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Abstract—In this paper, we propose an approach to obtain
highly accurate 3D models from range data. The key idea
of our method is to jointly optimize the poses of the sensor
and the positions of the surface points measured with a range
scanning device. Our approach applies a physical model of
the underlying range sensor. To solve the optimization task it
employs a state-of-the-art graph-based optimizer and iteratively
refines the structure of the error function by recomputing
the data associations after each optimization. We present our
approach and evaluate it on data recorded in different real
world environments with a RGBD camera and a laser range
scanner. The experimental results demonstrate that our method
is able to substantially improve the accuracy of SLAM results
and that it compares favorable over the moving least squares
method.

I. INTRODUCTION

Accurate 3D models are envisioned to be essential for the

next generation of robotic applications. To accomplish their

tasks in the real world robots require such models to perform

navigation, reasoning, and manipulation. The problem of

learning models of the environment with a mobile robot is

known as simultaneous localization and mapping (SLAM).

There exists a variety of approaches that can be used to solve

the SLAM problem based on 3D range data [16], [11], [10],

[7], [12], [9], [17]. Most of the approaches split the SLAM

problem into two separate tasks. The first one consists of the

estimation of the relative transformation between pairwise

observations (often carried out using ICP [4], [20]). In the

second step the maximum likelihood configuration of the

robot poses is estimated based on these pairwise constraints.

Whereas the modern SLAM techniques produce highly ac-

curate maps, the majority of approaches treats the individual

scans as rigid bodies. This leads to an increased uncertainty

about the exact position of the surface and also introduces

errors in the robot pose estimates. In maps generated by such

approaches one commonly observes artifacts such as blurred

walls for example.

In this paper we propose a graph-based approach for

refining 3D SLAM solutions by considering it as a joint

optimization task that simultaneously estimates the robot

poses and the surfaces in the environment. Our approach

applies a physical model of the underlying range sensor

and considers the endpoints of a range scan as samples

generated by the surfaces of the environment. We iteratively

refine the graph structure by recomputing the data association

between each individual distance measurement and the local
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Fig. 1. The left picture shows an accumulated model of a metallic sphere
used as input to our method. The right picture shows the result of our
method after 20 iterations. As can be seen, the resulting model has a smooth
surface. Furthermore our evaluation demonstrates that the model is also
highly accurate, given a mean error of 1.4 mm.

surface points. In this way, we can relax the assumptions

that each range scan is a rigid body so that we obtain more

accurate maps. Compared to our previous work [18] we

present a novel sensor model (the original one was designed

for 2D and lasers only) for 3D and RGBD sensors like the

Microsoft Kinect. Additionally, we extended the accuracy

and robustness with respect to errors in the data association

by combining two strategies with different search ranges.

Our approach is a post-processing procedure to be applied

to the output of graph-based SLAM systems and is designed

to provide locally more consistent models.

We evaluate the accuracy of the models computed by

our method by means of ground truth measurements. We

furthermore characterize the error of the Microsoft Kinect

both theoretically and experimentally. In particular RGBD

cameras are affected by a quantization error in the disparity

measurements. This error leads to noise in the range data

that grows with the distance. By specifically modeling this

error, our approach is able to use long range and noisy

measurements, to capture wide regions, and to assess the

structure of the scene. At the same time it can refine the local

structures given the more accurate short range measurements.

Figure 1 shows an example illustrating the accuracy that

can be achieved with our approach for the reconstruction of

a spherical object with 75 mm radius. The average error in

the measured radius is below 1.5 mm.

II. RELATED WORK

The standard technique for the registration of 3D range

scan pairs is the Iterative Closest Point Algorithm (ICP)

proposed by Besl et al. [4]. ICP iteratively minimizes the

distance between corresponding points, while updating the

data association. Instead of minimizing the point-to-point

error Chen et al. [6] proposed to minimize the re-projection

error based on a point-to-plane metric. This idea has been



extended by Segal et al. [20] which minimize the error based

on a plane-to-plane metric. Since range sensors observe sur-

face structures this leads to substantially better alignments.

These methods focus on the task of accurately registering

two scans, but they threat them as rigid bodies.

Chang et al. [5] proposed model reconstruction approach

for articulated objects, which is able to automatically deter-

mine the joints of an object and deform scan parts according

to the configuration of the object. This method also estimates

the stiffness between surface points and deforms several scan

parts to get a consistent model, but does neither consider the

sensor uncertainties nor deform each scan point individually.

The Non-Rigid ICP variant proposed by Li et al. [15] is

able to deform all points on a surface graph (data) onto a

second surface graph (model) by introducing a deformation

model and applying least square optimization to find the

optimum for deformation and registration. Since this method

uses a weighted least square approximation for the model

surface it is not easily extendable to the case of multiple

scans and does not account for systematic sensor errors,

while our method does not consider deformations.

Fleishman et al. [8] presented Robust Moving Least

Squares (MLS), a smoothing technique based on robust

regression. They assign the points to piecewise smooth

surfaces and are able to obtain accurate models. In a similar

context Andersen et al. [3] propose a Markov Random

Field formulation that optimizes the parallelism between

neighboring surface elements (surfels) and their overlap. This

smooths out noise while maintaining sharp features. Both

methods can be used to obtain accurate surface models, but

ignore the model of the sensor that has been used to generate

the point cloud and do not optimize over the sensor poses.

Compared to our method, MLS is less robust to noisy initial

configurations.

In this paper we present an approach to determine the

optimal position of both the points in the scans and the

robot poses. Our method is similar in spirit to traditional

bundle adjustment (BA) problems in computer vision [22].

A BA algorithm seeks to find the configuration of a set of

distinguishable features and camera poses that minimizes the

re-projection error over the measured sequence of images. In

contrast to BA, our method does not require point features

and it considers the local structure of the model while

performing the optimization. We globally minimize a local

plane-to-plane error metric similar to Segal et al. [20].

Furthermore, we refine the data associations after every

optimization run. This yields models with highly accurate

surfaces and drastically reduces the impact of accumulated

sensor noise.

III. SPARSE SURFACE ADJUSTMENT

The goal of our approach is to construct a maximally

consistent 3D model of the environment from a set of roughly

aligned 3D range scans. The input of our approach can be

obtained by a traditional SLAM algorithm. Our approach is

able to compensate for small errors in the sensor position

and it takes into account the noise affecting the range

measurements. Typical man-made environments consist of

regular surfaces and a range reading can be understood as

sample generated by the underlying observed surface. We

exploit the regularity assumption by approximating a surface

by a set of small locally planar patches, characterized by their

normals in direction to the sensor. In the remainder of this

paper we will refer to these as surfels.

The main idea is to construct an optimization problem

that tries to adjust the poses of the sensor and of the

surfels to find a maximally consistent configuration. To

achieve this task, we assess the surfels structure from each

individual measurement endpoint. We then minimize the

distance between nearby surfels acquired from different robot

poses. This is done by taking into account the uncertainties

of the sensor measurements via appropriate sensor models.

We extract locally planar surfels from each range scan, as

described in Section III-A. Each measured distance is then

connected to the corresponding surfel by a constraint that

depends on the sensor used (3D laser or RGBD III-B). Each

surfel is parametrized by a state variable.

Nearby surfels arising from different scans are then con-

nected by “virtual” measurements that “pull” the two surfels

onto each other, while allowing them to slide along the tan-

gential directions. These virtual measurements are iteratively

refined, as explained in Section III-C. Finally, in Section III-

D we will explain how to construct a sparse optimization

problem that incorporates all the above constraints. Despite

the high number of variables these problems can be solved

in a relatively fast manner by using modern optimization

techniques.

A. Surface Model

In our approach, we model the surface of a 3D range

observation as a set of surfels. We assume the sensed surface

to be piecewise smooth and that we are able to extract local

normals around the scan’s endpoints. We represent every

single measurement endpoint by a small planar region, which

gives a local description of the surface. The local charac-

teristics of a surfel are modeled by Gaussian distributions

and are calculated from the neighboring endpoints of the

same observation within a global coordinate frame. These

Gaussians encode the orientation of the normal and how well

the local surface can be represented by a plane. The mean

µnk of a Gaussian represents the center of the surfel that is

measured by the kth measured endpoint rnk that originates

from the nth sensor pose xn. We initialize µnk with

µnk = rnk ⊕ xn (1)

and compute the covariance based on the endpoints in the

local neighborhood of µnk within the same scan. Once the

Gaussian is computed, the estimated normal of the surface

n̂k is the eigenvector of the smallest eigenvalue of the

covariance matrix oriented towards the sensor. The right

picture of Figure 2 gives an example of the computed local

characteristics. Since we update the poses of the surfels

during the optimization procedure we need to recompute the

local characteristics after each optimization run. We can not



Fig. 2. This figure illustrates our surface model. The left image shows the
input point cloud. In the image on the right we show the surfels extracted in
correspondence of the measured points, together with the normal computed
from the neighbors.

avoid the re-computation by choosing a relative coordinate

frame because the surfel optimization changes the relative

configuration of the neighborhood.

B. Sensor Model for RGBD Cameras

A detailed description of a laser sensor model can be

obtained by an appropriate extension of the model proposed

in our previous work [18] to 3D. In case of RGBD and stereo

cameras, the depth value of a point in the scene is obtained

from at least two projections of that point measured in the

image planes of two different observers. In case of a stereo

camera these two observers are in fact two cameras, and

the correspondences between the two images are found by

a stereo matching algorithm. The Kinect sensor approaches

the problem by coupling an infrared projector and an infrared

cameras, thus making the correspondences more robust and

easier to find. In this case the projector can be seen as an

additional observation point. The displacement between two

projections of the same point in the two image planes is

called disparity and is quantized in sub-pixels, thus suffers of

a systematic error. The depth is inversely proportional to the

disparity. Therefore, the impact of the quantization error in

the disparity on the depth estimate increases with the range.

According to [13] the range z of the Kinect is calculated

using the following equation:

z =
qpix · b · f

d
. (2)

Here qpix is the subpixel resolution of the device in the

calculation of the disparity, b is the baseline, f is the focal

length and d the normalized disparity. In the case of the

Kinect qpix = 8. If we transform this equation to get the

disparity for a range z, we obtain

d =
qpix · b · f

z
. (3)

The quantization error can be assumed to be uniformly

distributed, and the width equant of the distribution depends

on the sensed range, according to the following equation:

equant(z) =
qpix · b · f

2
· (4)
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Fig. 3. This figure shows the range dependent theoretical quantization error
in orange. The standard deviation calculated from experimental Kinect data
is shown in black.

Figure 3 illustrates the quantization error. We evaluated the

statistical error of a Kinect facing a planar surface in a range

between 0.5 m and 3.1 m. Every 0.1 m we acquired 100 scans

and calculated the error to a fitted plane. The resulting stan-

dard deviation is shown in Figure 3. The standard deviations

behave similar to the analytic error function. Note that the

Kinect data have larger error bounds as the quantization

error for ranges over 2.5 m. This depends on the plane fitting

routine, whose performance decreases in presence of the high

noise that occurs in this range leading to additional errors.

To construct the least squares problem we approximate the

uniform distribution along the direction of an endpoint with a

Gaussian, whose covariance is proportional to the variance of

the uniform distribution of width equant. To be more detailed,

we represent the uncertainty of a measured endpoint with a

covariance Σ
meas. The covariance σ11 along the direction of

kth endpoint ||rk|| is modeled as

σ11 = (equant(||rk||))
2. (5)

An RGBD sensor observes neighboring measurements at

the same time and there is no additional dynamic involved.

Therefore, we assume a range dependent error between

neighbors in X-direction of the image, modeled in σ22, and

the Y-direction of the image, modeled in σ33. This error

depends on the size of the surface “covered” by a pixel.

Given the angular resolutions βX , βY we can model the error

as

σ22 = tan

(

βX

2

)

· ||rk|| (6)

σ33 = tan

(

βY

2

)

· ||rk||. (7)

Here, σ11, σ22, and σ33 are the respective entries in the

covariance matrix Σ
meas.

C. Surface Correspondences

In the previous sections we described a model for the

individual endpoints of a single range scan by assuming

that the sensed surface is locally regular. In this section,

we will explain how we determine potential correspondences

between regions of surfaces sensed from different sensor

positions.

Given a surfel we search for potential correspondences

between this surfel and all other surfels observed from dif-

ferent sensor poses within a search radius. Since our method



is able to deform scans, we have to carefully select the

search range. A too large range might result in stretched or

fragmented surfaces and erroneous sensor poses introduced

by false correspondences and a too small range might result

in unconnected surfaces, which might lead to an inconsistent

model.

Instead of searching a trade off between accuracy and

robustness we combine two different strategies. To ensure

the local connectivity we apply nearest neighbor (NN) in

close range and to be more robust against initial alignment

errors from missing or suboptimal loop closures we apply

“normal-shooting” (NS) proposed by Chen et al. [6] with a

larger search range. Given an initial configuration of a surfel

〈µni,Σni〉, whose normal is well defined, we search along

its normal direction and in the nearby neighborhood to seek

for the closest surfel belonging to a different observation. Let

this surfel be 〈µmj ,Σmj〉. If the normals of the two surfels

have a similar orientation, we add a constraint between

them, since it is very likely that they belong to the same

surface. If the normals differ more than a given threshold (20

degrees in our current implementation), we assume that we

hit another surface and we reject the match. As maximum

search distance in the object model experiments we used

2 cm for normal shooting and 5 mm for nearest neighbor. In

the environment model experiments we used 15 cm (NS) and

5 cm (NN).

D. Least Squares Optimization

The overall goal of our approach is to determine the model

and the configuration of robot poses that are maximally

consistent with the observations. In the remainder of this

section we propose error functions and error weights for the

previously introduced constrains, with the goal to construct

a least squares optimization problem.

The model M is represented as a set of surfels. Each surfel

is described by a Gaussian 〈µnk,Σnk〉, where µnk denotes

the kth measurement of the nth robot pose xn, as described

in Section III-A.

Each surfel 〈µnk,Σnk〉 is connected to the robot pose by a

measurement rnk. This error is distributed according to the

covariance Σ
meas computed either from the corresponding

laser sensor model [18] or Section III-B:

eme
nk = ((µnk ⊖ xn)− rnk)

⊤(Σmeas
nk )−1((µnk ⊖ xn)− rnk).

(8)

The error of corresponding surfels ni and mj belonging

to different scans is modeled with the following error vector:

v
cor
nimj(µni,µmj) = µni − µmj = ∆µnimj . (9)

Accordingly, the error is minimal if both surfels are in the

same location. We intend to allow surfels to “slide” onto each

other along their tangent directions, while we want them to

be more constrained along their normals. This can easily

be modeled by the sum of the inverses of the covariance

matrices of the surfel ellipsoids:

Ω
cor
nimj = Σ

−1
ni +Σ

−1
mj . (10)

xn xm

e
me
ni e

me
mj

e
cor
nimj

µni

µmj

Fig. 4. This figure illustrates the graph structure of our optimization
problem. xn and xm are the sensor poses from which two 3D scans have
been acquired. Two corresponding surfels µni, and µmj , extracted from
the different scans are connected by a “virtual” measurement e

cor

nimj . A

measurement generated by a surfel depends on the surfel characteristics
and on the position of the sensor. In this example a beam’s measurement
of the patch µni sensed from xi is captured by the error function e

me

ni .
Similarly, a measurement of µmj sensed from xj is captured by the error
function error function e

me

mj .

The quadratic error function then is

ecornimj = ∆µ
⊤

nimjΩ
cor
nimj∆µnimj . (11)

Having introduced these quadratic error functions, we can

formulate a least squares minimization problem to find the

configuration of sensor poses x
∗

1:n and surfels M∗ that

minimize the following function:

〈x∗
1:n,M

∗〉 = argmin
x1:n,M

∑

〈n,k〉

e
od

nk +
∑

〈n,m,i,j〉

e
cor

nimj +
∑

〈n,k〉

e
me

nk (12)

where e
od
nk is the error of the odometry measurements

between two successive frame acquisitions as described in

our previous work [18].

Relevant 3D datasets typically have millions of measure-

ments and robot poses, which results in an optimization

problem with millions of variables. Nonetheless, the ob-

tained optimization problems are usually relatively sparse.

The objective function is the sum of factors involving only

pairs of state variables. Thus, the approximated Hessian

contains a number of non-zero entries that is proportional

to the number of constraints. The number of introduced

constraints inside an observation is linear in the number

of measurements. Since the applied sensors have a limited

field of view and a limited range, the constraints between

observations are in general only local and result in a sparse

approximated Hessian. Therefore, we can efficiently compute

this minimum by utilizing the g2o framework [14], which

applies sparse linear algebra libraries.

Since we do not know the true correspondences, we have

to iteratively refine the correspondences after every optimiza-

tion run. Additionally, we recompute the surfel properties

for the updated system and construct a new optimization

problem. We perform this procedure until the changes in the

objective function fall below a threshold or the maximum

number of iterations has been reached.



IV. EXPERIMENTS

In this section, we present experiments on real world data

to evaluate the performance of our approach and to discuss its

advantages. The main purpose of our approach is to improve

the consistency of models. We evaluate this consistency both

visually and quantitatively by measuring the entropy of the

generated models. To compute the entropy, we project the

range measurements into a 3D grid, where we calculate the

reflection probabilities, and the times a cell has been visited.

Base on these two quantities we obtain the entropy of the

surface models by using the model proposed by Stachniss et

al. [21].

A. Environment Models

In our first experiment we evaluated our method on three

different real world datasets. The first dataset was recorded

with a Kinect sensor on a mobile robot in the corridor of

building 79 on the Freiburg campus. The second dataset was

recorded in the same corridor using a tilting laser range

finder. As third dataset we choose the publicly available

AASS-loop1 [1] dataset which was recorded with a spinning

laser range finder. We computed SLAM solutions for both

corridor datasets and used the given SLAM solution of the

AASS dataset as baseline for our consistency comparison.

Afterwards we applied our method on all three datasets and

computed the entropy on a 3D grid with cell size 5 cm. The

first row of Figure 5 shows the used datasets. The second

row shows a detailed view of one example region before

optimization and the third row shows the same region after

the optimization procedure. Table I gives detailed statistics

of the involved datasets.

Our approach substantially reduced the entropy in all three

datasets. The entropy of the Kinect dataset was reduced from

174,092 down to 143,087, which corresponds to a reduction

of 18 %. The entropy of the Building 079 corridor dataset

was reduced from 143,569 down to 92,003.6, which is a

reduction of 35.9 %. The entropy reduction of 7.6 % on the

AASS dataset is lower than on the other datasets, because of

the very specific sampling strategy of the rotating laser. The

performances of our approach depend on the characteristics

of the environment, on the accuracy of the initial solution

computed by the SLAM algorithm, and on the characteristics

of the sensor. Clearly, the better the initial SLAM solution

is, the more accurate the result of our model will be, since

there will be less ambiguities in the data association. Finally,

the more dense is the dataset, the better our approach can

perform the alignment. For these reasons, the magnitude of

the entropy reduction differs between the datasets, but it is

always positive.

There are two effects, that enable our approach to im-

prove the results of graph-based SLAM algorithms. The

optimization of a combined problem, using all available

sensor information, instead of optimizing over fixed con-

straints, introduced by pairwise scan-matching and secondly

the possibility to refine observations. Especially in the case of

1Courtesy of Martin Magnusson, AASS, Örebro University, Sweden

Fig. 6. The left picture shows the point cloud of a model recorded in an
office environment, which consists of 20 Kinect scans. The two magnified
views on the right show a part of the surface from a different viewpoint.
The top right image shows the input data and the bottom right image shows
the same region after optimization. The accumulated errors are significantly
reduced.

range dependent sensor errors, like the quantization errors of

the Kinect, the measurement refinement is essential to build

consistent models. As already stated in the introduction, we

performed an experiment to evaluate the impact of this effect.

To this end, we recorded a set of colored point clouds, while

approaching a planar surface. The upper part of Figure 6

shows the complete model and the magnified view of an ex-

ample region before and after optimization. The accumulated

quantization effects of the model are substantially reduced

after optimization. In this example, the entropy was reduced

by 44 %.

B. Object Models

In our second experiment we demonstrate that our ap-

proach can also efficiently build consistent objects models up

to a resolution of 1 mm. Therefore, we applied our method

on an object model datasets, acquired with a Kinect on a

rotating turntable. For the initial registration of the point

clouds we applied incremental scan matching, introduced

loop closure constraints, and optimized the result. Afterwards

we applied our method and computed the entropy before and

after optimization with a grid size of 2 mm.

Figure 7 shows the input data (a) and the resulting model

for a black cup (b), computed on point clouds with a

resolution of 1 mm. The resulting model looks more con-

sistent. The entropy was reduced by 17.1 %. Additionally,

we compared the outcome of our method with the results

of the MLS implementation provided in the Point Cloud

Library(PCL) [19]. Figure 7 (c) shows the resulting point

cloud for MLS applied on the input point cloud with default

parameters and a search radius of 1 mm. Since MLS does

not consider errors in robot poses, the resulting model is not

consistent.

C. Ground Truth Data

Obtaining a ground truth for models of arbitrary objects

is rather difficult, thus we approached the problem with an

object having a simple geometry. We decided to evaluate

the accuracy achievable with our method on a geometrically

simple object like a sphere with a known radius of 7.5 cm



Fig. 5. The first row shows the three datasets(Building 079 - Kinect, Building 079 - Laser and AASS Building), which where used in our experiment IV-A.
The second row shows particulars of the datasets before optimization and the bottom row are the same datasets after optimization. We highlighted with
rectangles regions where the effect of the optimization is particularly evident.

TABLE I

DETAILED OVERVIEW OF ALL DATASETS USED IN OUR EXPERIMENTS.

Dataset Figure # Scans # Points comp. time grid resolution entropy input entropy optimized entropy reduction

Building 079 - Kinect 5 48 1,434,298 24 min 50 mm 174,092 143,087 17.8%

Building 079 - Laser 5 32 688,977 11 min 50 mm 143,569 92,003.6 35.9%

AASS Building 5 60 2,266,519 48 min 50 mm 287,433 265,585 7.6%

Planar Structure 6 20 313,673 5 min 50 mm 12,493 6,911.43 44.7%

Black Cup 7 51 107,281 6 min 2 mm 8,184.52 6,781.88 17.1%

a) b) c) d)

Fig. 7. This figure illustrates the differences between our method and MLS. We acquired multiple scans of a cup, shown in the image (a). In b) we show
the point clouds registered by using ICP. In c) we show the effect of MLS on the input data. Whereas the model looks smoother than the input it shows
inconsistencies arising from errors in the estimate of the initial positions of the sensor. In d) we show the results obtained by our approach on the same
input data. The result appears to be more consistent.



a) b) c) d)

Fig. 8. The first picture (a) shows the object used to acquire the data. (b) shows the accumulated model based on the motion capturing poses. (c) shows
the result of our method after 20 iterations. For the direct comparison between the input model (blue) and the resulting model (red) we put both models
into (d) together with a sampled sphere as ground truth (black). Note for visibility reasons the picture shows the bottom of the spheres, where the blue
and red spheres have no points.

shown in Figure 8 (a). The spherical geometry allowed

us to sample a perfect object model as ground truth and

the data association is more challenging since the normals

provide no distinctive information. We recorded a dataset

using a hand held Kinect capturing a metallic sphere on a

table and measured the poses of the camera with a motion

capturing system. The dataset is publicly available here [2].

Afterwards we selected reference scans every 0.2 m and

manually removed all points not belonging to the sphere.

The accumulated model using the motion capturing poses

can be seen in Figure 8(b). We used this model as reference

for comparison and as input to our method. The result

obtained with our technique can be seen in Figure 8(c). We

aligned both spheres to a sampled sphere with the radius of

7.5 cm. The mean error for the input model is 1.94 cm with

a maximum error of 4.43 cm. For our method the mean error

is 1.4 mm and the maximum error is 6.5 mm. Therefore, our

model is substantially more accurate than the input data as

can also be seen in Figure 8(d).

V. CONCLUSIONS

In this paper we presented a novel approach to improve the

results of pre-aligned 3D point clouds by jointly optimizing

the robot poses and the surface points. Our method treats

range readings as samples of a regular surface and is able to

improve the consistency of 3D models by efficiently solving

a least squares optimization problem that is constructed based

on an accurate model of the sensor. Experimental results

obtained with an RGBD camera and a laser range finder in

real-world settings and for known objects demonstrate that

our approach yields substantial improvements compared to a

standard SLAM technique and an alternative state-of-the-art

method.
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