
Modeling and Planning Manipulation in Dynamic Environments

Philipp S. Schmitt1, Florian Wirnshofer1, Kai M. Wurm1, Georg v. Wichert1, and Wolfram Burgard2

Abstract— In this paper we propose a new model for sequen-
tial manipulation tasks that also considers robot dynamics and
time-variant environments. From this model we automatically
derive constraint-based controllers and use them as steering
functions in a kinodynamic manipulation planner. The resulting
plan is not a trajectory, but a sequence of controllers that
react on-line to disturbances. We validated our approach in
simulation and on a real robot. In the experiments our approach
plans and executes dual-robot manipulation tasks with on-line
collision avoidance and reactions to estimates of object poses.

I. INTRODUCTION

Many automation tasks require robots to manipulate ob-

jects. Applications range from industrial assembly to logis-

tics. When tasks or environments change frequently, pro-

gramming robot motions manually is not viable and robots

must generate the necessary motions autonomously. Several

aspects of manipulation render this a challenging problem:

1) Variety of tasks: Consider picking an object from a

moving conveyor belt or manipulating a single large

object with two robots. These two tasks put constraints

on the motion generation that go beyond collision-free

motion planning. To address this variety of tasks it is

necessary to employ models that have the expressive-

ness to capture the constraints of different applications.

2) Dynamic and uncertain environments: Estimates

of a robot’s environment are inherently noisy. Thus,

planning motions and executing them open-loop is

likely to fail eventually. For this reason, manipulation

benefits from instantaneous reactions to measurements

such as object poses or detected obstacles.

3) Sequential interdependence of motions and actions:

Subtle geometric and kinematic differences in manip-

ulation tasks can require entirely different sequences

of robot motions, grasps and placements. Consider the

example in Fig. 1, where the task of two manipulators

is to transport a cube through an opening in a wall. In

this example the left robot could directly reach for the

cube if the opening was wider.

Aspects 1) and 2) are addressed in the literature on

constraint-based task-specification and control [1]. Manipula-

tion planning [2] addresses aspect 3). The recently proposed

constraint-graph and the corresponding planner [3] handle

aspects 1) and 3). But to the best of our knowledge no

previous approach addresses all three aspects simultaneously.

1 Siemens Corporate Technology, Munich, Germany
2 Department of Computer Science, University of Freiburg, Germany

The presented research is financed by the TransFit project which is funded
by the German Federal Ministry of Economics and Technology (BMWi),
grant no. 50RA1701, 50RA1702 and 50RA1703.

1 2

3 4

Fig. 1. Example for manipulation in a dynamic environment: The goal of
the robot is to place the cube on the left side of the blue wall. The problem
is time-variant as the cube is initially moving to the right on a conveyor
belt. In order to achieve the goal, the right manipulator must grasp the cube
and hand it to the left manipulator through an opening in the wall.

The key idea of this paper is to combine the advan-

tages of constraint-based controllers and manipulation plan-

ners that operate on a constraint-graph. The contribution

is a new model for planning and controlling manipulation:

the dynamic constraint-graph. This model builds on the

constraint-graph [3] and extends it to incorporate second-

order dynamics as well as time-variance. From this model,

we automatically derive constraint-based controllers and use

them as steering functions in a kinodynamic manipulation

planner. The resulting plan is not a trajectory, but a sequence

of controllers that enables on-line reaction to disturbances.

II. RELATED WORK

In the literature on constraint-based task specification and

control [1], tasks are modeled as constraints between features

of a kinematic tree. From this highly expressive model

controllers and state-estimators are derived automatically.

Extensions have been proposed, such as the inclusion of

inequality constraints [4]. In [5] the eTaSL/eTC framework

is presented, that allows the specification of constraint con-

trollers based on expression graphs and supports collision-

avoidance based on convex primitives. Manipulation requires

not a single robot motion but a sequence of motions and

interactions with objects. In [6] a scheduler is proposed that

automatically composes and sequences constraint-based con-

trollers based on a constraint satisfaction problem. However,

constraint-based controllers are not suitable to address the

sequential interdependence of motions and actions that arise

in multi-robot manipulation. Our approach addresses this by

simulating constraint-based controllers inside a planner.

Reasoning about the sequence of motions of robots and

objects in an integrated fashion is known as manipula-

tion planning [2]. Robotic manipulation involves motion

through high-dimensional configurations spaces. Sampling-

based planners such as probabilistic roadmaps [7] have

shown good empirical performance in these configuration

spaces and are employed for manipulation planning in [8].

Probabilistically complete algorithms for a broader class

of planning problems, called multi-modal motion planning,

have been proposed in [9] and [10]. By adapting informed

search strategies, originally developed for task planning, the

algorithms in [11] and [12] are capable of solving large scale

manipulation tasks. Asymptotically optimal manipulation

planners were proposed in [13] and [14]. Dedicated manipu-

lation planners rely on problem-specific sub-algorithms such

as steering functions or samplers that enable to explore the

constrained configuration spaces that arise in manipulation.

These sub-algorithms render the modification or extension

of planning domains difficult.

An alternative approach is to model manipulation planning

as an instance of constrained motion planning, for which [15]

provides a survey. In [3] the constraint-graph is introduced

as a generic model for manipulation planning domains.

This model has the expressiveness to model a variety of

sequential manipulation tasks. The HPP framework [16]

supports the specification of such constraint-based planning

domains and [17] introduces methods to leverage explicit

constraints to speed up computations. However, the output of

a planner that operates on the constraint-graph is a geometric

path for robots and objects and as such is not suitable to react

to unforeseen disturbances. Our approach follows the idea of

modeling manipulation as constrained motion, but represents

plans as a sequence of constraint-based controllers and thus

facilitates a reactive execution.

A general approach to combine deliberate planning and

reactive execution is to combine local controllers, or fun-

nels, for which a region of attraction is known as a tree

that covers the state space [18]. For a one-dimensional

manipulation problem, [19] combines a set controllers that

are switched in a provably correct way to manipulate two

objects. In [20] this approach is experimentally validated for

a two-dimensional environment with multiple objects. By

combining an optimal manipulation planner with reactive

controllers a provably correct feedback manipulation plan

can be constructed for two-dimensional environments with

known, non-convex and unknown, convex obstacles [21].

These approaches are currently limited to spherical robots

in two-dimensional environments. In contrast, our approach

scales to scenarios with articulated robots with 14 axes.

III. DYNAMIC CONSTRAINT-GRAPH

We aim to specify manipulation tasks in a modular way

that facilitates planning and reactive execution. To this end,

this section introduces a new model: the dynamic constraint-

graph. This model extends the constraint-graph [3] to incor-

porate second-order dynamics and time-variance. We will use

the setup and the corresponding manipulation task depicted

in Fig. 1 as exemplary model instance.

A configuration q ∈ R
n and its time derivative q̇ encode

the continuous state of a system. In the dual-arm example

this vector q comprises the 14 axis-positions as well as a

vector-quaternion representation for the pose of the cube.

Time is represented by t.

A discrete mode σ ∈ Σ encodes the contact-state of a

system and is an element of the finite set of modes Σ. In the

example the cube may either be at rest on a surface, moved

by a conveyor or held by one of two grippers. Since the cube

has six sides that may be in contact with surface, conveyor

or grippers the example features |Σ| = 24 discrete modes.

The discrete mode determines both the system dynamics

and the constraints that a configuration q must fulfill.

A system has the control input umin ≤ u ≤ umax. In the

example u comprises 14 axis-accelerations. Given a mode σ,

a system follows a control-affine, second-order dynamic:

q̈ = aσ(q, q̇, t) +Bσ(q, q̇, t)u, (1)

where aσ(·) denotes the acceleration q̈ for zero control

input and Bσ(·) denotes its affine dependency on u. In

the example, the acceleration of the 14 axes is equal to u,

independently of σ. The acceleration of the cube depends

on the mode σ and the configuration of the robot. In case

of a grasp, the acceleration of its pose is determined by the

forward-kinematics of the grasping robot. When the cube is

placed on a surface its acceleration is zero. If an object is

placed on a conveyor belt, equation (1) is time dependent.

Each mode σ is associated with a set of (twice differen-

tiable) constraints fσ and gσ , that must hold while the system

is in that mode or to transition into that mode:

fσ(q, t) = 0, gσ(q, t) ≤ 0. (2)

In the example the inequality constraints gσ comprise axis-

limits as well as collision avoidance. The geometry of

the robots and cube is approximated by convex primitives

and their pairwise penetration depth must remain negative.

Equality constraints fσ arise due to the contact-state of the

object. If the cube is placed, its center must be at a fixed

height above the surface and its contacting side be anti-

parallel to the surface. This also implies that the pose of

the cube is under-constrained: two translational axes and

one rotational axis are free. Additionally, constraints may

be imposed at the velocity level:

vσ(q, q̇, t) = 0, wσ(q, q̇, t) ≤ 0. (3)

Axis-velocity-limits are given as inequality constraints. The

relative velocity of the cube to the surface or a gripper

must be zero when placed or grasped respectively. While the

system is within mode σ the constraints fσ , gσ , vσ , and wσ

must be fulfilled. In the remainder of this paper we will omit

the velocity constraints vσ and wσ for brevity.

Following the ideas of [3] the modes σ ∈ Σ form

a graph. To transition from a mode σ1 in this graph to

mode σ2 the second mode must be in the first mode’s set

of neighbors: σ2 ∈ N (σ1). Additionally, the constraints fσ2

and gσ2
of σ2 must be fulfilled. E.g. to grasp a resting cube

the gripper must be positioned in a grasping pose relative

to the cube and all constraints on axis-limits and distances

of collision bodies must be fulfilled. Switching a mode, i.e.

opening or closing grippers in the example, is assumed to

happen instantaneously and is an explicit decision of the

robot and not part of the system dynamics.

The graph described by the set of modes Σ, the

neighborhood-function N (·) and the corresponding con-

straints can be constructed automatically as shown in [3].

Some of the constraints of (2) and (3) of the current mode

are automatically fulfilled by the system dynamics (1) similar

to the explicit constraints of [17]. E.g. while an object is

grasped the constraints on the relative velocity of object and

gripper are automatically fulfilled by the forward kinematics.

Let s = (σ, q, q̇, t) be the full state of a system. The

goal for a planner is to find a finite sequence of con-

trollers {πi}1≤i≤k that steer the system from a start state sstart

to a goal region Sgoal. The i-th controller computes the

control input u = πi(s) based on the current state s. Further-

more, it may terminate and switch to the next controller πi+1

or stop execution in case of the last controller. A controller

that decides to switch the mode is always terminated. At

all times the constraints of the current mode σ and on

mode-switching must be fulfilled. An important aspect of our

model is that all restrictions on valid solutions are encoded

in the constraint functions. No additional validity checks,

typically used for collision checking, are part of the planning

domain. Fig. 2 shows a valid motion throughout the dynamic

constraint-graph. As the finite number of controllers πi in a

plan is processed in a linear sequence, no chattering of the

system can occur due to switching of modes.

IV. PLANNING AND CONTROL

The proposed planner operates by transforming the dy-

namic constraint-graph into task specifications for constraint-

based controllers. These controllers can then be simulated

during planning as steering functions. A kinodynamic plan-

ner, similar to the Expansive Space Tree (EST) [22], uses

these steering functions to build a search tree.

A. Kinodynamic Manipulation Planner

Our planner uses two types of controllers as steering

functions. Procedure randomController(σ) → π returns a

controller π that steers towards a randomly chosen robot

configuration on a trajectory that satisfies the constraints of

mode σ. The procedure simulateController(s, π) → snew

takes a state s and controller π as input and returns the

state snew to which the system is moved by the controller.

Typically, there is zero probability of randomly steering

into the intersection of the constraint-manifolds of two

modes. Procedure transitionController(σ, σnew)→ π takes

modes σ and σnew as input and returns a controller π that

steers towards the intersection of both mode’s constraint-

manifolds while satisfying the constraints of σ. Designing

robot

robot

object
sstart

Sgoal

σA: object placed

σB : object grasped

σC : object placed

σA

σB

σC

Fig. 2. Model for a pick and place task: The three planes depict the
constraint-manifolds of different modes. White areas represent configura-
tions that are in collision. Initially the object is placed (mode σA) and
the object does not move when the robot moves. At the intersection of
modes σA and σB the object can be grasped. When grasped (mode σB)
the object is moved along with the robot. Within mode σC the object is
placed again in a different orientation. The thick line represents a trajectory
for robot and object that leads from a start state sstart to a goal region Sgoal.
The thin black lines show alternative motions attempted by the planner.

such controllers is challenging as system dynamics, con-

straints of the current mode and, in the case of transition-

Controller, also the constraints of the neighboring mode

must be addressed. This design is discussed in Section IV-B.

Procedure: buildSearchTree(sstart) infinite version

N ← {sstart}, E ← {}
while true do

s ← (σ, q, q̇, t)← sampleWeighted(N)

π ← randomController(σ)
snew ← simulateController(s, π)
N.add(snew), E.add((s, π, snew))

for σ′ ∈ N (σ) do

π ← transitionController(σ, σ′)
snew ← simulateController(s, π)
N.add(snew), E.add((s, π, snew))

With these procedures we can define our planner. Our al-

gorithm builds a search-tree of nodes N and edges E rooted

in the initial state sstart. The procedure buildSearchTree

shows the pseudocode for the tree construction without

termination condition. In each iteration the planner samples

a random node from the current set (forward search!)

of nodes N using the procedure sampleWeighted. This

sampling puts larger weight on nodes that lie in sparsely

populated areas of the state-space. From this node we attempt

to steer towards a random configuration, as well as to all

neighboring modes. Naturally, the implemented planner has

no infinite loop and the tree construction is stopped if a node

within Sgoal is found or a time budget is depleted. Fig. 2

shows the construction of the search tree. If a controller gets

stuck locally its result is discarded after a (simulated) time-

out. Fig. 2 shows this as the path that ends in a red cross.

B. Constraint-Based Controllers as Steering Functions

In the following we explain the construction of the

controller returned by procedure transitionController. This

controller builds on the eTC controller [5] but is modified

to operate in an acceleration resolved manner following the

derivation of [23]. Let us assume our system is currently

at a valid state s = (σ, q, q̇, t) and should transition to a

mode σ′ ∈ N (σ). Thus, controls u need to be computed

that eventually lead to a state fulfilling the constraints fσ′

and gσ′ of mode σ′. Until these constraints are fulfilled the

constraints fσ and gσ of the current mode σ must not be

violated. We can achieve this with control inputs u that obtain

the following desired dynamics of the constraint-functions:

f̈σ = −Kfσ
p fσ −K

fσ
d ḟσ,

g̈σ ≤ −K
gσ
p gσ −K

gσ
d ġσ,

f̈σ′ = −Kf
σ
′

p fσ′ −K
f
σ
′

d ḟσ′ ,

g̈σ′ ≤ −Kg
σ
′

p gσ′ −K
g
σ
′

d ġσ′ ,

where, with slight abuse of notation, we denote f , ḟ and f̈

as the instantaneous value and time-derivatives of f based on

the current q, q̇, t and u. The diagonal gain matrices K∗
∗ must

be chosen to achieve stable and at least critically damped

dynamics. The reasoning here is: if the dynamics of the

constraint functions are stable and properly damped, we

will not violate the constraints of the current mode σ, as

their constraint-functions are already in the equilibrium state

at zero or below zero for inequality constraints. Also, the

constraints of the target mode σ′ will eventually be fulfilled

(within a numerical tolerance).

For manipulation tasks with collision avoidance this sys-

tem of equations is often over- or under-constrained. The

eTaSL/eTC framework [5] allows to separate the constraints

into safety constraints, for which the target dynamics must

always be obtained, and weighted non-safety constraints. The

control inputs are then computed via a quadratic program:

minimize
x

x⊤Hx

subject to LA ≤ Ax ≤ UA

L ≤ x ≤ U.

(4)

The optimization variable x = [u, ǫf ′ , ǫg′]
⊤

comprises the

control inputs u and slack variables ǫf ′ and ǫg′ for all non-

safety constraints. As Hessian matrix H a diagonal matrix is

used with weights for all control inputs and one for each non-

safety constraint. L and U contain the limits on the control

input umin ≤ u ≤ umax. The entries of the vectors LA, UA

and the matrix A are derived from the following equations:

f̈σ,0 +
∂f̈σ

∂u
u = −Kfσ

p fσ −K
fσ
d ḟσ,

g̈σ,0 +
∂g̈σ

∂u
u ≤ −Kgσ

p gσ −K
gσ
d ġσ,

f̈σ′,0 +
∂f̈σ′

∂u
u = −Kf

σ
′

p fσ′ −K
f
σ
′

d ḟσ′ + ǫf ′ ,

g̈σ′,0 +
∂g̈σ′

∂u
u ≤ −Kg

σ
′

p gσ′ −K
g
σ
′

d ġσ′ + ǫg′ ,

where f̈0 is the instantaneous, second-order time-derivative

of f with u = 0. The reasoning is: the target-dynamics of fσ
and gσ must be fulfilled otherwise we might violate the con-

straints of the current mode σ (safety constraints). Reaching

the neighboring mode σ′ is desirable but optional. Therefore,

the target dynamics of fσ′ and gσ′ receive slack variables ǫf ′

and ǫg′ in the optimization (non-safety constraints). The

optimization returns a control input that achieves the target

dynamics of fσ and gσ . Remaining degrees of freedom are

used for the weighted goals of using little controls u and

achieving the target dynamics of fσ′ and gσ′ .

The procedure simulateController simulates the de-

scribed controller until the constraints of σ′ are fulfilled.

In this case the resulting state is returned and added to

the tree by the planner. In case the optimization problem

of equation 4 is infeasible the procedure returns failure

and the corresponding state is rejected by the planner. This

may happen when the dynamics of safety constraints are

in conflict. Controllers may also become stuck locally. To

address this the steering functions returns failure after a time-

out is reached. The procedure randomController operates

in a similar way but the constraints fσ′ and gσ′ are replaced

by random position constraints on the robot’s axes.

C. Controlled Execution

The result of our planning algorithm is a sequence of

constraint-based controllers. Fig. 3 shows the phase-portrait

of such a controller sequence for a pick and place task. Using

this sequence of controllers, an accurately modeled and

undisturbed system will reach a goal state. If the execution

is disturbed the controllers can meaningfully react. This is

due to the fact that the parametrization of the controllers is

based on the planning domain (safety constraints) and the

decisions of the planner (non-safety constraints).

V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation Details

The definition of constraints (2), (3) and system dynam-

ics (1), computation of all required derivatives and the solu-

tion of the optimization problem inside the control loop (4)

is based on a custom implementation of the eTaSL/eTC

framework [5]. All constraints share the same parameters

for desired constraint dynamics K∗
p and K∗

d , assuming unit-

free constraint functions. As units of measurement for our

constraint functions we used seconds for time, radians for

joint angles, meters for translations and components of

unit quaternions for rotatory Cartesian quantities. We chose

elements of K∗
p as 20 and set K∗

d to achieve a damping ratio

of 1.1. The weights for the matrix H where set to 0.001 for

the control inputs and to 1 for the slack variables. We added

weakly weighted (0.001) non-safety constraints to achieve

zero axis velocities that prevent unnecessary motions.

Most of the constraints, such as axis limits and collision

constraints, are present in all modes of the constraint-graph.

Step 1: move to target Step 2: grasp object

Step 3: release object Step 4: move to target

Fig. 3. Phase-portrait of a controller sequence for a pick and place task: In step 1 the goal of the controller is to reach a target axis configuration. This is
necessary for step 2, where the goal of the controller is to grasp the object by reaching the intersection of grasp mode and placement mode. If the grasping
was attempted first, the system would get stuck in the C-shaped obstacle region. In step 3 the object is placed again at a different placement position.
Finally, in step 4, the robot retracts to a home position.

Naturally, these constraints are used only once as safety con-

straints in the computations. Constraints that are explicitly

addressed by the system dynamics of equation (1) are also

omitted in the computations.

The time-out parameter for the controller simulation was

chosen as 10 (simulated) seconds. As control frequency we

use 200 Hz during execution and 40 Hz during simulation to

speed up planning. The procedure sampleWeighted uses a

grid-based discretization of the state space typical for kino-

dynamic planners. As grid cells we use the mode of the state

resulting in 24 cells in the experiments. This is a low number

of cells compared to kinodynamic motion planners. However,

this is compensated by the constraint-based controllers, that

are comparatively powerful (and computationally expensive)

steering functions that avoid collisions.

B. Experimental Setup

As experimental setup we use the dual-arm robot depicted

in Fig. 1. It comprises two seven-axis manipulators, each

equipped with a parallel gripper. The goal is to move a cube

that is placed on the right to the left side of the setup.

We designed five benchmarks to pose different challenges

to manipulation planners. Benchmark 1 comprises no ad-

ditional obstacles, i.e. the walls of Fig. 1 are missing and

the left manipulator may directly pick and place the cube.

Benchmark 2 adds the lower obstacle and therefore makes

a re-grasp necessary, where the right robot hands the object

to the left one. Benchmark 3 and Benchmark 4 comprise

both obstacles with a height of the opening set to 0.4m and

0.2m respectively. These two scenarios where added to stress

the motion planning aspects of manipulation. Benchmark 5

adds time-variance by placing the cube on a conveyor belt

as shown in Fig. 1. At the beginning of benchmark 5, the

cube is not resting on the surface but moving away from the

Fig. 4. While the robot is executing a plan, a person, that is tracked
via markers, enters the workspace. The person’s arm is approximated by a
sphere and the robot reacts on-line to satisfy the collision-constraints. This
is done while ensuring that no self-collisions occur. Remaining degrees of
freedom are used to execute the plan.

wall (0.2m opening) with a constant velocity of 5cm/s.

We implemented these benchmark scenarios for the plan-

ner presented in this paper as well as for the RMR* algo-

rithm [14]. RMR* is an asymptotically optimal, sampling-

based manipulation planner. This allows us to compare both

planning-times and costs of the resulting solutions. As the

problem setting involves acceleration-controlled robots we

implemented RMR* with the trajectory generators of [24]

as steering functions. To allow a meaningful comparison of

planning times, RMR* was implemented in an incremental

fashion that does not separate between roadmap construction

and query as presented in [14]. Each benchmark is planned

70 times with different random seeds. The time variant

benchmark 5 was not implemented for RMR*. Both planners

were implemented in C++, use multiple threads and were run

on a ten-core Intel Xeon E5-2650v3.

On the real robot we implemented two qualitative ex-

0 5 10 15 20 25 30

planning time [s]

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

benchmark 1

benchmark 2

benchmark 3

benchmark 4

benchmark 5

Fig. 5. Success rates of the proposed planner - Each line visualizes the
success rate of 70 planning queries for one of the five benchmark tasks.

TABLE I

PLANNING AND EXECUTION TIMES

all values in seconds Benchmark
[std. error of the mean] 1 2 3 4 5

proposed planning time 7.89 10.5 9.27 8.39 6.79

planner [0.43] [0.59] [0.50] [0.46] [0.26]

execution time 14.3 17.1 17.7 17.3 17.9

[0.37] [0.36] [0.20] [0.09] [0.14]

RMR* planning time 6.44 8.18 21.3 >300 /

[0.67] [0.79] [1.54] / /

execution time 10.7 11.8 14.9 / /

of first solution [0.34] [0.44] [0.57] / /

min. time at 60s 5.76 5.90 7.19 / /

periments to validate the reactive execution of manipulation

plans. The first experiment is designed to incorporate mea-

surements about object poses into the reactive execution. A

manipulation plan for benchmark scenario four is planned

for an assumed pose of the cube. Then the actual pose of

the cube is measured with a camera and the original plan is

executed. In the second real-world experiment additional on-

line collision-avoidance is added. While a plan is executed

we use a tracking-system to detect a person that must be

avoided. Fig 4 shows this experiment for benchmark four.

C. Results

The average success rates of our planner over time are

shown in Fig. 5. Our planner reliably solves the five bench-

mark problems. A surprising outcome is the consistency

of planning times that appears to be independent of the

difficulty of the benchmark. Table I shows the average

planning and execution times of plans for both our planner

and RMR*. RMR* shows the typical behavior of sampling-

based, collision-free planners: planning times deteriorate as

more obstacles and ”tunnels” are added. Our approach shows

relatively consistent planning times across all benchmarks.

We attribute this to the nature of the steering functions em-

ployed by our approach. As the constraint-based controllers

receive the distances between collision-bodies as inequality

constraints, collisions simply do not occur, neither during

execution nor during planning. This effectively implements

a wall-following steering function that allows to efficiently

solve the benchmarks with a tunnel in the configuration

space (3-5). However, the use of simulated controllers is

more time consuming than collision checking and RMR*

plans faster when few obstacles are present.

Even though our approach does not attempt to compute

optimal solutions, it is interesting to compare the quality

of solutions to that of RMR*. RMR* was implemented to

minimize the duration of solution trajectories. The first so-

lution returned by RMR* however is arguably representative

for typical sampling-based manipulation planners. Table I

shows that solutions of our approach have longer durations

than both the first solution returned by RMR* and the best

solution after one minute of optimization. A possible expla-

nation is that the linear target-dynamic for the constraint-

functions under-utilizes the axis-limits on acceleration and

velocity compared to the time-optimal local planner of [24].

In practice this means that with our approach the robot moves

slower but smoother especially when close to obstacles.

In the real-world experiments the execution of plans reacts

to measurements of object poses as well as obstacles that

are detected on-line as shown in the accompanying video.

The plans consisting of constraint-controllers encode not

only the current target state but also the constraints of

the planning domain such as axis-limits and self-collision

avoidance. Therefore, the robot does not only avoid the

detected obstacle during execution, but does so in a way

that no self-collisions occur. If redundant degrees of freedom

remain, they are used to achieve the current target that is

encoded in the plan.

However, it is possible to disturb the robot sufficiently so

that the execution becomes stuck locally. This may happen if

the controller is blocked by a combination of collision-bodies

or by being pushed into a kinematic reconfiguration where

axis-limits prevent the controllers to progress towards the

goal. In practice this can be easily compensated by stopping

and re-planning after a time-out.

A useful property of our approach is that planning and

controlled execution both function reasonably in invalid

states. Examples include violations of axis-limits as well as

objects that are pushed into the collision margin of the robot.

The controllers will steer towards valid states according to

the target dynamics of the constraint-functions

VI. CONCLUSION

This paper introduced a kinodynamic manipulation plan-

ner that operates on a new domain model, called the dynamic

constraint-graph. Our planner does not compute a trajectory

but a sequence of constraint-based controllers that are derived

from the underlying domain model. This allows the robot to

react on-line to measurements of object poses or obstacles

while executing a plan. As the task specification for the

controllers is derived from the planning domain model, safety

requirements such as self-collision-avoidance and axis-limits

are satisfied during reactive execution. We have successfully

validated this approach on a real-world, dual-arm manipu-

lation task with on-line collision-avoidance and reaction to

estimates of object poses. Simulated experiments showed that

our approach has competitive planning times relative to a

(non-reactive) state of the art approach. A current limitation

is the lack of formal guarantees regarding probabilistic

completeness and regions of attraction for the controller

sequence, which is a promising area for future research.

REFERENCES

[1] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” The Int. Journal of Robotics

Research, vol. 26, no. 5, pp. 433–455, 2007.

[2] R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical approach
to planning manipulation tasks. the case of discrete placements and
grasps,” in The fifth Int. Symposium on Robotics Research. MIT
Press, 1990, pp. 453–463.

[3] J. Mirabel and F. Lamiraux, “Manipulation planning: addressing the
crossed foliation issue,” in Int. Conf. on Robotics and Automation.
IEEE, 2017, pp. 4032–4037.

[4] W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending
iTaSC to support inequality constraints and non-instantaneous task
specification,” in Int. Conf. on Robotics and Automation. IEEE, 2009,
pp. 964–971.

[5] E. Aertbeliën and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,”
in Int. Conf. on Intelligent Robots and Systems. IEEE, 2014, pp.
1540–1546.

[6] E. Scioni, G. Borghesan, H. Bruyninckx, and M. Bonfè, “Bridging the
gap between discrete symbolic planning and optimization-based robot
control,” in Int. Conf. on Robotics and Automation. IEEE, 2015, pp.
5075–5081.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[8] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The Int. Journal of Robotics

Research, vol. 23, no. 7-8, pp. 729–746, 2004.

[9] K. Hauser, “Task planning with continuous actions and nondeterminis-
tic motion planning queries,” in AAAI Workshop on Bridging the Gap

between Task and Motion Planning, 2010.

[10] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The Int. Journal of Robotics Research, 2009.

[11] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: An
efficient heuristic for task and motion planning,” in Algorithmic

Foundations of Robotics XI. Springer, 2015, pp. 179–195.

[12] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Backward-
forward search for manipulation planning,” in Int. Conf. on Intelligent

Robots and Systems. IEEE, 2015, pp. 6366–6373.
[13] W. Vega-Brown and N. Roy, “Asymptotically optimal planning under

piecewise-analytic constraints,” The 12th Int. Workshop on the Algo-

rithmic Foundations of Robotics, 2016.
[14] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. v. Wichert,

and W. Burgard, “Optimal, sampling-based manipulation planning,” in
Int. Conf. on Robotics and Automation. IEEE, 2017, pp. 3426–3432.

[15] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods
for motion planning with constraints,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 1, pp. 159–185, 2018.
[16] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,

N. Mansard, and F. Lamiraux, “HPP: A new software for constrained
motion planning,” in Int. Conf. on Intelligent Robots and Systems,
2016.

[17] J. Mirabel and F. Lamiraux, “Handling implicit and explicit constraints
in manipulation planning,” in Robotics: Science and Systems, 2018.

[18] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential
composition of dynamically dexterous robot behaviors,” The Int.

Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.
[19] H. I. Bozma and D. E. Koditschek, “Assembly as a noncooperative

game of its pieces: analysis of 1d sphere assemblies,” Robotica,
vol. 19, no. 1, pp. 93–108, 2001.

[20] C. Karagoz, H. I. Bozma, and D. E. Koditschek, “Feedback-based
event-driven parts moving,” Transactions on Robotics, vol. 20, no. 6,
pp. 1012–1018, 2004.

[21] V. Vasilopoulos, T. T. Topping, W. Vega-Brown, N. Roy, and D. E.
Koditschek, “Sensor-based reactive execution of symbolic rearrange-
ment plans by a legged mobile manipulator,” in Int. Conf. on Intelligent

Robots and Systems., 2018.
[22] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-

dynamic motion planning with moving obstacles,” The Int. Journal of

Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.
[23] T. De Laet and J. De Schutter, “Constraint-based control of sensor-

based robot systems with uncertain geometry,” Department of Me-
chanical Engineering, KU Leuven, Tech. Rep., 2007.

[24] T. Kröger and F. M. Wahl, “Online trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE

Transactions on Robotics, vol. 26, no. 1, pp. 94–111, 2010.

