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Abstract— Occupancy grid maps are a popular method for
representing the environment in the context of robot naviga-
tion tasks. However, occupancy grid maps can have a high
memory demand that grows quadratically with the range of
the sensor. In this paper, we introduce a memory-efficient map
representation that is based on a constant set of individual
scans. To make these scan-based maps suitable for autonomous
robot navigation, we propose probabilistically sound methods
for both mapping and localization. To solve the mapping
problem, our approach incrementally selects scans based on
the additional information they provide relative to the scans
previously selected. Using these selected scans, we perform
an Monte Carlo Localization (MCL) approach with a sensor
model optimized for the scan-based representation of our map.
We present extensive experiments in which we evaluate our
approach using real world data recorded in a garage parking
scenario with an autonomous car as well as a robot localization
problem in an indoor environment. The results demonstrate
that our approach can cope with high sensor noise and that
it achieves comparable localization accuracy while at the same
time consuming only a fraction of memory compared to regular
occupancy grid maps.

I. INTRODUCTION

The problem of map learning has a long history in
mobile robotics. One of the most popular map representation
approaches are occupancy grid maps [14]. While these
maps have several desirable features including the ability
to be updated in a probabilistically sound way, one of
their disadvantages is that their memory consumption grows
quadratically with the range of the sensor. Whereas this
problem can be relaxed by using hierarchical structures like
quadtrees, in which cells with the same state or similar
values are grouped together [19], such methods do not allow
efficient pre-hashing of the maps, i.e., hash-maps for distance
queries. Moreover, the quality and usability of grid-based
maps highly depends on the chosen discretization level.

In this work, we aim to overcome these problems by using
a scan-based map representation, in which we only store a
small number of scans from selected poses for localization
with a Monte Carlo localization (MCL) process [7]. Our
approach is a probabilistically sound method that seeks to
find the optimal set of scans so as to maximize the robot
localization accuracy. The advantages of our method are
twofold: first, it needs substantially less memory than occu-
pancy grid maps; second, the scans can be chosen according
to the noise characteristics of the sensor employed, which
follows the idea that noise characteristics can be implicitly
encoded in the map. The experiments described in this
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Fig. 1. Visualization of laser scans from varying distances to the parking po-
sition, whereas the colors identify different scans. The noise level increases
with decreasing distances, from violet (far distance) to blue (short distance).

paper show that our method achieves accurate localization
estimates within a Monte Carlo localization process. It is
particularly suited for situations in which the robot repeatedly
needs to localize on similar trajectories such as repeatedly
parking in a garage or approaching a work bench. The first
of the two targeted application domains, a garage parking
scenario with an autonomous car based on a multilayered
3D LiDAR sensor, is shown in Fig. 1. We are convinced
that the resource-efficient nature of algorithms will play an
important role in the near future, as soon as autonomous
systems become part of our daily life and therefore will
require mass production.

In summary, the contributions of this work are a memory-
efficient map representation based on individual scans, a
probabilistic sound approach that incrementally selects scans,
and a sophisticated sensor-model for use within the MCL.
This paper is organized as follows. After discussing related
work in the following section, we present our approach to
localization with sparse maps in Sec. III. We then describe
different approaches to the mapping problem in Sec. IV.
In Sec. V, we evaluate the performance in two real-world
experiments.

II. RELATED WORK

A common approach for building a range based represen-
tation of the environment is to use grid maps. These rely on
calculated occupancy values in a discrete grid, which can be
2D [14] or 3D [19].

Droeschel et al. [6] presented an approach in which the
robot stores a multi-resolution grid map of the environment.



They provide a high resolution in nearby areas whereas the
resolution decreases with growing distance to the robot. This
approach enables a computationally efficient localization.
The total amount of points for all potential grid maps and
therefore the memory will remain unaffected. Our approach
focuses on filtering out information before localizing the
robot and thus decreases the memory that is needed in total.
Other approaches that potentially decrease the computational
effort in localization segment the map in different regions
[4, 20]. These can be afterwards used for an efficient multi-
robot exploration [18]. A robot only localizes based on a
map of a single region after computing a rough estimate
of its current position. In comparison to our work, these
approaches still keep the full map even if they discard parts
of it for different time steps.
Biber and Straßer [3] use a grid structure to represent
laser scans by a collection of normal distributions. This
representation allows for an analytic formulation of scan
matching and relaxes the burden of correspondence search.
In comparison to our work, the focus of their method
is the sensor data representation and scan matching. Our
approach aims to select observations based on the provided
information to achieve accurate localization. When selecting
laser scans, our approach weights each scan relative to the
additional information of the already selected scans. This
step is performed on raw laser measurements without any
filtering or feature selection techniques [17, 5]. After this
selection step, we can localize the robot based on the com-
puted map. The approaches of Kretzschmar and Stachniss [9]
and Ila et al. [8] consider the problem of a SLAM pose
graph where the amount of nodes is minimized. Kretzschmar
and Stachniss [9] take the mutual information between map
and measurements into account in order to discard the
least informative laser scans. Ila et al. [8] incorporate new
measurements during runtime instead of marginalizing out
already included ones.
Alternative approaches save landmarks extracted from the
measurement data [1, 10, 13]. Beinhofer et al. [1] develo-
ped an approach that proposes the placement of artificial
landmarks in order to improve localization. Whereas grids
consume too much space, the landmarks typically need to
be known beforehand and the manual placement of proper
landmarks does not appear to be a viable option for the
scenario of autonomous parking with a self-driving car.
An alternative to probabilistic approaches to localization are
teach-and-repeat scenarios, in which the vehicle follows a
demonstrated trajectory [12, 16]. In the approach by Sprunk
et al. [16], the robot localizes itself relative to anchor-points,
i.e., poses with corresponding laser scans. However, during
the selection of anchor-points, the authors do not consider
memory requirements and rather store anchor-points after
exceedance of a fixed threshold. In contrast to our approach,
they neither consider the properties of the environment nor
the sensor when determining whether a new scan needs to be
recorded. Moreover, the goal of teach-and-repeat approaches
is to follow a certain trajectory instead of representing the
environment for an arbitrary navigation scenario.
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Fig. 2. Resulting positions (markers) of map scans as selected by our
probabilistic strategy (blue) and a clustering approach (red) in the garage
parking scenario. The dotted lines refer to potential positions at which map
scans can be selected. Both approaches choose the scans at similar positions
in the environment. The numbers refer to the order of selection from the
greedy search of our probabilistic approach.

III. LOCALIZATION WITH SPARSE SCAN MAPS

In this paper, we pursue two objectives: first, a memory
efficient representation of the map, and second, robustness
against sensor noise. To achieve both, we select a (small)
set of pose-scan tuples captured in the environment as map
representation. Concerning the memory consumption, let us
consider a dense grid map that captures an area of 20×20 m
with a resolution of 0.01 m. This results in a memory
usage of 15 MiB. In contrast to that, a map consisting of
10 scans, with 540 2D-points each, results in a memory
usage of 0.04 MiB. The difference in memory consumption
is about two orders of magnitude. Furthermore, we assume
that the localization trajectory is similar to the mapping
trajectory, meaning that we compare scans taken at similar
positions, which then exhibit similar noise characteristics.
For an intuition about the extent of noise we face in one of
our datasets, refer to Fig. 1, in which points measured from
a short distance exhibit differences of ∼ 20 cm.

In the remainder of this section, we formally introduce the
SSM (Sparse Scan Map) in Sec. III-A and discuss how to
perform a MCL using such maps in Sec. III-B and Sec. III-C.

A. Sparse Scan Map

In this work, we consider a regular mapping with a known-
poses scenario. Therefor, we assume a series of known
poses x1:t, each associated with a sensor measurement z1:t,
as given. The poses xi are represented in SE(2) and the
measurements zi are represented by a set of points in the
robot frame. Let S = {(xi, zi) | i = 1, . . . , t} be the set of
all pose-scan tuples. A Sparse Scan Map (SSM) Sn ⊂ S, the
map representation we introduce in this work, is a subset of
S that contains n scan-pose tuples, meaning |Sn| = n. The
sparseness relates to the fact that we consider a small value
for n, which is only a small fraction of the available data.
The formal definition of Sn can be expressed as:

Sn = {(xj1 , zj1) , . . . , (xjn , zjn) | ji ∈ {1, . . . , t}} (1)

This defines an element of Pn(S), which is the set of
subsets of S with cardinality n. When we use such maps for



x

y

si

sj

xt

p(si | xt+1)

p(si | xt)

p(sj | xt)

p(sj | xt+1)

xt+1

Fig. 3. For every pose x we calculate a weight p(s | x) with respect to each
map scan s in order to integrate multiple map scans in the measurement
model. This weight is based on the spatial relation between x and the pose
of s. The stroke width visualizes the weight.

localization, the accuracy will highly depend on the tuples
selected to represent the environment. This constitutes a hard
combinatorial problem as there exist |Pn(S)| =

(
t
n

)
possible

combinations. The idea is to choose the map scans in a way
that, for a given n, the set Sn represents the environment.
This means that we can accurately localize a robot that
repeatedly executes similar trajectories as the one used for
mapping. We will discuss the selection of map scans in
Sec. IV.

B. Localization

In this section, we explain how to use a SSM for mobile
robot localization. The probabilistic formulation for loca-
lization given the SSM Sn is to estimate the distribution
over the robot’s position at time t, BelSn(xt), given the
observations z1:t, controls u1:t and the map Sn, specifically
BelSn(xt) = p(xt | z1:t, u1:t,Sn). With the Bayesian filter
we can recursively estimate this distribution.

p(xt | z1:t, u1:t,Sn) = ηtp(zt | xt,Sn) ·∫
p(xt | xt−1, ut)p(xt−1 | z1:t−1, u1:t−1,Sn)dxt−1 (2)

In our current implementation, we employ the Monte
Carlo Localization (MCL) framework [7] to estimate the
distribution BelSn(xt). MCL represents this distribution by a
set of weighted samples of pose hypotheses. The population
at time t represents the distribution BelSn(xt−1). Whenever
a motion measurement ut arrives, we sample the next gene-
ration from the current population according to the regular
motion model p(xt | xt−1, ut). When the robot makes a
new laser observation, we perform a measurement update,
where each particle is weighted with an importance weight
w ∝ p(zt | xt,Sn). A stochastic universal resampling is
triggered if and only if the so-called number of effective
particles neff =

(∑
w2

i

)−1
is less than half the population

size.

C. Measurement Model

To implement the measurement model for the SSM repre-
sentation, we employ a distance measure that is regularly

used for scan matching [15]. Given a scan s ∈ Sn, the
observation likelihood of an individual laser beam is based
on the minimal distance between the end point of the beam
and the points in s. As the map Sn stores multiple scans,
we are faced with an association problem, to which s ∈ Sn
our current observation needs to be matched. Because this
association is unknown, we model it as a hidden variable:

p(z | x,Sn) =
∑
s∈Sn

p(z | x, s)p(s | x). (3)

Intuitively, we match the current observation z against the
scans s ∈ Sn and weight each likelihood according to the
probability p(s | x), which is the probability that scan s is
associated to the pose x. This can be interpreted as a prior for
seeing scan s from pose x. A graphical example is depicted
in Fig. 3. In addition, p(z | x, s) is the likelihood of the
current observation given the scan s ∈ Sn.

To compute p(z | x, s), we make use of the common
assumption that the measurements of individual points q in
the scan z are independent.

p(z | x, s) =
∏
q∈z

p(q | x, s) (4)

We calculate p(q | x, s) by employing a Gaussian distribution
and taking into account the distance to the nearest neighbor
in the set of points s:

p(q | x, s) ∼ N
(

min
qs∈s
‖qs − x⊕ q‖2; 0, σ

)
. (5)

x ⊕ q transforms the point q from the vehicle frame to the
world frame. We use a k-d-tree [2] for the nearest neighbor
search. Accordingly, the expected runtime for the evaluation
of Eq. (4) is O(nK log(K)), with K = |z|.

In our implementation, the likelihood p(s | x) of a map
scan s given the pose x is modeled as a Gaussian distribution.

p(s | x) ∝ N (x,Σ) (6)

IV. SPARSE SCAN MAPPING

In the previous section, we described a localization tech-
nique using SSM. Here, we discuss the mapping problem,
which is equivalent to the selection of a scan-set Sn for
a given set size n. We provide three different strategies
to solve this task. First, a simple heuristic that selects the
scans equidistantly distributed along the trajectory. Second,
a method that aims to find clusters of scans, grouping scans
that observe similar parts of the environment. Finally, we
propose a technique that aims to maximize the observation
likelihood along the mapping trajectory.

A. Equidistant

The first strategy for the selection of scans is to distribute
them equidistantly over the mapping trajectory. We include
this simple strategy because in the past it was successfully
applied in teach and repeat settings [16]. Given the trajectory
x1:t we compute the path length l =

∑
‖xi+1 − xi‖2 and

subdivide it in n+1 chunks of equal length l/n. Starting from
x1, we recursively select the first pose that has a distance
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Fig. 4. Resulting selection of map scan poses (markers) of our probabilistic
approach (blue) in comparison to a clustering of laser scans (red) for the
indoor dataset. The numbers refer to the order of selection from the greedy
search of our probabilistic approach.

larger than l/n to the previously chosen pose in trajectory
space. This strategy neglects the information contained in
the observations and instead purely relies on the mapping
trajectory for the selection of Sn.

B. Scan Clustering

The scan clustering strategy takes the observed scans of
the mapping data into account and aims to group poses for
which the scans observe similar parts of the environment.
Therefore, we use the K-medoids clustering technique to
determine the n pose-scan tuples that form Sn.

For K-medoids clustering, we need a set of objects, a
distance measure for those objects d(·, ·), and the desired
number of clusters K. The algorithm iteratively assigns the
objects to the clusters, which is mutually exclusive, and
determines the new medoids. The algorithm terminates if the
medoids do not change or a maximum number of iterations
is exceeded. Formally, given a set of medoids c1, . . . , cn the
scan s is assigned to cluster index

i? = argmin
i

d(ci, s), (7)

augmenting Ci? = Ci? ∪ {s}. After the cluster assignment,
the new medoids are defined via:

ci = argmin
c∈Ci

∑
s∈Ci

d(c, s) (8)

Our implementation uses the symmetric average minimal
distance between the points in the scans. For two scans si
and sj , this is:

d(si, sj) =
1

|si|+ |sj |

∑
p∈si

d(p, sj) +
∑
q∈sj

d(q, si))

 (9)

with d(p, s) = min
q∈s
‖p− q‖2 (10)

C. Maximum Likelihood Selection

In this section, we present a strategy that aims to find the
set of scans for which the observation likelihood given the
mapping trajectory is maximal.

S∗n = argmax
Sn∈Pn

p(z1:t | x1:t,Sn) (11)

The intuition is that we aim to find the set of scans, for which
we expect to achieve the best localization accuracy.

First, we factorize the observation likelihood, assuming
that observations are conditionally independent given the
poses.

p(z1:t | x1:t,Sn) =

t∏
i=1

p(zi | xi,Sn) (12)

Now, we can calculate the likelihood for a given set Sn
efficiently. Nevertheless, to solve this discrete optimization
problem we would need to compute the value of the objective
function for each of the

(
t
n

)
possible selections for Sn. As

this is not feasible, we deploy a greedy strategy to compute
an approximate solution of the optimization problem stated in
Eq. (11). We select the scan that maximizes the observation
likelihood incrementally. Given the current set Si, i < n, we
select a pose scan tuple s∗i+1 such that

s∗i+1 = argmax
s∈S\Si

p(z1:t | x1:t, u1:t, (Si ∪ s)), (13)

which is quadratic in the number of the scans available. This
results in an overall complexity of O(t2n2K log(K)).

Please note that this process can be run offline and on
an off-board computer. After finishing the optimization, the
selected scans can be transferred to the robot for accurate
localization with a small number of scans.

V. EXPERIMENTS

We implemented the proposed algorithms in C++ and
tested them in two different scenarios. First, a parking
scenario in which a car drives into a garage (parking dataset)
starting from three different locations and second, an indoor
environment (indoor dataset), courtesy of Mazuran et al. [11].
The indoor dataset exhibits more complexity, i.e., clutter and
higher variation regarding the driven trajectories.

For all experiments, we consider the following settings:
The initial pose is known within bounds of 1.5 m and 20◦.
A ground truth, used for the evaluation and mapping poses, is
provided by an optical motion capture system from Motion
Analysis Digital that consists of ten high speed Raptor-E
cameras. For localization, we utilized a MCL using 1,000
particles. Due to the randomized nature of MCL, we repeated
each localization run 25 times and report the root-mean-
square error (RMSE). We compare the localization accuracy
using SSM with each of the different scan selection strategies
and a maximum likelihood occupancy grid map with a
resolution of 0.1 m.



A. Autonomous Parking

In this scenario, a car needs to find its parking position
in a garage. The car was equipped with a Valeo 3D laser
scanner with three physical layers and a distance error of
σd = 10.0 cm. The laser scanner was mounted at the front
of the car with a horizontal field of view of 145◦ and a
vertical field of view of 2.4◦. We consider three possible
starting areas: approaching from the left, center, and right.
The trajectories are depicted in Fig. 2 as dotted lines. The
dataset consists of five trajectories from each starting area. To
evaluate our approach, we compose five mapping trajectories,
which are combined from one trajectory of each starting area.
On the remaining trajectories, we evaluate the localization
accuracy with 1500 localization runs in total. The length of
the trajectories varies from 10 m to 15 m on an area of 18×
18 m. Considering this extent, the grid map (with a height of
0.5 m) consumes 632.8 KiB while the SSM representation
needs 23.4 KiB per scan stored. Even the largest map S8

consumes 70.4 % less memory with 187.5 KiB.
The statistics of the RMSE from the localization evaluation

for each mapping strategy and the occupancy grid map is
depicted in Fig. 5. The height of the bars shows the mean
RMSE and the error bars the respective standard deviation.
For this dataset, the occupancy grid map suffers from the
high sensor noise, which results in a mean RMSE of almost
0.1 m. Accordingly, all SSM mapping strategies outperform
the occupancy grid map for n ≥ 5. This underpins our
conclusion that the SSM is suitable for localization with high
sensor noise. For this environment, the clustering and the
probabilistic strategy show similar results for set sizes larger
than five. For smaller set sizes, the probabilistic strategy
exhibits better results, except for a set size of three. We think
this is due to the rather simple structure of the environment.
Moreover, the accuracy of the probabilistic strategy is mono-
tonically increasing, while the clustering strategy exhibits
higher variance in performance for the different set sizes.

It is worth to note, that the mapping strategies, which take
the observations into account, achieve better results than the
equidistant strategy for set sizes larger than five.

B. Indoor Localization

The indoor dataset was recorded using a holonomic
KUKA omniRob equipped with a 2D SICK S300 laser
scanner (σ = 2.8 cm), which has a 270◦ field of view. In
contrast to the parking scenario, this dataset has a structurally
more complex environment which can not be fully observed
from a single pose (see Fig. 4). The grid map for this
environment of 11 × 12 m consumes 51.6 KiB of memory
while the SSM needs 4.2 KiB per scan stored. This results
in 34.3 % less memory with 33.9 KiB for S8.

For this dataset, we use a single mapping trajectory,
as depicted by the dotted line in Fig. 4. The localization
trajectories are shorter. They contain distributed starting
points along the mapping trajectory. In general, this makes
the selection of good map scans less obvious.

In this scenario, the grid map performs best, as one would
expect it due to the substantially more accurate sensor, with
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Fig. 5. RMSE of the localization with different sizes of the SSM for the three
mapping approaches (equidistant, clustering, probabilistic) and a regular
grid map. The bars show the average RMSE with its standard deviation
for both datasets. Our probabilistic SSM mapping approach achieves better
localization results for multiple map sizes and exhibits consistently low
errors with increasing map sizes.

an average RMSE of 9.4 cm. However, as depicted at the
bottom of Fig. 5, the probabilistic strategy achieves the best
results among the other mapping strategies. Even with a set
size of two, the average RMSE is less than 0.1 m and the
standard deviation is with 14.3 cm comparatively small.

In Fig. 4, we depict the selected map scans for the
probabilistic (blue) and the clustering (red) strategy. The
probabilistic strategy distributes the scans along the left
and right border of the trajectory, since the center part
of the map is sufficiently observed. In contrast to that,
the clustering suffers from the cluttered structure of the
environment’s lower part. The RMSE results reflect this, as
the probabilistic strategy achieves consistently good results
in comparison to the occupancy grid. Depending on the set
size, the equidistant and clustering strategy exhibit a high
variance in performance.

In combination with the previous experiment, we see a
clear advantage for the probabilistic strategy, as it consis-
tently achieves good results for both kind of situations and
needs less memory than a dense occupancy grid map.

C. Sensor Model Approximation

In this experiment, we evaluate the gain of our sensor
model against the approximation of p(s | x) with a Dirac
distribution that is equal to 1 if and only if ‖x − s‖Σ =
min
s′
‖x − s′‖Σ. In the following, we call this approach the

approximate sensor model.
Comparing the localization accuracy (see Fig. 6), the full

sensor model shows its advantage for larger set sizes on both
datasets. As both models are equivalent for a set size of one,
they perform similar for a set size up to three. For larger set
sizes, the full sensor model is superior to the approximate
sensor model. On the other hand, the full sensor model needs
more computation time, as we match more scans for each
update. An update of the approximate sensor model takes on
average 0.78 ms, which increases for the full sensor model,
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Fig. 6. RMSE of the localization with our probabilistic approach using
the full sensor model (blue) and an approximate sensor model (green) that
matches only against the most likely scan, according to p(s | x).

using a set size of eight, by a factor of 2.5, as we also neglect
scans with p(s | x) < 10−4 in the full sensor model.

D. Scalability to larger areas
We conduct further experiments to show the scalability of

our approach in larger areas with more potential scans for
the SSM. Therefor, we use the additional indoor dataset fr-
079 which consists of a single trajectory of 422 m on an area
of 41×17 m. The dataset contains 4789 2D laser scans.

Tab. I shows runtimes of the Maximum Likelihood Se-
lection (see Sec. IV-C) on three different datasets. The
experiments were conducted on a Intel Xeon CPU E5-2680
with 12 cores. On the indoor dataset fr-079, the selection
of eight scans for the SSM takes only 40.6 min. As stated
in Sec. IV-C, the worst-case complexity is quadratic in the
number of scans n. The runtime for our approach is in
practice less since each observation does not need to be
matched against all scans in the SSM. We can localize the
robot in the fr-079 environment with an RMSE of 9.8 cm
over 25 runs using a SSM with 55 scans. The runtime for
the Maximum Likelihood Selection is 7.1 h and results in
a memory consumption of 154.7 KiB with S55. The grid
map approach achieves a localization accuracy of 6.7 cm and
consumes 272.3 KiB of memory. This results in 43.2 % less
memory with the SSM approach.

VI. CONCLUSIONS

In this paper, we presented a probabilistically sound frame-
work for scan-based mapping and localization. Our approach
greedily selects scans based on their additional information
relative to the previously selected scans. For localization, we
use a sophisticated sensor-model, which is tailored to the
proposed map representation. The experimental evaluation
shows that our approach, representing the environment with
only a few scans, achieves accurate localization results.
These are comparable to the performance of grid-based
maps while the SSM demands substantially less memory.
Moreover, our probabilistic approach outperforms baseline
heuristics as it achieves consistently accurate results.

|Sn| Parking [715] Indoor [4263] fr-079 [4789]

1 0.4min 0.67min 4.35min
4 2.08min 4.13min 19.13min
8 5.47min 10.32min 40.63min

TABLE I. Run-times of the probabilistic approach for the computation
of SSMs with different sizes on three datasets. The numbers next to the
dataset names indicate the amount of potential scans for the SSM. Note,
that the number of observations considered for the likelihood calculation
varies between the datasets based on the traveled distance. We consider 136
(Parking), 474 (Indoor), and 4001 (fr-079) observations.
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