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Abstract—State-of-the-art cyber-physical systems are increas-
ingly deployed in harsh environments with non-negligible soft
error rates, such as aviation or search-and-rescue missions.
State-of-the-art nanoscale manufacturing technologies are more
vulnerable to soft errors. In this paper, we present an FPGA-
based framework for injecting soft errors into user-specified
memory elements of an entire microprocessor (MIPS32) running
application software. While the framework is applicable to
arbitrary software, we demonstrate its usage by characterizing
soft errors effects on several software filters used in aviation for
probabilistic sensor data fusion.

I. INTRODUCTION
Soft errors cause nodes within a circuit to temporarily fail.

They are typically generated by ionizing radiation from α-
particles or cosmic rays [10]. As modern transistors shrink,
the probability of a fault occurring increases. Soft errors
have traditionally been a concern in safety-critical systems
including medical devices [4] and aviation/space applications
where chips operate under increased radiation [7], [23]. Today,
cost pressure and energy constraints limit the applicability
of massive redundancy, while increased complexity of cal-
culations performed in novel applications such as robots on
search-and-rescue missions necessitate the usage of powerful
microprocessors.

On the positive side, there is also emerging evidence
that many applications, including image-processing [24] and
artificial-intelligence algorithms [18], are resilient, i.e., pro-
duce tolerable results even when they are affected by soft
errors during operation. Before spending significant hardware
resources for radiation hardening or redundancy, it is necessary
to understand which impact soft errors would have on the
target application.

In this paper, we introduce an FPGA-based fault-injection
platform to test and simulate transient faults in micropro-
cessors using FPGAs. The platform can provide insight into
the design’s soft error characteristics, allowing a designer
to logically harden a chip by adding error correction and
test the improvements before the chip is actually produced.
The platform is flexible with respect to the target processor
(which is synthesized on the FPGA and equipped with a scan-
based fault injector), the application software, the input data,
and the profiles of faults injected. The generic fault-injection
manager, running on the PC side, encapsulates all the technical
details and controls the FPGA over a communication protocol
(transfers fault-injection information and the input data to the
FPGA and receives and evaluates the obtained output data).

By allowing the FPGA to communicate with further external
devices, we can test the susceptibility of the processor when
it is running its native applications in its usual environment.

Although a significant amount of research has resulted in
software simulation methods [1], [5], [22], [11], these tools
are not powerful enough to simulate entire SoCs running real
applications such as the probabilistic filters reported here.
Radiation testing [27], [29] can provide insight but requires
access to a radiation testing facility and non-trivial conversion
of the error rates observed [16]. Therefore, FPGA-based
emulation has been used to replace [6], [19] or complement
[17], [25] software simulation. A good overview of much of
this research can be found in [12]. More recently, the partial-
reconfiguration features of FPGAs for fault injection [2], [21]
and large parallel emulators al. [8] have been utilized. Ongil
et al. [20] discuss various types of fault injection techniques
for medium-size non-programmable circuits. In [14], these
techniques are applied to the Leon 2 processor and compared
with the software-based code-emulated upsets method [13].

Our objective is to use an entire System on Programmable
Chip (SoPC) design that incorporates a MIPS32 based micro-
processor with peripheral devices such as general-purpose I/Os
and serial UARTs, along with a programmable fault injector.
With respect to the software approaches, we are still able
to simulate millions of clock cycles per second in real time
for our SoPC, and our approach does not limit what areas
of the processor faults can be injected into. In our case, all
storage elements can be affected by the transient faults that we
inject. While we use ideas from some of these publications
(most notably the general design of the fault injector from
[6]), our framework focuses on evaluating complex software
applications.

The FPGA emulation architecture is described in Section
II. Background on Bayesian filters used as the software appli-
cation on the test is given in Section III. Section IV presents
experimental results. Section V concludes the paper.

II. RUN-TIME FAULT INJECTION
Our FPGA-based fault-injection framework, shown in Fig-

ure 1, consists of an FPGA part on which the actual fault-
injection experiment is run and the PC part. The latter is used
to (1) communicate inputs of the experiment to the FPGA
part; (2) control the experiment execution, and (3) receive and
analyze its outcomes. The FPGA part implements the target
processor on which the application under test is run; the fault
injector; the memory; and controllers to handle input/output
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Fig. 1. Hardware platform and architecture of our run-time fault injection system. The blue arrows indicate the flow of information.

and further peripherals. The 32-bit OurMIPS processor [3]
used in our experiments can execute all MIPSv1 instructions,
supports hardware interrupts. Floating point arithmetic is done
through software emulation. The processor’s general-purpose
I/O (GPIO) ports can be connected to sensors or other devices.

The fault-injection framework has been designed with
a view to provide maximal modularity and well-defined
interfaces between experiment steps, thus improving flex-
ibility. This is achieved by using a generic, application-
independent software module called generic fault-injection
manager (GFIM). It takes the input data, the application
software, and the fault injection parameters in a well-defined
format, and hands them over to the FPGA part over a specified
communication protocol. It is possible to designate the indi-
vidual flip-flops where the faults will be injected along with
injection times, or to specify an error rate according to which
the faults will be randomly injected. Any of GFIM’s inputs
can be exchanged with no need to modify the GFIM itself or
the FPGA part.

The actual fault-injection experiment is executed on the
FPGA (controlled by the GFIM). The Fault Injector can inject
transient faults into the OurMIPS processor using the shadow-
scan mechanism (similar to [6]) shown in Figure 2. The
fault injection information is prepared using shift operations
while not disturbing the normal execution of the running
software. Additional injection sites within logic blocks could
be included thereby increasing the transient site fault coverage.
We also added logic to prevent the fault injector from being
reconfigured by the processor once an application was started.
This could for instance happen if a previous transient fault
caused the processor to jump to some uninitialized memory
location, resulting in the core executing random instructions.

The output data is written into the processor’s memory on
the FPGA. Finally, the collected results are communicated to
GFIM over the same communication protocol. GFIM does not
perform any result evaluation itself but forwards the received
data to a user-defined output data evaluation procedure. The
application developer can perform comprehensive tests without
having to care about the FPGA communication, the fault-
injection mechanism or other hardware-related issues. In case
of probabilistic filters considered here, this procedure evaluates
the magnitude of the result deviation observed using a special
metric RMSE described below and also detects outliers.

Some errors result in the target processor crashing or
becoming totally unresponsive. We refer to such errors as
total system faults (TSFs) and identify them using a timeout,
after which the next session is started. Note that TSFs can
be detected in operation using a watchdog processor. Our

framework provides a versatile tool to learn which errors tend
to result in TSFs.

III. PROBABILISTIC SENSOR DATA FUSION

Throughout the experiments presented in this paper, we
consider the problem of estimating the position x of a mobile
robot in a known environment with one degree of freedom
moving back and forth, e.g., in a delivery task between
two stations. The robot is equipped with a distance sensor
which continuously takes noisy distance measurements from
its current position to one station and receives a velocity
command in each time step. We maintain the probability
density function p(xt | z1:t, u1:t) of the position xt of the robot
at time t given all the sensor data z1:t and the control inputs
u1:t up to time t. This probability is calculated recursively
using the Bayesian filtering scheme [28]:

p(xt | z1:t, u1:t) = ηt · p(zt | xt)

·
∫
p(xt | ut, xt−1) p(xt−1 | z1:t−1, u1:t−1) dxt−1 , (1)

where ηt is a normalizer. The term p(xt | ut, xt−1) is the state
transition probability of the motion model, and p(zt | xt) is
the measurement probability of the sensor model.

The motion and measurements of the robot are modeled
by a linear function with Gaussian distributed noise: the
motion model is distributed according to p(xt | ut, xt−1) =
N (xt−1 + ∆t ut, Rt), where ∆t is the time elapsed since the
last step of the filter. The sensor measures the distance to the
base station located at x = 0 and therefore its measurements
follow the p(zt | xt) = N (xt, Qt) probability distribution.
The covariances Rt and Qt can be obtained in a straight
forward manner by comparing recorded data to ground-truth
data. In the following, we describe two implementations of
the Bayesian filter, namely the Kalman filter and the particle
filter, which are widely used for state estimation in robotics
and many other fields.

1) Kalman Filter: The Kalman filter [15] assumes linear
system dynamics with Gaussian distributed noise and exactly
computes the state estimate of such systems. At time t the
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Table 1. Root mean square errors (RMSE [m]) and the numbers of total
system failures (TSF, per 100 sessions) for different filters and fault rates.

No faults 10 faults/s 50 faults/s 100 faults/s
Type RMSE RMSE TSF RMSE TSF RMSE TSF

Kalman filter (2471 samples)
float 0.021 0.021 6 2.8E35 17 0.021 18
fx32[4].[28] 0.021 0.021 5 0.048 15 0.030 24
fx32[13].[19] 0.021 0.021 10 17.451 12 0.766 21
fx16[4].[12] 0.021 0.021 4 0.032 10 0.026 11
fx16[13].[3] 0.142 1.122 5 0.147 16 41.398 15

Kalman filter (precalculated covariances, 2471 samples)
float 0.021 0.021 9 0.022 15 13.7E14 23
fx32[4].[28] 0.021 0.021 11 0.023 13 0.021 14
fx32[13].[19] 0.021 0.021 5 1.734 10 3.082 20
fx16[4].[12] 0.021 0.022 3 0.023 8 0.022 8
fx16[13].[3] 0.147 0.156 1 2.914 9 0.479 12

Particle filter (10 particles, 21 samples)
float 0.023 0.023 2 1.15E17 9 0.034 9

Particle filter (50 particles, 21 samples)
float 0.021 0.021 8 720.299 22 4.3E35 15

Kalman filter represents the belief p(xt | z1:t, u1:t) with a
Gaussian N (µt,Σt) with mean µt and covariance Σt. The
linear motion model is xt = At xt−1 + Bt ut + εt and the
sensor model is zt = Ct xt+δt where εt ∼ N (0, Rt) and δt ∼
N (0, Qt) are random noise variables. Algorithm 1 depicts one
step of the Kalman filter fusing a control input and a sensor
measurement into the belief of the filter.

Algorithm 1 Kalman filter step
Input: µt−1, Σt−1, ut, zt
Output: µt, Σt

µ̄t = At µt−1 +Bt ut
Σ̄t = At Σt−1A

T
t +Rt

Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

µt = µ̄t +Kt (zt − Ct µ̄t)
Σt = (I −Kt Ct) Σ̄t

In our application, the linear motion coefficients are At = 1
and Bt = ∆t and, the measurement coefficient is Ct = 1. As
we assume the motion and measurement covariance R and
Q to be independent of t, we optionally can precalculate the
Kalman gains Kt and the covariances Σt in advance for all t
and store them in a lookup table to improve efficiency.

2) Particle Filter: The particle filter is a sample based
approach to state estimation commonly known as Monte Carlo
localization [9]. The current belief is approximated by a set
M = {〈x[i], w[i]〉 | i ∈ [1, N ]} of weighted particles, where
each particle corresponds to a possible robot position and
has an assigned weight w[i]. The belief update from (1) is
performed according to the following three alternating steps:

1) In the prediction step, we propagate each particle by
drawing a successor position from the motion model
p(x

[i]
t | ut, x

[i]
t−1) given the control ut.

2) In the correction step, we integrate a new measurement
zt by assigning a new weight w[i] to each particle
according to the sensor model p(zt | x[i]t ).

3) In the resampling step, we draw a new generation of
particles from M (with replacement) such that each
sample in M is selected with a probability that is
proportional to its weight.

Table 2. Numbers of sessions resulting in out-of-range values (OOR), and
RMSE excluding these sessions.

No faults 10 faults/s 50 faults/s 100 faults/s
Type RMSE RMSE OOR RMSE OOR RMSE OOR

Kalman filter (2471 samples)
float 0.021 0.021 0 0.022 1 0.021 0
fx32[4].[28] 0.021 0.021 0 0.048 0 0.030 0
fx32[13].[19] 0.021 0.021 0 0.021 1 0.032 2
fx16[4].[12] 0.021 0.021 0 0.032 0 0.026 0
fx16[13].[3] 0.142 0.147 1 0.147 0 0.146 1

Kalman filter (precalculated covariances, 2471 samples)
float 0.021 0.021 0 0.022 0 0.033 1
fx32[4].[28] 0.021 0.021 0 0.022 0 0.021 0
fx32[13].[19] 0.021 0.021 0 0.024 2 0.021 1
fx16[4].[12] 0.021 0.022 0 0.023 0 0.022 0
fx16[13].[3] 0.142 0.156 0 0.147 2 0.159 1

Particle filter (10 particles, 21 samples)
float 0.023 0.023 0 0.023 1 0.034 0

Particle filter (50 particles, 21 samples)
float 0.021 0.021 0 0.021 1 0.024 2

After each update cycle, we compute the position estimate µt

as the weighted mean of all particles.
3) Filter Evaluation: We evaluate the performance of the

filter algorithms by comparing the position estimates µt to the
actual positions (“ground truth”) x?t at all time steps using the
root mean square error (RMSE)

RMSE =

√√√√ 1

T

T∑
t=1

(µt − x?t )
2
. (2)

IV. EXPERIMENTAL RESULTS

We implemented the hardware part of the fault-injection
framework using a Cyclone II FPGA Starter Board. The
entire design uses approximately a third of the FPGA (Altera
EP2C20), and our SoPC runs at 12.5 MHz. We considered
one-dimensional Bayesian filters (the regular Kalman filter,
a version of the Kalman filter with precalculated covariance
matrices and Kalman gains, and the particle filter) as software
applications under test. The input data was generated from
localizing a MobileRobots Pioneer 3-DX wheeled robot while
traveling back and forth between two walls. A forward-
pointing Devantech SRF10 miniature sonar sensor mounted on
the robot and dead reckoning odometry (i.e. position based on
the rotation of the wheels) were the data sources. The ground
truth position (i.e. the actual physical positions of the robot)
was obtained using a SICK LMS 291 laser range finder, also
mounted on the robot. All data was prerecorded and stored
on the hard disk of the PC part of the fault-injection platform
before the experiments were run.

Table 1 summarizes the results of the filters using the
standard IEEE 32-bit floating-point numbers (“float”) and
32-bit and 16-bit fixed-point numbers with m magnitude
bits and f fractional bits (“fx32[m].[f ]” and “fx16[m].[f ]”,
respectively). For instance, fx32[4].[28] is the 32-bit fixed-
point representation with 4 bits allocated for the integer part.
All data generated by the sensor had a maximum range of
about 2 meters with an accuracy of about one centimeter, so
at least 3 magnitude bits and 7 fractional bits are required.
In particular, fx[13].[3] is insufficient to accurately represent
all the fractional bits, which is also reflected by elevated
fault-free RMSE. For each filter/number type considered, we



performed one experiment without injecting any faults and
three fault-injection experiments, each of which consists of
100 sessions with error rates of 10, 50 and 100 faults per
second, respectively. One fault-injection session took around
1.5 seconds for the Kalman filters and around 10 seconds
for the more complex particle filter. This corresponds to
millions of instructions and would be very time consuming
if simulation would be performed in software.

We report the root mean square error (RMSE, see (2))
to demonstrate the quality deterioration of the filter, and the
number of total system failures (TSF) to assess the stability
of the algorithm under soft errors. The RMSE numbers are
averaged over (100−TSF) sessions for which results are avail-
able. If most-significant bits or exponent bits of floating-point
numbers are flipped by fault injection, the RMSE can assume
very large values exceeding by far the robot’s maximum range
of 2 meters. One such out-of-range value is often enough to
produce an out-of-range average result. For example, the value
of 13.7E14 in the row “float” of Table 1 is caused by an out-
of-range result in just one session. Table 2 shows the average
RMSEs obtained when all the sessions which produced RMSE
values over 5 meters are excluded (the number of such sessions
is quoted in columns “OOR”).

It can be seen that errors of largest magnitude occur when
float numbers are used. For fixed-point numbers, more magni-
tude bits result in a higher significance of some of the bits and,
as a consequence, larger errors. It appears that not using more
magnitude bits than are necessary from the application’s point
of view is the strategy which minimizes the average error. The
RMSE tends to grow when more errors are injected. When
increasing the number of injected transient faults, the system
crashes (experiences a TSF) significantly more often.

The number of TSFs for the Kalman filter with precalculated
covariances tends to be less than for its counterpart without
precalculation, which is due to its slightly lower run times and
therefore less faults injected per session. Similarly, calculations
using fx16 are faster than using fx32 and result in a lower
number of TSFs. Using this information, and looking deeper
at each test case would provide a designer with more insight
on which parts of the processor should be hardened to make
the system more robust against transient faults.

V. CONCLUSION

We presented an FPGA-based fault-injection framework
to test and simulate transient faults in arbitrary software
applications on a common 32-bit processor. Our architecture
encapsulates technical details in a generic fault injection
manager module and overcomes memory limitations of earlier
methods by an efficient distribution of test data between
PC, FPGA and external memory. The platform enables us to
seamlessly connect our SoPC to external devices and therefore
can execute real applications in their usual environments.
Using our framework, the designer can test both the hardware
and software aspects of a system before silicon is available.

Our system allowed us to experimentally evaluate the
vulnerability of Bayesian filter localization algorithms under
different representations of real numbers. In the future, we
plan to test other types of software applications and study
the behavior of systems combining hardware redundancy and
software-implemented fault tolerance [26] to design highly
dependable systems in an energy- and cost-efficient manner.
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