the covariances of the patches

that have been seen from that position. However, the error

functions for the landmarks (Eq 6) require these covariances

to be expressed in the global reference frame to compute the

information matrices Ωij . We carry on this operation in the

linearization step of the Gauss-Newton algorithm.

D. Data Association

In the previous section we assumed the correspondences

between the surface patches to be known. This assumption is

Fig. 5. Non-zero entries of the approximated Hessian of your optimization
procedure. The “dense” bands on the top and on the right correspond to
constraints between the robot poses and the patches.

obviously not true in reality. In this section we will explain

how we determine the potential correspondence between two

patches in different scans.

Given an initial configuration of two patches 〈µi,Σi〉 and
〈µj ,Σj〉, where the normals are well defined, we utilize the

“normal-shooting” heuristic proposed in Chen et al. [6]. The

idea is to consider every surface patch where the normal is

well defined and to search along its normal direction for the

closest patch of another scan whose ellipsoid has a similar

shape as well as a similar orientation of the normal. If such a

patch is found, we add a constraint between them. Whenever

two robot poses are connected by an odometry constraint,

we apply this heuristic to introduce a constraint between the

surface patches of the scans. Furthermore, we consider the

surface patches that are closer than 0.2m to each other. If

a surface patch has more than one neighbor, we only add a

constraint to the one having the smallest index. By doing

so, we enforce a high degree of sparsity of the Hessian

without a substantial decrease in the final map accuracy. The

data association is updated after every optimization run. We

consider a system converged if changes in the χ2 error are

below a given threshold for at least 5 optimization runs.

IV. EXPERIMENTS

In this section, we present experiments carried out to

evaluate the performances of our approach. Throughout our

experiments we used the Freiburg indoor building 079, the

Intel Research Lab, the MIT CSAIL Building, and the ACES

Building data sets. We choose those datasets because they are

publicly available and well known in the SLAM community.

Another important advantage of this dataset collection is

the fact that they were acquired with different laser sensors

and give an intuition of the generality of our sensor model.

For further quantitative evaluations we furthermore used a

simulated map resembling the Freiburg indoor building 079

map.

A. Entropy on Real World Data

In the first experiment we evaluated the impact of the

combined pose and observation optimization on a set of

real world datasets. The main purpose of our method is

to produce accurate maps, which typically results in a low

entropy of the corresponding occupancy grid map, which



Fig. 6. The top row of this figure shows the resulting maps of our method. We enlarged some regions to visualize the differences in the SLAM results
used as input (second row), the pose-only optimized result (third row), and the output of our method (bottom row). The bottom row shows only few blur
and sharp borders between free and occupied cells.
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Fig. 7. This figure shows the computed entropy for the first experiment.
The entropy of the optimized result is lower than the entropy of the input
data on all maps.

essentially measures the uncertainty about the state of the

environment. Our approach is not intended as a solution

for the entire SLAM problem but rather serves as an post-

optimization step that maximizes the accuracy of the map.

In this experiment, we therefore computed a standard graph-

based SLAM solution for each dataset and applied our

method to the resulting estimates. The occupancy maps

generated based on the estimates of the standard SLAM

algorithm serves as a baseline for the quality of the maps

obtained with our approach. To analyze the impact of the

laser point optimization we additionally generated maps

using only the robot poses estimated by our approach but

generating the maps from the original scans. We generated

grid maps of 5mm resolution for both methods as well

as our approach and analyzed the resulting maps visually

and numerically by measuring the entropy. The first row of

Fig. 8. Two partial scans of the ACES Building dataset before optimization
(black) and after optimization (red/gray). In both cases the black points
show typical sensor errors. In contrast the red/gray points give a more likely
explanation of the surface structure.

Figure 6 shows the resulting maps. The second row shows

the SLAM results used as input, the third row shows the same

part of the map for the pose-only optimization case and the

bottom row shows the same part of the map generated by

our method. As can be seen from the figure, our approach

yields maps showing the highest accuracy compared to both

other approaches. The entropy of the resulting is displayed in

Figure 7. As can be seen, our approach yields a substantially

lower entropy, which is consistent with the visual inspection

the maps.

The lower entropy comes from the fact that the optimiza-

tion of laser points reduces the impact of sensor noise. Fig-

ure 8 illustrates the differences before and after optimization

on two partial laser readings taken from the ACES Building

dataset. The optimized points (red) give a visually better
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Fig. 9. Localization error on a graph-based SLAM (blue-dotted) and an
optimized map (red) in the simulator experiment. The left plot shows the
absolute errors for all poses computed during the evaluation of the RMS.
It gives an upper bound for the global error of the underlying map. The
right plot shows the relative errors between pose pairs that were selected
sequentially on the trajectory with a distance of at least 1m.

description of the observed structure than the original sensor

reading (black).

B. Localization and Map Accuracy

Since we lack precise ground truth for the real world

datasets we evaluated our approach in a simulation scenario.

To evaluate this, we measured the root of mean squared

error (RMS) as described in the work of Olson et al.

[22]. Additionally, we computed the relative error between

localization pose pairs as additional measure. We refer to this

measure as Relative Pose Error (RPE) in the following [4].

As first step of the experiment we manually constructed

a map with a cell size of 5mm and recorded two datasets

on this map using a simulator. From the first dataset we

constructed a map with graph-based SLAM and a post-

optimized map with our method. For both maps we ran

a standard Monte-Carlo-Localization (MCL) [9] given the

second dataset and evaluated the corresponding localization

accuracy. The left plot in Figure 9 shows the absolute

error for all poses calculated during the computation of the

RMS. This error plot represents the accumulated map and

localization error and gives an upper bound to the global

error in the map. The RMS of the SLAM result is 0.0636m

and the RMS of the optimized map is 0.0469m. The right

plot in Figure 9 shows the RPE of localization pose pairs

that were selected sequentially on the robot trajectory and

have a distance of at least 1m to each other. Both plots

demonstrate that the localization gets substantially better on a

map optimized with our approach than on a standard SLAM

map.

V. CONCLUSIONS

In this paper we described an approach that improves the

results of traditional SLAM approaches by jointly optimizing

robot poses and laser data. Our approach is based on the

assumption that a laser range finder senses points from a

regular surface and utilizes two phenomena of laser measure-

ments: the conic shape of the beam and the influence of the

incidence angle. Experimental results demonstrate that our

approach yields substantial improvements for maps obtained

with a standard SLAM technique. The software and all data

sets are available at http://www.openslam.org.
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