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Abstract— Most robot mapping techniques for lidar sensors
tessellate the environment into pixels or voxels and assume
uniformity of the environment within them. Although intuitive,
this representation entails disadvantages: The resulting grid
maps exhibit aliasing effects and are not differentiable. In the
present paper, we address these drawbacks by introducing a
novel mapping technique that does neither rely on tessellation
nor on the assumption of piecewise uniformity of the space,
without increasing memory requirements. Instead of repre-
senting the map in the position domain, we store the map
parameters in the discrete frequency domain and leverage the
continuous extension of the inverse discrete cosine transform
to convert them to a continuously differentiable scalar field in
the position domain, which we call DCT map. A DCT map
assigns to each point in space a lidar decay rate, which models
the local permeability of the space for laser rays. In this way,
the map can describe objects of different laser permeabilities,
from completely opaque to completely transparent. DCT maps
represent lidar measurements significantly more accurate than
grid maps, Gaussian process occupancy maps, and Hilbert
maps, all with the same memory requirements, as demonstrated
in our real-world experiments.

I. INTRODUCTION

Mapping and localization are at the heart of almost every
mobile robotic system. In this context, lidar is a popular
sensor modality, as lidar sensors produce relatively accurate,
low-noise signals. Using these signals for mapping and
localization requires an inverse and a forward sensor model.
The inverse sensor model converts recorded measurements
to a map. The forward model uses this map to assess the
probability of incoming sensor readings given the robot
pose. The maps produced by the inverse pass are often grid
maps: They tessellate the physical space into square pixels
or cubic voxels. Each pixel or voxel contains a value that
is assumed to be constant within it. This value characterizes
the statistical optical properties of the corresponding portion
of space. Fig. 1b shows an example of such a grid map built
from 2-D lidar scans recorded in an office environment.

Although tessellation is intuitive, grid maps bring with
them several drawbacks. First, they can only coarsely approx-
imate the true spatial distribution of the optical properties of
interest. Aliasing effects occur whenever the optical char-
acteristics of the environment change, as these transitions
are never perfectly aligned with the raster of the grid.
The grid map in fig. 1b exhibits the resulting characteristic
staircase patterns. Although increasing the map resolution
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(a) DCT map with 40× 40 parameters.

(b) Grid map composed of 40× 40 pixels with edge length 25 cm.

(c) Grid map composed of 200×200 pixels with edge length 5 cm.

Fig. 1: Decay rate maps of the same 10 m× 10 m patch
of the Intel Research Lab dataset [1] generated from the
identical set of planar lidar measurements. The colors encode
the reflection probability pref := 1 − exp(−λ), where λ
denotes the local laser decay rate.



can theoretically alleviate this problem (see fig. 1c), quadratic
or cubic memory complexity quickly renders this approach
prohibitive. Depending on the use case, non-cubic voxels
may mitigate the errors induced by tessellation [2]. Second,
grid maps are not continuously differentiable, although this
is a desirable property of any map. Continuous differentia-
bility would allow to localize the robot by maximizing the
measurement likelihood over the robot poses, and even to
perform SLAM by maximizing the measurement likelihood
over the robot poses and the map parameters.

In the present paper, we choose a different approach to
avoid the aforementioned detrimental effects without in-
creasing the memory demands. Inspired by well-established
digital image compression algorithms like JPEG, we store
the map parameters in the discrete frequency domain and
use the so-called continuous extension of the inverse discrete
cosine transform [3] to obtain a continuously differentiable
scalar field in the position domain. In addition to the regular
inverse discrete cosine transform, its continuous extension
not only computes the function values at discrete grid points
in the spatial domain, but also closely approximates them
in between. We combine this map representation with the
recently developed decay rate model for lidar sensors [4].
The resulting DCT maps model the local permeability of the
space for laser rays. Fig. 1a depicts such a DCT map. It was
built from the identical information as the grid map in fig. 1b
and has the same memory footprint, but it does not exhibit
staircase patterns and better preserves the map contours.
Indeed, our experiments show that DCT maps represent lidar
data with higher accuracy than other approaches. Moreover,
the continuous derivatives of DCT maps can be calculated in
closed form, a fact that enables optimization-based SLAM.

In the following, we first survey different map representa-
tions. Then, we describe the mathematics behind DCT maps
in detail. Finally, the findings of experiments conducted with
publicly available real-world 2-D lidar datasets are presented.

II. RELATED WORK

Occupancy grid maps [5] were among the first probabilis-
tic map representations used in robotics and are still widely
used today. They tessellate the space into independent cells
and assign each cell the posterior probability of being occu-
pied. Occupancy grid maps cannot model semi-transparent
objects; they assume that each cell is either completely
free or completely occupied. In contrast, the decay rate
model, which we employ to formulate DCT maps, explicitly
models the permeability of each cell for a laser ray. If used
in conjunction with grid maps, it even allows to calculate
posterior distributions over the decay rate values without
additional computational effort [6].

While 2-D occupancy maps are able to model large
areas, even moderately-sized 3-D occupancy grids quickly
outgrow the memory limitations of modern computers. For
this reason, several research projects target compressed map
representations. Elevation maps [7] assume that the environ-
ment can be represented by a 2-D grid map whose cells
contain not only occupancy values, but also one height

coordinate per cell. To relax the assumption that the world
is a single surface, [8] extends elevation maps to multi-level
surface maps. Multi-volume occupancy grids [9] manage
volumetric data as 2-D arrays, too, but in contrast to multi-
level surface maps, each cell contains a list of occupied
height regions and one of free height regions. Octrees [10]
approach the memory limitation problem by hierarchically
partitioning the space using an octal tree data structure.
They have found broad application in robotics to model the
spatial distribution of the occupancy value [11], [12], [13].
The authors of [14] present an octree-based data structure
that is efficient to update and to copy, so it can be used in
particle filter-based SLAM, where hundreds of maps must
be maintained in parallel. To model the dynamics of the
environment, [15] assumes that the occupancy values in an
octree are subject to periodic changes. For each cell, the
authors record the occupancy value over time and transform
the resulting function to the frequency domain to predict
the occupancy value at a later point in time. In this way,
they achieve high compression ratios compared to storing
one occupancy map per time step. Multi-resolution occupied
voxel lists [16] differ from traditional occupancy mapping
in that they store only the positions of the voxels that have
been observed more frequently as occupied than as free.
They are neither able to differentiate between unoccupied
and unknown volumes, nor to account for semi-transparent
voxels.

The normal distributions transform [17] was initially con-
ceived in the context of scan matching. Based on this work,
[18] introduces the so-called normal distributions transform
occupancy map. Basically, this map is a grid map, but instead
of a single scalar, every cell contains a normally distributed
occupancy probability density function, which is cropped at
the voxel bounds. In this way, it drops the assumption that
the space is uniform within each voxel. As opposed to DCT
maps, however, normal distributions occupancy maps achieve
higher accuracy at the cost of increased memory consump-
tion. Like all other occupancy-based approaches, they are
not able to model semi-permeable objects, either. Normal
distributions occupancy maps are extended and advanced in
[19], [20], [21].

Other approaches completely abandon the notion of vox-
els. For example, [22] uses Haar wavelets to represent 3-D
occupancy data. The authors of [23] drop the restriction
that the elementary volumes of a map shall fill the space
without gaps. Instead, they model the environment by non-
overlapping spheres of equal sizes. In this way, they are able
to more closely represent curved surfaces.

Point clouds are a simple and convenient way to represent
lidar sensor data. However, in contrast to occupancy maps
or decay rate maps, they are lossy in the sense that they
store only the endpoints of the rays. They discard the ray
path information of both reflected rays and rays that are
not reflected. When point clouds are used for mapping, they
accumulate memory for every incoming measurement, which
limits their suitability for long-term navigation. Despite their
drawbacks, many SLAM systems [24], [25], [26] represent



lidar data in the form of point clouds.
In object reconstruction in computer graphics, objects are

modeled as line segments in 2-D [27] or as polygon meshes
in 3-D [28]. The resulting models can achieve an astonishing
level of detail [29]. However, similar to mapping approaches
based on implicit shape potentials like KinectFusion [30],
they are not perfectly suited for lidar-based robot localization
due to their sheer memory footprint and their inability to deal
with semi-transparent materials.

Recently, machine learning techniques have completely
relaxed the independence assumption between grid cells and
produce continuous occupancy maps. Gaussian process oc-
cupancy maps (GPOM), for example, learn the environment
of a robot and predict future states [31], [32]. Building on
the latter, the authors of [33] present an incremental GPOM
formulation that enables online mapping. Gaussian processes
have also been applied to other map representations like im-
plicit shape potentials [34]. Hilbert maps [35] are continuous
occupancy maps built by projecting the lidar measurements
in a Hilbert space, learning a logistic regression classifier,
and then classifying each point in space as free or occupied.

III. APPROACH

In this section, we shortly revisit how the decay-rate model
computes measurement probabilities conditioned on any kind
of map, then we define the map using the continuous
extension of the inverse discrete cosine transform. With these
prerequisites, we derive the forward model, which computes
the probability of a lidar measurement given the spectral
parameters of the DCT map. In the last step, we formulate
the inverse model as an optimization problem: We estimate
the map parameters by maximizing the joint likelihood of all
measurements collected during mapping.

For brevity and without loss of generality, the following
derivation is performed for 2-D space. The derivation of the
forward and inverse sensor model in 3-D exactly parallels
the 2-D case.

A. The Decay Rate Model

The decay-rate model [4] models the probability that a
lidar ray traverses a uniform medium as exponential decay
process. The corresponding map assigns a decay rate to each
point in space. This decay rate is a non-negative real number
that describes the interaction between the laser ray and the
environment completely.

To formulate the forward model mathematically, we in-
troduce the following definitions. A lidar measurement
z := {s, v, r} describes a ray that originates at the sensor
position s, travels in direction v, and ends after having
traveled distance r. Assuming that the sensor provides its true
position s, the true ray direction v, and that we are given a
specific mapM, we model the non-deterministic interaction
between the ray and the environment by the measurement
probability density with respect to the radius

p(r) := p(r | s, v,M). (1)

Consequently, the absolute probability that the ray covers at
least distance r is

N (r) := 1−
∫ r

0

p(r′) dr′. (2)

Alternatively, we can express equation (2) in form of the
differential equation

p(r) = −dN (r)

dr
. (3)

The essential idea of the decay rate model consists in the
assumption that N (r) obeys an exponential decay process

dN (r)

dr
= −λ (r) N (r) , (4)

where λ(r) denotes the decay rate at a specific radius r along
the ray. By combining this model assumption with differ-
ential equation (3), we obtain the measurement probability
density

p(r) = λ(r)N (r). (5)

In (4) and (5), λ(r) is obtained by evaluating the map λ(x, y)
along the trajectory of the ray.

The above formulation of the decay rate model is indepen-
dent of any specific map representation. To use it as forward
model in combination with DCT maps, we need to define
the map function λ(r) and solve the differential equation.
In order to do so, we describe the spatial representation of
DCT maps in the next section in detail. After that, we have all
prerequisites at hand to solve the differential equation. The
solution enables us to express the measurement probability
of a lidar measurement given the map in closed form.

B. Transforming the Spectral Map Representation to the
Spatial Domain

To avoid the disadvantages related to tessellation, DCT
maps represent the map parameters in the discrete frequency
domain instead of the position domain. Calculating the mea-
surement likelihood from such a representation requires the
definition of the transformation from the frequency domain
to the spatial domain. We employ the continuous extension
of the inverse discrete cosine transform (CEIDCT) [3]. Like
other continuous extensions of Fourier-related transforms,
it converts a discrete signal in the frequency domain to a
continuous signal in the spatial domain. However, it differs
from its relatives in that the continuous signal converges
to the continuous function from which it was sampled for
an increasing number of parameters (see [3], pp. 11–12).
Moreover, its parameters are purely real-valued. For these
reasons, it is particularly suited for our use case.

If we assume the spectral map parameters to be given by
a matrix A with L rows and M columns, and if we denote
the elements of A by alm with l ∈ {0, 1, . . . , L − 1} and
m ∈ {0, 1, . . . ,M − 1}, the CEIDCT transforms them to a
continuously differentiable decay rate map defined for each
point (x, y) in the spatial domain

λ(x, y) =

(
L−1∑
l=0

M−1∑
m=0

alm cos (lx̃) cos (mỹ)

)2

(6)



=

(
I−1∑
i=0

ai cos(lix̃) cos(miỹ)

)2

=

I−1∑
i=0

I−1∑
j=0

ai cos (lix̃) cos (miỹ)

aj cos (lj x̃) cos (mj ỹ)

=
1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

cos
(

(li + αlj)x̃+ β(mi + γmj)ỹ
) (7)

with I := LM and Q := {−1,+1}. The tildes denote the
π-normalization of the map coordinates: x̃ := πx

X , ỹ := πy
Y ,

where X and Y indicate the extent of the map. The variables
li and mi are the row and column indices into the matrix A
that correspond to its i-th element ai.

The original formulation of the CEIDCT does not square
the double sum in (6). We employ this variant, however,
because it ensures that the decay rate is non-negative for
every point in the map. Negative decay rates would cause
problems, as we cannot interpret the negative measurement
probabilities in which they might result.

To solve equation (4), we still need to transition from
λ(x, y) to λ(r) := λ(r, s, v). To that end, we apply the ray
equation [x, y]ᵀ = s+ v r to (7) and obtain

λ(r) =
1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

cos
(

(li + αlj) [s̃x + ṽxr]

+ β(mi + γmj) [s̃y + ṽyr]
)
.

(8)

C. Computing the Measurement Likelihood
Now we express the measurement probability of a lidar

ray as a function of the measurement z and the spectral
representation of the map A by solving the differential
equation (4). The solution is

N (r) = exp { − S (s, v, r) } (9)

with

S (s, v, r) =

∫ r

0

λ(r′) dr′

=
1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

Aij

where

(10)

Aij :=A(i, j, α, β, γ)

=



[sin((li+αlj)[s̃x+ṽxr′]+β(mi+γmj)[s̃y+ṽyr′])]
r

0

(li+αlj)ṽx+β(mi+γmj)ṽy
,

if (li + αlj)ṽx + β(mi + γmj)ṽy 6= 0

r cos ((li + αlj) s̃x + β (mi + γmj) s̃y) ,

if (li + αlj)ṽx + β(mi + γmj)ṽy = 0

Note that out of the infinite number of solutions to (4), we
chose the one that satisfies the boundary conditionN (0)

!
= 1.

By plugging equations (8) and (9) in (5), we finally obtain
the closed-form solution of the measurement likelihood p(r)
for rays with real-valued radius r.

Not all lidar measurements are real-valued, though. In
practice, the range of every lidar scanner is limited to a finite
interval [rmin, rmax]. We call the rays reflected outside this
interval no-return rays. In the following, we assume that the
sensor identifies rays falling below rmin by the tag sub and
rays that exceed rmax by the tag super. Consequently, the
space of all possible measurements r is the mixed discrete-
continuous set D := {sub, super, r′ : r′ ∈ [rmin, rmax]}.

Fortunately, the decay-rate model easily accommodates
both sorts of no-return rays:

P (sub) =

∫ rmin

0

p(r) dr = 1−N (rmin), (11)

P (super) =

∫ ∞
rmax

p(r) dr = N (rmax). (12)

Supporting no-return rays is an important feature of the
model. In a typical outdoor setting, no-return rays represent
a considerable fraction of all measurements. If the model is
unable to incorporate the information they convey, which
is the case for the endpoint model, for example, it will
inevitably loose accuracy.

During mapping and localization, one does not need to
evaluate the measurement probability of a single ray, but of
a whole laser scan Z := {zk} consisting of K rays, both with
real-valued radius and without detected reflection. To obtain
this probability, we first formulate the probability density
function for each ray over the mixed space D by combining
equations (5), (11), and (12) to

p (z | M) :=


P (sub), if r = sub

p(r), if r ∈ [rmin, rmax]

P (super), if r = super

The above result, which we call a mixed probability density,
is positive, real, and integrates to unity. Using the indepen-
dence assumption, we then compute the joint probability
density of all rays as the product

p (Z | M) =

K−1∏
k=0

p (zk | M) .

D. Building the Decay Rate Map

During the inverse pass, we want to determine the map
parameters A that best explain the lidar measurements col-
lected in the mapping run:

A = argmax
A

p(Z | A) = argmax
A

log
{
p(Z | A)

}
.

This non-linear multivariate optimization problem can be
solved by iterative computational optimization techniques
like stochastic gradient descent or trust-region methods.
These methods work considerably more reliable and faster
when provided with first-order and second-order analytical



logarithmic derivatives with respect to the spectral map
parameters. To calculate the derivatives, we introduce the
following shortcut notation:

∂λ(x, y)

∂ai
=:

I−1∑
j=0

aj Bij =: Bi,

with

Bij := 2 cos(lix̃) cos(miỹ) cos(lj x̃) cos(mj ỹ)

and
∂N
∂ai

= −N ∂S (s, v, r)

∂ai
=: −N Ci

where

Ci =
1

8

I−1∑
j=0

aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

Aij +Aji =:
I−1∑
j=0

aj Cij

with Aij as defined in (10). Using this notation, we can
express the first-order logarithmic derivative of the absolute
probability P (z | A) of a single measurement in a compact
way:

∂ log {p(z | A)}
∂ai

=


NCi

1−N , if r = sub
Bi

λ − Ci, if r ∈ [rmin, rmax]

−Ci, if r = super

The derivative of the joint absolute measurement probability
is then simply the sum of the derivatives of the individual
measurement likelihoods

∂ log {p(Z | A)}
∂ai

=

K−1∑
k=0

∂ log {p(z | A)}
∂ai

.

The second-order derivatives of the measurement likeli-
hood with respect to the map parameters are given by

∂2 log {p(z | A)}
∂aj∂ai

=


N(Cij−CiCj)

1−N +
N2CiCj

(1−N)2
, if r = sub

Bij

λ −
BiBj

λ2 − Cij , if r ∈ [rmin, rmax]

−Cij , if r = super

As before, the second-order derivative of the joint mea-
surement log-likelihood is the sum of the second-order
derivatives of all measurements.

IV. EXPERIMENTS

To assess how well DCT maps represent lidar data in
comparison to existing mapping approaches, we conduct
three series of experiments. In the first series, we compare the
spatial map values of DCT maps and grid maps with identical
memory requirements to a ground truth map and use the
resulting error as a measure of map accuracy. In the second
series, we evaluate the likelihoods that DCT maps, grid maps,
Gaussian process occupancy maps, and Hilbert maps assign
to measurements that were used to build them. The higher
this likelihood, the better the respective map explains the

underlying data. We conclude this section with a comparison
of the empirical execution times of the different approaches.

The data at the basis of our experiments stems from
rich planar lidar datasets recorded in spacious indoor en-
vironments. Each set contains the corresponding robot poses
computed by SLAM, which we use as ground truth poses
to build all maps. The data is publicly available from the
Robotics Data Set Repository [1]. Table I shows which
datasets were used in our experiments.

A. Map Value Comparison

In this experiment series, we compare the map values of
DCT maps and decay rate grid maps of different resolutions
to the values of a decay rate ground truth grid map. All grid
maps are computed according to the algorithm described in
[4]. At the beginning, for each dataset, we create a fine-
grained ground truth grid map that covers a 10 m × 10 m
patch densely filled with 104 lidar measurements. It consists
of 200 × 200 pixels with an edge length of 0.05 m. Then,
we use the same sets of measurements to build pairs of one
DCT map and one grid map, respectively, for each dataset
and each resolution. The maps in these pairs possess the
same number of parameters and require the identical amount
of memory. We use five different map resolutions: 10× 10,
13× 13, 20× 20, 29× 29, and 40× 40. For grid maps, they
correspond to pixel edge lengths of 1.00 m, 0.75 m, 0.50 m,
0.35 m, and 0.25 m. To give an intuition of what these maps
look like, fig. 1 exemplarily shows the 40× 40 DCT map of
the Intel Research Lab dataset, the corresponding grid map,
and the ground truth grid map.

Having created the maps, we sample the ground truth
map at the midpoints of all cells that were observed at
least once and look up the corresponding values in the
DCT map and in the grid map. The resulting map values
are hard to compare: As the decay rate λ is defined over
the half-open interval [0,∞), the map values might be
infinite. In order to make them comparable, we employ
the strictly increasing monotonic transformation function
pref = 1− exp(−λ), which maps every decay value to a
finite value pref ∈ [0, 1]. The value pref can be interpreted as
the absolute probability that a ray is reflected before having
traveled a distance of 1 m in a hypothetical homogeneous
medium of decay rate λ. Please note that the distance 1 m is
an arbitrarily chosen parameter. However, while surveying
different distance values, we found out that varying this
parameter has little effect on the quality of the results. We
compute the root mean squared error (RMSE) in pref between
the DCT maps and the ground truth map and between the
grid maps and the ground truth map. Table II condenses
the corresponding results by determining the mean and the
standard deviation of the RMSE values. Additionally, it
indicates the p-values of the one-sided paired-sample t-test.
Small p-values indicate that the null hypothesis is unlikely
and that the alternative hypothesis – the mean RMSE of DCT
maps is smaller than the one of grid maps – becomes likely.

While at a resolution of 10 × 10, both map modalities
hardly differ in terms of accuracy, for all finer resolutions,



DCT maps outperform grid maps at a confidence level of
at least 99 %. Note that the maximum gain in accuracy is
located at a resolution of 29× 29; at 40× 40, DCT maps
are still significantly more accurate than grid maps, but the
gain is not as large as for 29× 29. We attribute this to the
fact that with increasing resolution, grid maps converge to
the ground truth map, which itself is a grid map.

B. Measurement Probability Comparison

The maps computed in the first experiment series are
maximum likelihood maps. Maximum likelihood maps shall
maximize the measurement probability of the data that was
used to create them. The higher this likelihood, the better
the map represents the underlying data. Consequently, in
the second experiment series, we interpret the likelihood
a map assigns to its underlying data as a measure of its
quality. We compare four different approaches: DCT maps,
decay rate grid maps, Gaussian process occupancy maps
(GPOM), and Hilbert maps, which also model the spatial
occupancy probability as a continuous scalar field. More
specifically, we use GPOMs with Matérn kernel functions as
described in [33] and Hilbert maps with Nyström features,
which, according to [35], give the most accurate map results.
All hyperparameters are set as described in [33] and [35],
respectively. The data at the basis of the experiments is the
same as in the previous experiment series, but the number
of lidar measurements is reduced to 500.

The comparison is designed to guarantee that all maps
have the same memory requirements in terms of numbers of
real-valued parameters. For grid maps and DCT maps, we
can ensure that by comparing maps with the same number
of pixels and spectral parameters, respectively. For GPOM,
we randomly downsample the design matrix and the target
vector so that the length of the Gaussian process parameter
vector matches the number of grid pixels and spectral pa-
rameters, respectively. For Hilbert maps, we set the number
of components of the Nyström features to the number of
parameters corresponding to the specific resolution.

Now, we compute the joint measurement likelihood of
all lidar measurements for each map modality. For grid
maps, we calculate the measurement likelihood according
to [4]. For DCT maps, we follow the equations given in
section III-C. For GPOMs and Hilbert maps, we rasterize
their continuous occupancy fields with a pixel edge length
of 0.05 m, perform ray tracing, and cumulate the occupancy
probabilities along the rays.

Table III displays the resulting findings: the mean and
standard deviation of the log-likelihood differences between
DCT maps and the other approaches over all datasets. After
having performed Anderson-Darling tests to ensure that the
measurement probability quotients are indeed log-normally
distributed, we perform one-sided paired-sample t-tests. For
all resolutions, they indicate that DCT maps yield signifi-
cantly higher measurement log-likelihoods at a confidence
level of at least 98.56 %.

The results show that the log-differences between DCT
maps and grid maps are two magnitudes smaller than those

between DCT maps and GPOM or Hilbert maps, respec-
tively. The level of the difference is influenced by the raster
size chosen when computing the measurement likelihood
for GPOMs and Hilbert maps. But the main reason for
these large differences is the fact that both GPOMs and
Hilbert maps have comparatively high memory requirements.
GPOMs store the map information in the parameter vector.
The number of training points processed is proportional to
the length of the parameter vector. As we restricted this
length, only a limited number of training points could be pro-
cessed; as a consequence, the classification results of GPOMs
remain rather vague. As far as Hilbert maps are concerned,
in [35], the authors recommend to use 1000 components
for mapping with Nyström features. In our experiments,
we use numbers as small as 100 parameters. Additionally,
both GPOMs and Hilbert maps suffer from the fact that
they need to sample a limited number of free and occupied
training points along the laser rays, whereas DCT maps and
decay rate grid maps incorporate the full path information of
an arbitrary number of rays. Fig. 2 illustrates the resulting
differences in accuracy between the maps produced by the
four approaches for 13× 13 parameters.

C. Execution Times

To give an intuition of the empirical runtime requirements
of each of the methods used in the previous section, we av-
erage over ten mapping runs performed per method, dataset,
and resolution. Table IV lists the medians of these averages
over all datasets. The measurements are collected on an
Intel i7-2600K CPU running at 3.40 GHz. Grid maps, DCT
maps, and GPOM are implemented in MATLAB R2017b.
The GPOM implementation is based on the publicly available
GPML toolbox [36]. To time Hilbert maps, we customized
the Python implementation provided by [35]. The DCT
optimization process is stopped once the relative change in
the measurement log-likelihood is smaller than 1 · 10−3.

Table IV indicates that grid maps are by far the fastest
mapping technique. DCT maps and GPOMs are approx-
imately two orders of magnitude slower. This is due to
the fact that during the optimization phase, DCT maps
and GPOMs need to consider all parameters, which leads
to quadratic computational complexity in the number of
parameters. The most expensive operation in grid mapping,
however, is ray casting, resulting in approximately linear
computational complexity in the map resolution. Hilbert
maps are three to four magnitudes slower than grid maps, the
reason for this probably being the non-differentiable nature
of the objective function, which needs to be approximated
using finite differences.

V. CONCLUSION AND FUTURE WORK

We presented a novel map representation based on the
recently introduced decay rate model for lidar sensors [4].
In contrast to most conventional maps, our so-called DCT
maps store the map parameters in the discrete frequency
domain. We applied the continuous extension of the inverse
discrete cosine transform to the spectral parameters to obtain



(a) DCT map. (b) Grid map. (c) GPOM. (d) Hilbert map. (e) Ground truth grid map.

Fig. 2: Maps of different modalities created in the experiment series described in section IV-B for the University of Washington
dataset. The four maps to the left all have the same memory requirements of a mere 169 real-valued parameters. The grid
map (e) is given as ground truth with a resolution of 40× 40. The decay rate maps (a), (b), (e) show pref values as described
in section IV-A, the other maps show occupancy probabilities. Blue means 0, green means 0.5, yellow means 1.

Acapulco Conv. Ctr. Edmonton Conv. Ctr. Uni. Freiburg, 101
Uni. Texas, ACES3 FHW museum Infinite corridors
Belgioioso Castle Uni. Washington, Seattle Intel Research Lab
MIT, CSAIL Uni. Freiburg, 079 Örebro University

TABLE I: The 12 datasets taken from the Robotics Data Set
Repository [1] and used in all three experiment series.

DCT GM
l [m] µ σ µ σ p [%] ∆µ [%]
1.00 0.3314 0.0679 0.3330 0.0708 39.36 0.48
0.75 0.3146 0.0675 0.3319 0.0752 1.01 0.52
0.50 0.2932 0.0645 0.3093 0.0690 0.03 5.21
0.35 0.2571 0.0611 0.2822 0.0672 0.05 8.89
0.25 0.2370 0.0563 0.2543 0.0583 0.07 6.80

TABLE II: Mean and standard deviation of the absolute
RMSE values of DCT maps and grid maps with respect to the
ground truth map, computed over all datasets. GM denotes
grid maps, l is the pixel edge length, µ and σ denote the
mean and the standard deviation of the RMSE, respectively,
and p is the p-value of the one-sided paired-sample t-test.
The variable ∆µ := 1− µDCT

µGM
indicates the improvement in

RMSE of DCT maps relative to grid maps.

lpDCT − lpGM lpDCT − lpGPOM lpDCT − lpHM

l [m] µ σ µ [104] σ [104] µ [104] σ [104]

1.00 88.5 74.1 4.21 3.00 4.30 3.42
0.75 150.6 146.5 3.89 2.81 4.19 3.46
0.50 135.7 63.9 3.53 2.60 4.06 3.42
0.35 196.1 101.5 2.97 2.15 4.12 3.32
0.25 96.8 132.0 2.68 1.90 4.12 3.31

TABLE III: Mean and standard deviation of the log-
likelihood differences between DCT maps and the other map-
ping approaches, computed over all datasets. The variable lp
denotes the cumulated log-likelihood of all measurements
in one dataset, GM denotes grid maps, HM means Hilbert
maps, l is the pixel edge length, and µ and σ are the mean
and the standard deviation of the log-likelihood differences,
respectively.

l [m] tDCT [s] tGM [s] tGPOM [s] tHM [s]

1.00 3.52 0.0917 1.12 22.8
0.75 4.69 0.0915 1.98 40.6
0.50 3.70 0.0923 3.25 108.4
0.35 18.25 0.0926 6.45 328.3
0.25 39.84 0.0942 14.04 949.3

TABLE IV: Empirical execution time measurements col-
lected during map creation. The variable t denotes the
median of the mapping times over all datasets.

a continuously differentiable scalar field in the position
domain.

Compared to other mapping approaches like decay rate
grid maps, Gaussian process occupancy maps (GPOM), and
Hilbert maps, the proposed approach results in significantly
improved map accuracy, as demonstrated in extensive real-
world experiments. Moreover, DCT maps provide a ray
tracing-based forward sensor model that allows to infer mea-
surement probabilities directly from the spectral map rep-
resentation in closed form, whereas the computation of ray
tracing-based measurement probabilities based on continuous
occupancy maps like GPOM and Hilbert maps necessitates
the rasterization of the map and hence the introduction of a
rasterization parameter. As opposed to GPOM and Hilbert
maps, DCT maps use the full ray path information when
building the map instead of sampling points along the ray.

Due to the promising experimental results, we plan im-
provements and extensions of DCT maps. First, we will
address the issue that the computational complexity of
DCT maps is higher than the one of grid maps, and that
incremental updates require the repeated optimization of
the map parameters. More specifically, we will develop a
hybrid approach that locally optimizes the map and that
makes use of massive parallelization. Second, we will extend
the method by explicitly representing unexplored areas in
the map. Currently, DCT maps are not able to distinguish
between observed and unobserved map regions. Third, we
will investigate how well DCT maps are suited for lossy
compression. Finally, we plan to present a complete SLAM
system based on DCT maps in the near future.
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