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Abstract: The representation of the environment of a mobilerobot by line models is a
popular alternative to occupancy grid maps. Line maps require significantly less memory
than occupancy grids and therefore scale better with the size of the environment. They
furthermore are more accurate since they do not suffer from discretization problems. In the
past a variety of techniques for learning line maps from range data have been developed.
These techniques differ in various aspects such as the way lines are extracted from range
scans, how the lines are updated upon sensory input. There furthermore are techniques that
are able to operate online, whereas others postprocess the data. In this paper we compare
three different techniques for learning line models with respect to various parameters
such as efficiency and quality of the resulting maps. Experimental results illustrate the
advantages and the disadvantages of the different techniques.
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1. INTRODUCTION

Geometric maps play an important role in mobile
robotics since they support various tasks such as path
planning and accurate localization. One of the most
popular way to represent the environment of a robot
are occupancy grids. Their advantage is that they can
easily be updated upon sensory input. Their disadvan-
tages, however, lie in the huge memory requirements
and the the limited accuracy due to the discretization.
To overcome these limitations, many authors studied
the generation of more compact representations such
as line models. Line maps are based on the assump-
tion that most indoor environments consist of planar
structures such as walls, doors, or cupboards. They
are more compact since such objects can effectively
be represented by a small number of line segments
whereas thousands of grid cells might be required by
an occupancy grid. They are also more accurate since
they provide floating point resolution and do not suffer
from discretization problems.

Accordingly techniques for extracting line models
from range data have been studied intensively in the

past. Crowley (1989) extracts line segments from
range measurements and combines these segments us-
ing a Kalman filter. Pfister et al. (2003) extend this
approach and also consider the accuracy of the mea-
surements when updating the line model. Arras and
Siegwart (1997) use a clustering approach to learn line
models from laser data. Their approach also considers
the uncertainty in the measurements when clustering
points into linear segments. The approach developed
by Gonzales et al. (1994) computes point clusters
from each range scan based on the distance between
consecutive points. They apply linear regression to fit
lines to these clusters and iteratively combine lines
to a global map. Leonard et al. (2001) use a Hough
transform to extract linear features from sequences of
consecutive sonar measurements. These features are
then maintained using a Kalman filter. Several ap-
proaches apply the well-known iterative end-point fit
or split-and-merge algorithm developed by Duda and
Hart (1973) for fitting lines to scans. Schröter et al.
(2002) adopt the approach of Gutmann et al. (2001)
to cluster scans using the split-and-merge algorithm.
They combine nearby segments using a weighted vari-



ant of linear regression. Also Newmann et al. (2002)
use this approach in combination with the Ransac
algorithm proposed by Fischler and Bolles (1981) to
extract linear models from laser data. Baltzakis and
Trahanias (2002) propose an approach for simultane-
ous localization and mapping in which the features
are extracted using the split-and-merge algorithm. Re-
cently Liu et al. (2001) applied the EM-algorithm to
extract planar structures from 3d data. An online vari-
ant of this approach has been presented by Martin and
Thrun (2002).

Whereas all these approaches seek to find a minimum
number of line segments that best approximate a given
set of range data, the underlying techniques are quite
different. Some of the techniques use the split-and-
merge algorithm, some rely on the Hough transform,
and others use the EM-algorithm for clustering data
points into lines. Furthermore, some of the approaches
have been designed to operate online, i.e., while the
robot is exploring its environment. Others, in contrast,
are offline techniques that are run after the robot has
acquired all relevant information. In this paper we
study three different approaches for line extraction
from laser range data. The first approach is an in-
cremental online technique similar to the approaches
of Crowley (1989), Schröter et al. (2002), and Pfister
et al. (2003). The second method is an offline tech-
nique, which relies on ideas similar to the online tech-
niques but operates on the whole data set to compute
linear approximations. The third approach is a variant
of the EM technique proposed by Liu et al. (2001).
Throughout this paper we analyze and compare these
approaches with respect to various features such as
computational requirements, accuracy, and also ro-
bustness. This paper is organized as follows: The next
section describes the techniques compared in this pa-
per. Section 3 then summarizes the comprehensive ex-
periments carried out with various data sets generated
with real robots and in simulation.

2. APPROACHES TO LEARN LINE MODELS

2.1 Incremental Learning of Line Models

The approach to incrementally learning line models
analyzed here is closely related to the approach de-
veloped by Schröter et al. (2002) and borrows several
ideas from the technique proposed by Pfister et al.
(2003). The key idea is to extract line segments from
laser range scans and to integrate these new lines with
the line segments stored in a global map.

There are two popular approach to extract lines from
individual range scans. The Hough transform em-
ployed by Pfister et al. (2003) is typically used to
cluster collinear points, which then are approximated
by lines. The split-and-merge algorithm, on the other
hand, recursively subdivides the scan into sets of
neighboring beams that can accurately be approxi-

mated by lines. The split-and-merge algorithm has
several desirable properties compared to approaches
using the Hough transform. It also considers the order
in which the measurements were obtained, it typically
runs much faster than algorithms that first have to
compute the Hough transform, and it exploits the local
structure whereas the Hough transform only considers
the global structure. Also, the results generated by the
split-and-merge algorithm are locally more consistent
than those obtained with the Hough transform.

Therefore our approach for incrementally learning
line models uses the split-and-merge algorithm to
extract line segments from range scans and afterwards
combines these line segments with a given global map.
To fit a line to a set of points we use the approach
proposed by Lu and Milios (1994). In this approach
the line that best approximates a set of points is
computed according to

tan 2φ =
−2

∑
i(x̄ − xi)(ȳ − yi)∑

i ((ȳ − yi)2 − (x̄ − xi)2)
(1)

r = x̄ cosφ + ȳ sin φ (2)

wherex̄ = 1

n

∑
i xi, ȳ = 1

n

∑
i yi, r is the normal

distance of the line from the origin, andφ is angle of
the normal.

To integrate a line segmentsl extracted from a single
scan into a mapm consisting of line segments we
search for the line segments∗ in m that is closest to
sl. The distance betweensl ands∗ is given by the sum
of the distances of the endpoints ofsl from the line
going throughs∗. We combinesl ands∗ only when
the distances of both endpoints do not exceed a certain
threshold, which is 10cm in our current system, and if
sl partly overlaps withs∗. To compute a new line from
the two segmentssl ands∗ we combine the data points
associated to the two line segments and compute a
new line from the resulting point set using Equations 1
and 2.

Please note that using this approach the complexity of
combining a new line segment with a line stored inm

is O(nk) in the worst case wheren is the number of
scans taken so far andk is the number of range mea-
surements per scan. To achieve a constant complexity
per measurement one can sub-sample the data points.
Alternatively one can weigh the segments according
to their length (such as applied by Schröter et al.
(2002)), according to the number of data points used
to compute the individual line segments, or according
to the variances of the line parameters (see Crowley
(1989) and Pfister et al. (2003)). In our current sys-
tem we used a sub-sampling approach in which we
limited the number of range measurements to20, 000
which turned out to be efficient enough for an online
integration of new lines. Note that this number was
rarely reached in any of our experiments. Furthermore
we never observed any evidence that the sub-sampling
lead to significantly less accurate results.
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Fig. 1. Flow-Chart for the offline approach.

2.2 An Offline Approach for Learning Line Models

Online techniques such as the one described above
have the advantage that they can be applied while
the robot is moving through the environment. The
disadvantage of such approaches is that it is harder to
detect and filter out dynamic aspects such as beams
reflected by people walking by and outliers. If one
does not use features for the detection of corrupted
readings, one in principle has to consider all past
data during the map learning process. This, however,
introduces a complexity logarithmic in the size of the
past data for updating the map based on a single scan.

The approach implemented for a global approxima-
tion of range data by line segments is summarized in
Figure 1. In a preprocessing step we compute the accu-
mulator of the Hough transform for all scan points. We
then iterate the following procedure on the accumula-
tor until the value of the maximum falls below a cer-
tain threshold (ACCUMIN): We take the maximum
of the accumulator and compute the points associated
or close to the line that corresponds to this maximum.
In the next step we compute the line segments for the
extracted line and take the segment with the maxi-
mum number of associated points. If the number of
points for this segment is too small, we simply set the
corresponding accumulator cell to zero. Otherwise we
fit a line to the points associated to that segment and
delete the points from the accumulator of the Hough
transform. As a result the number of points in the ac-
cumulator steadily decreases until ACCUMIN is no
longer exceeded by the maximum value. Note that this
approach iteratively finds the greatest local maxima in

the accumulator. Thereby it adapts the accumulator ac-
cording to the linear structures extracted so far. When
the loop has terminated we merge all line segments
using the same algorithm as in the incremental ap-
proach but without sub-sampling the points. In a final
step we extend the length of line segments to connect
neighboring line segments.

To deal with dynamic objects we use a simplified
version of Hähnel et al. (2003). We compute an oc-
cupancy grid map of the environment and identify
all beams that end in cells not covered by obstacles.
These beams are regarded as reflected by dynamic
objects and filtered out before the line extraction pro-
cess described above. Note that this approach is able
to remove readings reflected by persons walking by.
However, it is unable to correctly model objects that
are moved around as in the approach of Anguelov
et al. (2002).

2.3 Learning Line Models with EM

One popular approach for learning line models from
laser range data is using the EM algorithm (see Liu
et al. (2001)). Throughout this paper we use a variant
of the EM algorithm also known as fuzzy k-means
clustering (see Duda and Hart (1973)). This approach
assumes a uniform noise model for all beams obtained
from the laser range sensor. Accordingly, the likeli-
hood of a measurementz given a lineθ is defined as

p(z | θ) =
1√
2πσ

e
−

1
2

d2(z,θ)

σ2 (3)

The goal of the EM algorithm is to generate an iter-
ated sequence of models of increased likelihood. To
achieve this, one introduces so-called correspondence
variables that specify which measurement belongs to
which linear component of the model. Since the cor-
rect values of these assignment variables are unknown,
one estimates a posterior about the value of these cor-
respondence variables. Letθj be a component of the
model andzi be a measurement. Then the expectation
aboutcij , i.e., that measurementi belongs to linej is
computed in the so-called E-Step as

E[cij | θ, z) = p(cij | θ, z) (4)

= αp(z | cij , θ)p(cij | θ) (5)

= α′p(zi | θj). (6)

In the M-step, the algorithm then computes the param-
eters of the model by taking into account the expecta-
tions computed in the E-step:

θ∗ = argmin
θ′

∑

i

∑

j

E[cij | θ, z)d2(zi, θ
′

j) (7)

Given a fixed variance over all data points inz we for-
tunately can determine the most likely model in closed



Building 101 at the University of Freiburg (58 m x 17 m) Hallway at the University of Stanford (17 m x 5 m)

Hallway in building 079 of the University of Freiburg (15 m x 6 m) Simulated circular environment (3 m x 3 m)

Sieg−Hall at the University of Washington (53 m x 14 m)

Museum in Heraklion (38 m x 18 m)

Fig. 2. Point maps of the different environments used in thispaper to analyze the algorithms.

form according to the following equations (see Arras
and Siegwart (1997)):

tan 2φj =
−2

∑
i E[cij |θ, z](x̄ − xi)(ȳ − yi)∑

i E[cij |θ, z]((ȳ − yi)2 − (x̄ − xi)2)
(8)

rj = x̄ cosφj + ȳ sin φj (9)

Herex̄ andȳ are computed as

x̄ =

∑
i E[cij |θ, z]xi∑
i E[cij |θ, z]

, ȳ =

∑
i E[cij |θ, z]yi∑
i E[cij |θ, z]

(10)

A crucial problem when applying EM is the number
of model components. The algorithm described here
applies the approach also used by Bennewitz et al.
(2002). Whenever the algorithm has converged we
remove lines that have a low utility, i.e., lines that can
safely be discarded. Additionally, we consider data
points with a low support and introduce new lines for
such points. The final solution is that model that yields
the maximum likelihood over all data points.

3. EXPERIMENTAL RESULTS

The techniques described above have been imple-
mented and evaluated using several laser range data
sets gathered with mobile robots. The goal of the ex-
periments described here is to analyze the different ap-
proaches with respect to several properties, such as the
computational requirements, the number of line seg-
ments extracted, the ability to approximate small pla-
nar or non-linear objects, and the robustness against to
spurious measurements.

The number of points in the data sets were 1.8 mil-
lion for the Sieg-Hall, 671,976 for the building 101

and 35,399 for the building 079 of the University
of Freiburg, 283,458 for the Heraklion museum data,
162,554 for the Stanford corridor, and 10,190 for the
circular environment.

Figure 2 shows the sets of points we used to ana-
lyze the algorithms. Two of the data sets are from
larger unstructured environments such as the museum
in Heraklion or entrance Hall of building 101. Ad-
ditionally, we have three data sets from corridor en-
vironments with different levels and kinds of sensor
noise. Whereas the data set from the corridor of the
Stanford University is quite accurate, the data gath-
ered at University of Washington contain several data
points generated by dynamic objects. Finally, the point
map of the corridor of building 079 includes noisy
measurements due to glass panes. Additionally, we
considered simulated data from a circular environment
in order to analyze the capability of the techniques to
approximate non-planar structures.

Figure 3 left diagram shows the number of line seg-
ments generated by the individual approaches for the
six different data sets. For the huge data sets (Sieg-
Hall and building 101) we aborted the EM algorithm
after three days of computing. As can be seen from the
plot the number of line segments generated by all three
techniques were quite similar. The increased number
of segments generated by the incremental approach
for the Sieg-Hall data is caused by the huge number
of data points generated by people walking in the
environment. These data points could be filtered out
in the offline and the EM approach.

The runtime of the algorithms is depicted in Figure 3
center diagram. As can be seen from the figure, the
online approach always completes the task before the
other two methods. Additionally, it is worth noting
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Fig. 3. Number of extracted line segments (left) and time to compute the line maps on an Intel Celeron 2.8 GHz computer (center) for the
different data sets. Approximation error per point in the resulting line maps (right).

Fig. 4. Fraction of line maps of the museum in Heraklion generated by the different approaches: Incremental approach (left), offline approach
(center) and EM-algorithm (right).

that the EM algorithm has an enormous overhead
which leads to increased completion times. Note that
the scale ofy-axis is logarithmic.

Finally, Figure 3 right diagram plots the average dis-
tance of a data point from a line segment for the
different techniques and data sets. To compute this
value we only considered points that were at most 1m
away from a line segment. It turns out that the offline
techniques yields the best approximations in four of
the six cases. For the building 101, the incremental
approach was better since resulting model contained
5% more line segments than the model generated by
the offline approach. In the circular structure of the
simulated data, the EM algorithm produced the best
result.

For all three approaches we observed that larger linear
structures were discovered quite accurately. The major
differences appeared in the approximation of smaller
structures in the larger maps. As an example con-
sider the data set of the Heraklion museum. The line
map generated by the offline techniques is depicted
in Figure 5. Parts of the maps generated by the three
different approaches are shown in Figure 4. As can bee
seen from this figure, the incremental and the offline
approaches produces almost the same result (see left
two figures). The shorter linear structures were not ap-
proximated well using the EM algorithm. In the incre-
mental and offline approach we directly fit segments to
data points whereas the EM technique considers lines
instead of segments so that often points far away from
a linear structure, which is approximated by a line,
have an influence on the parameters of that line.

To see the difference between the incremental ap-
proach and the offline technique consider Figure 6.
As already mentioned above, the point map of the
Sieg-Hall data set contains several data points cor-
responding to dynamic objects. Accordingly, the in-
cremental approach generates a larger number of line
segments since it does not include means to to filter

Fig. 5. Line map of the museum in Heraklion computed by the
offline approach.

Fig. 6. Fraction of the line maps for the Sieg-Hall data set generated
by the incremental (left) and offline (right) approach.

out measurements corresponding to dynamic objects.
On the other hand, the doorways illustrate that the in-
cremental technique allows a better extraction of small
linear structures. This is because the split-and-merge
algorithm operates on the individual scans in which
these linear structures clearly appear. In the global
point map, however, these small linear structures can
only hardly be detected because of the noise in the
range measurements and slight registration errors.

The final experiment has been carried out using a
point map of a circular room generated in simulation.
Figure 7 depicts the maps generated by the individual
techniques. Whereas all three maps are quite accurate,
the EM approach yields the best result. Because the
EM algorithm performs a global optimization the lines
converge to a regular polygon. The incremental and
the offline approach, however, do not perform a global
optimization so that the overall result always is subop-
timal (see also Figure 3 right diagram).



Fig. 7. Line maps of the circular environment generated by differ-
ent approaches: incremental approach (left), offline approach
(center) and EM-algorithm (right).

Table 1 summarizes the properties of the line mapping
techniques discussed in this paper. It turns out that
the strength of the incremental technique lies in the
efficiency and the capability to extract short linear
structures. Both, the offline technique and the incre-
mental technique perform well on large environments,
whereas the EM approach fails due to the computa-
tional requirements. One advantage of the offline and
the EM technique is that they can better deal with
dynamic aspects and noise since they can retrospec-
tively identify measurements as dynamic and filter
them out whereas online-techniques typically gener-
ate short line segments for such data. The strength
of the EM approach appears when it comes to the
approximation of non-linear structures. Since the EM
technique seeks to globally optimize the parameters of
a map, the results for circular structures are better than
with the other methods. The major disadvantage of the
EM approach comes from the consideration of lines
instead of line segments. Accordingly, data points far
a way from a linear structure can influence their pa-
rameters. However, the EM approach can easily be
extended to situations in which the uncertainty of the
data points is not the same for all points.

4. CONCLUSIONS

In this paper we compared three different approaches
for learning line maps from range data. These methods
differ in important aspects and show similarities to
various approaches found in the literature. In extensive
experiments we analyzed the properties of these tech-
niques and identified their advantages and disadvan-
tages. One of the most surprising result is that the EM
technique, although it belongs to the global optimiza-
tion techniques, does not perform better than offline
and online techniques that follow a greedy maximiza-
tion scheme. It furthermore appeared that the online
technique, which consider individual scans, generates
more accurate results for smaller structures than the
offline and the EM techniques.

This opens several interesting directions for future re-
search. One important question is, whether the EM-
based approach can be extended to operate on line
segments instead of lines. Furthermore, the question
of how to consider the individual scans in the offline
technique would improve the quality of smaller linear
structures especially in large maps. Finally, the filter-
ing of dynamic objects in online approaches appears
to be an interesting topic for future research.

Table 1. Summary of the comparison.

incr. offline EM

speed + + + – –
short segments + ◦ –
large environments + + + – –
nonlinear objects ◦ ◦ +
dynamic objects – + +
robustness – + ◦
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