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Abstract— When robots perform manipulation tasks, they
need to determine their own movement, as well as how to grasp
and release an object. Reasoning about the motion of the robot
and the object simultaneously leads to a multi-modal planning
problem in a high-dimensional configuration space.

In this paper we propose an asymptotically optimal manipu-
lation planner. Our approach extends optimal sampling-based
roadmap planners to efficiently explore the configuration space
of the robot and the object. We prove probabilistic completeness
and global, asymptotic optimality.

Extensive simulations of a typical pick-and-place scenario
show that our approach significantly outperforms a (non-
optimal) state-of-the-art approach. We implemented our plan-
ner on a real manipulator and were able to compute high
quality solutions in less than a second.

I. INTRODUCTION

In manufacturing, logistics, and other industrial domains,

many tasks involve handling of objects. To automate such

tasks using a robotic manipulator, object positions are usually

fixed so that robot movements can be hard-coded into the

automation solution. Whenever objects, positions or tasks

change frequently this approach cannot be applied. Poten-

tially, the manipulation task at hand has never been encoun-

tered before. In such cases, the actions of the robot need to

planned autonomously. An illustration of a manipulation task

with one object is given in Fig. 1.

The naive approach is to sequentially plan grasps, place-

ments, inverse kinematics and motions. These steps, however,

are not independent, e.g., grasps can only be executed if

a corresponding configuration of the manipulator can be

computed. In addition, these solution will in general not be

optimal.

Solving the combination of these planning problems in one

batch is known as manipulation planning [1]. In practice,

a manipulation planner has to cope with the following

challenges:

• Continuous grasps, placements and actions: In typical

manipulation scenarios, the objects to be manipulated

can be grasped or placed in a continuous set of con-

tact states. In addition, redundant manipulators allow

transitioning from grasp to placement or vice versa

in a continuous space of configurations. Manipulation

actions such as grasping may also be parametrized with

continuous variables. Discretizing these spaces quickly

leads to a combinatorial explosion, while selecting
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Fig. 1. A manipulation problem - The task of the robot is to bring the
small cube onto the table and to place it bottom-up. To do so, the cube must
be (re-)grasped and placed correctly at least twice.

grasps or placements manually defeats the point of

planning.

• Incomplete motion planning: Motion planning for ma-

nipulation requires planning in high-dimensional, con-

tinuous configuration spaces. Furthermore it is com-

putationally expensive to decide which parts of the

configuration space are valid, i.e., at least collision

free. The state of the art approach to these issues

is sampling-based motion planning. Planners such as

Rapidly Exploring Random Trees (RRT) [2] or Proba-

bilistic Roadmaps (PRM) [3] are only probabilistically

complete. Therefore they cannot decide within finite

time if a motion planning problem has no solution or

find an optimal solution. Any practical manipulation

planner must handle this incompleteness of motion

planning.

• Optimality: In order to be an efficient replacement for

human labor, autonomous manipulation must provide

high quality or, ideally, optimal robot paths. While the

notion of optimality may change from one application

to another, neglecting the solution quality of a planner

is unacceptable for real life applications.

Despite the importance of robotic manipulation, to the

best of our knowledge, there currently exists no planner

that copes with all of these challenges. The contribution

of this paper is an asymptotically optimal, sampling-based

manipulation planner. We prove probabilistic completeness

as well as optimality and validate our approach in thorough

experiments, both in simulation and on a real robot.



II. RELATED WORK

Our work integrates and extends two strands within

the planning literature: Manipulation planning and optimal,

sampling-based motion planning.

A. Manipulation Planning

The first approach to manipulation planning presented by

Alami et al. [1] considers the planning problem in which an

object is either at a stable placement or grasp. Placements and

grasps are chosen from a finite set. Manipulation is then for-

mulated as a graph search with alternating transit and transfer

paths, for which individual motion planning queries must

be solved. Continuous grasps and placements are addressed

in [4]. This is done by modeling the connected components

within the intersection of stable placements and grasps as

closed-chain systems. The incompleteness of sampling-based

motion planners is addressed by Hauser [5], by building a

roadmap of roadmaps. This idea is then extended to the

Probabilistic Tree of Roadmaps (PTR) planner in [6] to also

address continuous contact states. In [7] a RRT-like planner

for the same problem class is proposed.

To address a wider class of planning problems, Cambon et

al. [8] propose a hybrid planner to integrate task and motion

planning. Dornhege et al. [9] propose an extension to the

PDDL standard [10] to combine symbolic and motion plan-

ning via semantic attachments. Garret et al. [11] reformulate

heuristics from the symbolic planning domain [12] for task

and motion planning with very long running tasks. In [13], a

second heuristic guided planner is proposed, that is capable

of handling continuous contact states and the incompleteness

of sampling based motion planning.

In order to improve plan quality, Harada et al. [14]

propose a post-processing method that attempts to shorten

manipulation plans. None of the above mentioned approaches

is shown to achieve global optimality for both the sequence

of grasps and placements and the intermediate motions.

B. Optimal, Sampling-Based Motion Planning

Planning for robotic manipulators typically requires

sampling-based motion planners, such as RRTs [2] or

PRMs [3]. Karaman and Frazzoli [15] provide a proof of the

sub-optimality of these approaches as well as asymptotically

optimal counterparts of the original planners (RRT* and

PRM*).

For these planners several improvements and extensions

have been proposed. To speed up convergence, heuristic

guidance during sampling is introduced in [16]. Hauser [17]

uses lazy collision checking to defer expensive computations

until a better path has been found. Optimal, sampling-based

kinodynamic planning is addressed in [18]. An extension of

the original RRT* for closed kinematic chains is presented

in [19].

Vega-Brown and Roy proposed Factored Orbital Bellman

Trees [20], an optimal planner for problems with piecewise

analytic constraints. To be computationally tractable, it re-

quires a factorized sampling strategy. The authors provide

such a strategy for a block-pushing scenario, but no exten-

sion to prehensile manipulation with articulated robots or

redundant manipulators is provided.

III. PROBLEM STATEMENT AND NOTATION

A. Planning Problem

We consider the problem of prehensile manipulation of

a single rigid object with a robotic manipulator. Let Cr be

the configuration space of the robot, Co that of the object

and Cr × Co their joint configuration space. At all times,

the object is rigidly attached to a link of the robot or its

static environment. This attachment, along with the necessary

transforms, is denoted by a contact state σ ∈ Σ. The set

of contact states Σ may include placements (attachment to

the static environment) and grasps (attachment to a grip-

per). An object configuration co ∈ Co can be computed

by co = fk(cr, σ), where fk(cr, σ) denotes the forward

kinematic. We abbreviate a joint configuration of robot and

object (cr, co) = (cr, fk(cr, σ)) by (cr, σ).
Let Cfree,σ ⊆ Cr denote the set of robot configurations

for which (cr, σ) is a valid (i.e., collision free) joint con-

figuration. A change between two contact states σ1 and σ2

is only allowed at specific transition regions of the robot

configuration space: Cσ1,σ2
⊆ Cr. For a placement σ1

and a grasp σ2, the transition region might be the set of

inverse kinematic solutions that allow grasping the object at

placement σ1 with grasp σ2. These regions typically form

lower-dimensional manifolds of the configuration space of

the robot and are typically empty sets for most pairs of

contact states.

Let π : [0, 1] → Cr be a continuous path segment in

the robot configuration space. A path {(πi, σi)}i≤k ∈ Π
with i, k ∈ N>0 is a sequence of path segments and contact

states of length k.

Definition 1 (Valid Path) A path is valid iff πi(τ) ∈ Cfree,σi

for τ ∈ [0, 1], i ∈ 1...k and πi(1) = πi+1(0) and πi(1) ∈
Cσi,σi+1

for i ∈ 1...k − 1.

Given an initial joint configuration (cstart, σstart) and an

end-game region Cgoal ⊂ Cr × Co, feasible paths can be

defined.

Definition 2 (Feasible Path) A path is feasible iff it is valid

and (π1(0), σ1) = (cstart, σstart) and (πk(1), σk) ∈ Cgoal.

The cost function C : Π→ R>0 is defined as follows:

C : {(πi, σi)}i≤k →
k∑

i=1

Cp(πi) +

k−1∑

i=1

Ct(σi, σi+1) (1)

Where Cp assigns non-negative cost to path segments and

Ct > Ct,min > 0 assigns lower bounded positive cost to

transitions.

Definition 3 (Optimal Path) A path {(π∗
i , σ

∗
i )} is optimal

iff it is feasible and

C({(π∗
i , σ

∗
i )}) = min

{(πi,σi)}∈Π
C({(πi, σi)})



The tasks of feasible and optimal manipulation planning

are now to determine feasible or optimal paths respectively.

B. Primitive Operations

We assume that the following primitive operations are

available to our planner. A call to sampleFree(σ) returns

a random robot configuration within Cfree,σ and can be

implemented via rejection sampling with a collision check.

The operation sampleTransition(σ1, σ2) returns, if possible,

a random configuration within Cσ1,σ2
that allows a transition

between contact states σ1 and σ2. This requires sampling an

inverse kinematics solution. Finally, sampleContact returns

a random contact state σ ∈ Σ i.e., a grasp or a placement. In

order to keep our algorithm and the proofs of its properties

as general as possible, we treat these primitive operations as

problem specific black-boxes.

IV. OPTIMAL MANIPULATION PLANNER

In this section we introduce our planning approach, Ran-

dom Manipulation Roadmap-star (RMR*) and discuss mea-

sures to speed up roadmap construction.

A. Algorithm

Solving a manipulation planning problem is done in two

phases. In an offline phase, a large roadmap is constructed to

explore the topology of the manipulation planning problem.

It is detailed in the buildRoadmap procedure and needs only

to be called once for one pair of robot and object geometries.

This algorithm builds a weighted undirected graph (V,E).
The set of vertices V contains valid configurations (c, σ) and

the set of edges E contains cost-weighted pairs of vertices

in V . For brevity we omit necessary sanity checks within

our algorithm. If it is not possible to sample a configuration

or a transition, the succeeding operations are not called.

1: procedure buildRoadmap (Nc, Ni, Nt)

2: for Nc do

3: σS ← sampleContact( )

4: ΣS .append ( σS )

5: buildPRM*( σS , Ni )

6: for σS,1 6= σS,2 ∈ ΣS do

7: connectRoadmaps( σS,1, σS,2, Nt )

This procedure takes three integers, Nc, Ni and Nt,

as input to specify the size of the graph. It constructs

several within-contact roadmaps, that are subsequently con-

nected via transitions. To this end it samples Nc con-

tact states, which are added to a list ΣS . For each of

these contact states σS ∈ ΣS a within-contact roadmap is

build within Cfree,σS
. This is done according to the PRM*-

algorithm [15] with Ni samples in procedure buildPRM*.

Procedure connectConfiguration(c, σ) tries to connect a

joint configuration (c, σ) to previously sampled config-

urations with the same contact state σ on valid paths

within Cfree,σ according to the PRM* algorithm.

1: procedure buildPRM* (σ,Ni)

2: for Ni do

3: c← sampleFree( σ )

Cgoal

Cfree,σS2

Cfree,σS1

Cfree,σstart

cstart

Fig. 2. Roadmap construction of RMR* - The green areas visualize the
valid areas Cfree,σx

of the robot configuration space for three different
contact states σx. The striped areas show transition regions Cσx,σy Dots
mark nodes of the roadmaps built by RMR*. Solid lines mark edges for
which the robot moves, but the contact state stays constant. Dashed lines
mark a change of contact state.

4: V .append( (c, σ) )

5: E.append( connectConfiguration( c, σ ) )

For each pair of contact states σS,1 6= σS,2 ∈ ΣS we

then attempt to sample Nt transitions and connect them

to the corresponding roadmaps using connectRoadmaps. A

schematic illustration of the roadmaps built by our algorithm

can be seen in Fig. 2.

1: procedure connectRoadmaps (σ1, σ2, Nt)

2: for Nt do

3: c← sampleTransition( σ1, σ2 )

4: V .append( (c,−) )

5: E.append( connectConfiguration( c, σ1 ) )

6: E.append( connectConfiguration( c, σ2 ) )

As the time complexity of building a PRM* with n

nodes is O(n log n), the time complexity of building the

manipulation roadmap is O((NcNt +Ni)Nc logNi).

The second phase of our algorithm is the query phase.

In the spirit of the original PRM algorithm [3], we first

attempt to connect a start configuration (cstart, σstart) to the

previously constructed manipulation roadmap. Then we use

a standard graph search algorithm to find the minimal-

cost path to an endgame region Cgoal. Typically, the initial

contact state σstart is not an element of the sampled contact

states ΣS . Therefore, it is necessary to construct a docking

roadmap with Ni nodes using the PRM*-algorithm. The

start configuration is then connected to this docking roadmap

which in turn is connected to the manipulation roadmap with

at most Nt transitions per contact state in ΣS .

1: procedure query((cstart, σstart), Cgoal, Ni, Nt)

2: V .append( (cstart, σstart) )

3: buildPRM*( σstart, Ni )

4: E.append( connectConfiguration( cstart, σstart ) )

5: for σS ∈ ΣS do

6: connectRoadmaps( σstart, σS , Nt )

7: return GraphSearch( (cstart, σstart), (V,E), Cgoal )

Building the docking roadmap and connecting it

to the manipulation roadmap has a time complexity

of O((NcNt +Ni) logNi). The following upper bounds



hold for the number of vertices and edges within (V,E):

|V | < Nc(NcNt +Ni) (2)

|E| < (NcNt +Ni)Nc logNi (3)

These inequalities can be used to estimate the time com-

plexity of the graph search via Equation 4 [21].

O(|E|+ |V | log |V |) (4)

B. Roadmap Re-Use and Lazy Collision Checking

Even though the offline phase of our algorithm must only

be called once, its runtime quickly becomes a bottleneck

as hundreds of contact states and thousands of roadmap

nodes per contact are sampled. To reduce runtime, we re-

use collision checks and nearest neighbor searches across the

construction of the Nc within-contact roadmaps. Furthermore

we employ lazy collision checking [22].

Instead of building the within-contact roadmaps at line 6

of buildRoadmap, we first build a PRM* with Ni nodes for

a planning scene with no object. We can then check which

nodes and edges of this roadmap lie within Cfree,σ for all σ ∈
ΣS . This has several advantages. We will never sample a

configuration or try to connect an edge for which the robot

is in self-collision or collides with its static environment.

Furthermore, nearest-neighbor search can be shared across

all Nc roadmaps and the necessary data-structures for search

can be reused for the connection of transitions.

As a second measure, we do not check if an edge of

the within-contact roadmaps is valid during roadmap con-

struction. We employ the graph search algorithm at the end

of procedure query with the assumption that all edges are

valid. If a path is returned, we check only edges on this

path. Should one edge be invalid, we remove it from the set

of edges E and repeat the graph search.

V. COMPLETENESS AND OPTIMALITY

In order to prove probabilistic completeness and asymp-

totic optimality we need to define some properties of the

planning problems.

Definition 4 (Segment Robustness) A triple (cr1, cr2, σ) is

segment robust iff the PRM* algorithm is asymptotically

optimal while planning from cr1 to cr2 within Cfree,σ .

Definition 5 (Goal Robustness) A tuple (cr, σ) is goal ro-

bust iff Cfree,σ × {σ} ∩ Cgoal 6= ∅ and the PRM* algorithm

is asymptotically optimal while planning from cr to Cgoal

within Cfree,σ .

The required conditions for segment and goal robustness

are omitted for brevity and can be found in [15].

Let {σi}i≤k with i, k ∈ N>0 be a sequence of con-

tact states. Furthermore, let {tj}j<k with j ∈ N>0 be

a sequence of robot configurations that allow a transi-

tion between these contact states. We define C∗ as the

cost of the optimal solution to our planning problem. The

value C∗({σi}) denotes the cost of an optimal path using

only the contact states within {σi}. Finally, C∗({σi}, {tj})
is defined as the optimal path cost using only the contacts

in {σi} and transitions in {tj}. These definitions imply:

C∗ ≤ C∗({σi}) ≤ C∗({σi}, {tj}).

Definition 6 (Transition Robustness) A pair of a configu-

ration and contact sequence ((cstart, σstart), {σi}) is transition

robust iff: For every ǫ ∈ R>0 there exists a probability Pǫ >

0, such that when sampling a sequence of transitions {tj}
using sampleTransition the following holds at least with

probability Pǫ:

• C∗({σi}, {tj}) ≤ C∗({σi}) + ǫ

• (tk−1, σk) is goal robust.

• All consecutive pairs of cstart and tj are segment robust

within the corresponding contact states.

Intuitively, transition robustness states that sampling tran-

sitions between contacts and connecting them to PRM*

roadmaps within these contacts is equivalent to building one

large PRM*.

As transition costs are lower bounded by Ct,min > 0,

an optimal path, if one exists, will have a finite number of

contact states. Let k∗ be the largest number of contacts in

any of the optimal paths.

Definition 7 (Contact Robustness) A planning problem is

contact robust iff: For every ǫ ∈ R>0 there exists Pǫ > 0,

such that when sampling a sequence of contacts {σi}i≤k∗

using sampleContact the following holds at least with prob-

ability Pǫ:

• C∗({σi}) ≤ C∗ + ǫ

• ((cstart, σstart), {σi}) is transition robust.

For problems, that have a solution, the random vari-

able CRMR*(Nc, Ni, Nt) is defined as the solution cost re-

turned by our planner. If our planner fails this variable is set

to Cfail ≫ C∗.

Theorem 1 (Optimality of RMR*) For a planning prob-

lem that is contact robust, RMR* almost surely converges

to an optimal solution as Nc, Ni and Nt approach infinity.

P ( lim
NC ,Ni,Nt→∞

CRMR*(Nc, Ni, Nt) = C∗) = 1

Proof: Let ǫ > 0. From the contact robustness of our

planning problem follows, that RMR* will almost surely

sample a sequence of k∗ contacts which is transition robust

and for which C∗({σi}) ≤ C∗ + ǫ holds, as Nc approaches

infinity.

From the transition robustness of this sequence follows,

that RMR* will almost surely sample a set of k∗− 1 transi-

tions which are consecutively segment robust, (tk∗−1, σk∗)
is goal robust and for which C∗({σi}, {tj}) ≤ C∗({σi})+ ǫ

holds, as Nt approaches infinity.

Between consecutive pairs of start configuration and tran-

sitions our algorithm will build increasingly larger PRM*

roadmaps, which are asymptotically optimal in Ni due

to segment robustness. Within contact state σk∗ PRM*



is asymptotically optimal in Ni due to goal robustness.

Therefore CRMR*(Nc, Ni, Nt) will, almost surely, not ex-

ceed C∗({σi}, {tj}) by more than ǫk∗, as Ni approaches

infinity.

Therefore RMR* will almost surely return a solution that

is no larger than C∗ + ǫ(2+ k∗) for any ǫ > 0. This implies

asymptotic optimality.

Theorem 2 (Probabilistic Completeness of RMR*) For a

planning problem that is contact robust, RMR* is probabilis-

tically complete as Nc, Ni and Nt approach infinity.

This theorem follows trivially from asymptotic optimality.

The discerning reader will have noticed, that our proofs

do not build upon the underlying physical mechanics of

manipulation, like the distribution of placements or grasps

in Co or the shapes of Cσ1,σ2
. Instead we make assumptions

on probabilities of sampling contacts or transitions in helpful

areas of Co and Cr. We argue that the operations sample-

Contact and sampleTransition are typically not part of the

solution but part of the problem setting. For this reason we

do not build our proofs upon assumptions that lie within the

mechanics of these operations.

VI. EXPERIMENTS

A. Experimental Setup and Implementation

The industrial manipulator used throughout our experi-

ments consists of a 7-axis, redundant robotic arm, a parallel

gripper, and a monocular camera.

We designed seven benchmark tasks that revolve around

moving a cube into a target area on a table or into a box.

For some of the tasks it is necessary to re-grasp the object

several times in order to change its orientation.

The benchmarks are designed to pose problems with dif-

ferent levels of difficulty. It is well known that narrow tunnels

in the configuration space pose difficult problem instances

for sampling based planners [23]. In our experiments we

add such tunnels by design, both in the configuration space

of the robot (picking and placing in a box) and in the contact

space of the object (changing the orientation of the object).

The experimental setup and one of the two initial positions

of the object can be seen in Fig. 3. In all experiments the

joints of the robot are initially at their zero position. The blue

areas mark the two goal regions for the object. Table I lists

the seven benchmark tasks used in our experiments. As cost

function for the path segments Cp we chose the euclidean

distance traveled in the robot configuration space. The cost

for transitions Ct was arbitrarily chosen to be 3.0 for all

transitions to discourage unnecessary re-grasps.

Grasps and placements of the cube are randomly dis-

tributed around its six faces. Placements are only sampled

within the areas marked blue in Fig. 3. Transitions are

computed via rejection sampling. We use an analytic inverse

kinematics solver, for which the redundancy parameters are

randomly chosen.

To evaluate our planner we compare the quality of its

solutions to that of the Probabilistic Tree of Roadmaps (PTR)

TABLE I

BENCHMARK PROBLEMS

# Initial Object Position Goal Area Goal Orientation

1 lower table upper table any
2 lower table upper table bottom up
3 lower table box any
4 lower table box bottom up
5 box upper table any
6 box upper table bottom up
7 box box bottom up

Fig. 3. Experimental Setup: The cube on the left must be brought into one
of goal regions marked in blue. The arrows depict the optimal manipulation
sequence for benchmark 4. First, the object is placed on the table with a 90
degree turn. Then it is re-grasped and placed bottom up in the box.

planner presented in [6]. This approach from the literature

was chosen for two reasons: It is capable of handling ma-

nipulation planning problems with continuous contact states

without requiring complete motion planners. Furthermore,

in its basic form, it does not require domain-specific adap-

tations, like heuristics, that are hand crafted for the problem

class at hand.

Both algorithms are then used to solve all of the seven

benchmark tasks. Our approach is run with 25 different

settings for Nc, Nt, and Ni. Due to the probabilistic nature

of the two algorithms, we repeat this experiment 30 times.

The solutions of both approaches are additionally run

through a standard path simplification [24].

The implementation of the algorithms uses the open source

library FCL [25] for collision checks which is accessed via

the planning scene of MoveIt! [26]. For nearest neighbor

search we use randomized k-d trees [27] implemented in the

FLANN library [28]. To speed up roadmap construction it is

run in parallel using OpenMP [29]. All experiments are run

on a ten-core Intel Xeon E5-2650v3.

B. Results

Fig. 4 shows the success rates of our approach on all seven

benchmarks with 25 different parameter settings. We have

chosen to increase the input parameters Nc, Ni and Nt in

a linear fashion. At their highest setting, we build a ma-

nipulation roadmap with 250 contact states, 2500 nodes per

within-contact roadmap and at most 25 transitions between

each pair of contact states. As one can see, the success rates

quickly converge towards one for all benchmark tasks.

Fig. 5 depicts the average cost for successful queries

and indicates convergence in solution cost for all seven

benchmarks. To visualize the distribution of costs, Fig. 6

shows a series of box plots of the solution costs returned

for benchmark 7. This benchmark is the most difficult one



1 4 7 10 13 16 19 22 25

n

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

1

2

3

4

5

6

7

Fig. 4. Success rates for the seven benchmark tasks - Each line visualizes
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Fig. 5. Path costs without post-processing for the seven benchmark tasks -
Each line visualizes the average costs of successful runs for one benchmark
with different parameter settings: Nc = 10n, Ni = 100n, Nt = n.

within our experiments, as the object has to be grasped and

placed at least two times and the robot must go through two

tunnels while picking from and placing into the box. As one

can see, not only the average cost, but also its variance is

reduced as the parameter settings are increased.

The average times for roadmap construction and query

needed to achieve these results are depicted in Fig. 7. It can

be seen, that highly reliable and close to optimal planning is

possible with query times below one second.

To compare the solution quality of our approach to that of

the Probabilistic Tree of Roadmaps (PTR) planner, Table II

shows the results of both approaches across our benchmark

tasks. The table depicts the average cost and the standard

error of the mean (in brackets) for both planners, with

and without post-processing. Our planner is run with the

maximum settings from the previous experiments: Nc =
250, Ni = 2500n, Nt = 25. Both planners are run 30 times.

We analyzed the resulting data-set under the assumption

of independent Gaussian-distributions with unequal variance

for our samples. Significance levels were therefore computed

via Welch’s unequal variances t-test. Two observations can

be made. Our planner significantly (at 0.1% level) outper-

forms the existing one in all seven tasks, both with and

without post-processing. Furthermore the post-processing

significantly (also at 0.1% level) improves the solution cost
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Fig. 6. Distribution of path costs without post-processing for benchmark 7
- Each box plot visualizes the distribution of costs for different parameter
settings for our algorithm: Nc = 10n, Ni = 100n, Nt = n. The red line
depicts the median. The first and third quartile are represented by the box,
minimum and maximum by the whiskers.
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Fig. 7. Average query and roadmap times without post-processing for the
benchmark tasks - Seven lines visualize the average query times for the
benchmarks and one the average roadmap times with different parameter
settings: Nc = 10n, Ni = 100n, Nt = n.

of our planner. This second observation shows, that our

planner has not fully converged to an optimal path even at its

highest settings. This result is not surprising, as 2500 nodes

for the PRM* cannot be expected to sufficiently explore the

7-dimensional configuration space of the robot. To visualize

the distribution of solution costs of both planners at all seven

benchmarks, Fig. 8 shows the corresponding box plots. As

can be seen, RMR* produces solutions of higher quality with

much lower variance in solution cost.

Finally, we implemented our approach on a real robotic

work-cell. The manipulation sequence shown in Fig. 1 at the

beginning of this paper is a solution path of our planner.

TABLE II

AVERAGE COST AND STANDARD ERROR OF THE MEAN

Benchmark
1 2 3 4 5 6 7

PTR 15.2 64.3 19.4 78.1 15.5 53.8 70.2

[1.14] [3.64] [1.86] [4.17] [1.04] [3.12] [3.80]

PTR 14.6 56.6 17.4 69.7 14.9 49.3 63.6

post-p. [1.07] [3.16] [1.65] [3.48] [1.04] [3.23] [3.54]

RMR* 9.8 23.8 12.1 25.3 10.6 24.3 25.8
[0.07] [0.18] [0.07] [0.23] [0.10] [0.23] [0.20]

RMR* 8.6 20.3 10.6 21.1 9.1 20.6 21.5

post-p. [0.04] [0.11] [0.06] [0.22] [0.07] [0.21] [0.14]
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Fig. 8. Comparison of PTR and RMR* - Each box plot depicts the
distribution of normalized cost without post-processing for a different
benchmark. Costs are normalized to the average cost returned by our planner.
RMR* is run with Nc = 250, Ni = 2500, Nt = 25. The red line depicts
the median. The first and third quartile are represented by the box, minimum
and maximum by the whiskers.

VII. CONCLUSION

This paper presented an asymptotically optimal manipula-

tion planner. We established convergence under a set of new

robustness conditions and validated the practicality of our

approach in extensive simulations and on a real industrial

manipulator.

The proposed planner is capable of returning high quality

solutions to complex manipulation tasks in less than a

second. This is achieved without relying on problem specific

heuristics or simplifications as our algorithm directly works

with the primitive operations common to manipulation.

Currently, the scope of our approach is limited to pre-

hensile manipulation of one single object. Promising areas

for future research include extending the approach to new

problem domains, as well as methods to increase the speed

of convergence for larger problems.
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