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Abstract— When robots perform manipulation tasks, they
need to determine their own movement, as well as how to make
and break contact with objects in their environment. Reasoning
about the motions of robots and objects simultaneously leads
to a constrained planning problem in a high-dimensional state-
space. Additionally, when environments change dynamically
motions must be computed in real-time.

To this end, we propose a feedback planner for manipula-
tion. We model manipulation as constrained motion and use
this model to automatically derive a set of constraint-based
controllers. These controllers are used in a switching-control
scheme, where the active controller is chosen by a reinforce-
ment learning agent. Our approach is capable of addressing
tasks with second-order dynamics, closed kinematic chains,
and time-variant environments. We validated our approach in
simulation and on a real, dual-arm robot. Extensive simulation
of three distinct robots and tasks show a significant increase in
robustness compared to a previous approach.

I. INTRODUCTION

In industrial applications, such as assembly or logistics,

many tasks involve manipulating objects. To automate these

tasks with robots the positions of objects are typically fixed

and the motions of robots are hard-coded for the applica-

tion. When environments are less structured or even change

dynamically this approach is not viable and robots must

compute their motion autonomously. Manipulation requires

multiple motions of the robot that involve making and

breaking contact with the manipulated objects. This sequence

of interdependent motions poses a challenging problem for

the following reasons:

1) Variety of tasks and constraints: Consider opening

a door with a mobile manipulator or picking an ob-

ject from a moving conveyor belt. These exemplary

tasks stress the importance of models that can capture

the constraints of entirely different applications, e. g.,

closed kinematic chains and time-variance.

2) Interdependencies of motions and contacts: The

motion of robots and objects is constrained by contact

dynamics. When grasped, an object moves along with

a gripper. When placed, it does not move at all.

This leads to a problem with discrete and continuous

variables, where subtle differences can require entirely

different motions. In Fig. 1, the task of a mobile robot

is to operate a lever and a valve. If the robot was on

the other side of the door this could be done without

the additional step of opening the door.
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Fig. 1. A manipulation planning problem: A mobile manipulator has to
operate a valve and a lever. To do so, a door that blocks the path must be
opened first. As additional constraint, the head-mounted camera must point
at the lever, door, or valve respectively while they are being manipulated.

3) Need for real-time reaction: Robots are dynamic

systems and in an increasing number of applications

their environments change dynamically as well. Acting

in dynamic settings requires closed-loop operation of

the robot, i. e., changing action sequences and motions

during execution.

Constraint-based task-specification and control [1] ad-

dresses the need for real-time control based on generic

models for a large variety of tasks. Manipulation planning [2]

resolves the interdependencies of motions and contacts along

a task. In our previous work [3] we proposed a feedback

planner that operates on a constraint-based planning problem

and addresses all three challenges. However, the resulting

feedback plan is only robust against local deviations of a

nominal plan, e. g., it is not possible to react to a part that

is accidentally dropped by the robot. Frequent re-planning

is not a viable approach since sampling-based planners have

a non-deterministic planning time which is problematic for

real-time applications.

The contribution of this paper is a feedback planner that

computes a global mapping of states to actions for a given

manipulation problem. This mapping is then evaluated online

in deterministic time to enable a controlled manipulation.

Our approach uses a recently proposed, highly general

constraint-based model for manipulation tasks [3, 4]. From

this model we derive a set of constraint-based controllers

that serves as a discrete action-set for a reinforcement

learning agent that is trained in simulation. During execution,

this agent decides which controller to activate. Extensive

simulated experiments validate the increased robustness of

our approach for three distinct robots and tasks.



II. RELATED WORK

Manipulation requires complex motions and interactions

of robots and objects that vary considerably from task to task.

Constraint-based task specification and control [1] addresses

this by establishing a systematic approach to program such

motions. Tasks are specified as constraints on quantities of

interest, e. g., sensor readings or Cartesian degrees of free-

dom of an end-effector. From these constraints controllers are

derived automatically. Several extensions to this framework

have been developed, such as the inclusion of inequality

constraints [5] and geometric path constraints [6]. With the

eTaSL/eTC framework [7] the definition of such constraints

is done via a graph-structure of computational expressions.

This enables to efficiently program complex multi-robot mo-

tions with online collision avoidance. However, manipulation

requires a sequence of interdependent motions and actions.

This interdependency is addressed with manipulation plan-

ning [2], where motions of robots and objects are computed

simultaneously. As manipulation requires reasoning about

high-dimensional configuration-spaces, sampling based ap-

proaches [8]–[10] have shown good empirical performance.

Several extensions have been proposed, such as heuristic

guidance for large scale planning problems [11, 12] and

optimal planners [13, 14].

A shared limitation of these manipulation planners is

that it is difficult to adapt them to new domains or to

incorporate new constraints to a given domain. This is due

to the fact, that these planners rely on problem-specific

sampling algorithms and sometimes also steering functions.

A more generic approach to planning is to model manip-

ulation as constrained motion, where constraints arise due

to contacts [15]. An overview of sampling-based planning

methods for such constrained motion can be found in [16].

Mirabel and Lamiraux [4] present the constraint graph as

a systematic approach to model different contact states of

manipulation and the resulting constraints. Furthermore, a

planner is proposed that operates on this model.

The planners discussed so far compute trajectories that

solve a planning problem but assume a known and static en-

vironment. These trajectories do therefore not encode how to

react to unforeseen disturbances. In [17] a feedback planner

is presented for one-dimensional manipulation problems and

extended to two dimensions in [18]. For two-dimensional

manipulation problems and a spherical robot [19] presents

a feedback planner that is able to react online to previously

unknown obstacles. In our previous work we propose the

dynamic constraint-graph [3] as a novel domain model for

manipulation planning. This model extends the constraint-

graph [4] to second-order dynamics and time-variant sys-

tems. From this model, constraint-based controllers are de-

rived and sequenced by a planner. This results in reactive

plans that scale to a dual robot scenario with a total of 14

axes. However, the feedback plans of this approach are only

locally robust around a nominal trajectory.

A different approach to construct a feedback policy for

manipulation is to train a reinforcement learning agent within

a physics simulator. Two recent successes can be found

in [20] and [21]. Reinforcement learning can capture com-

plex, long-term interdependencies of the decision problem

and operates, by construction, in real-time. However, the task

specification of reinforcement learning is a reward function,

which makes the implementation of hard constraints, like

collision-avoidance or precise grasping, difficult.

The approach we present in this paper unifies the strengths

of the previously discussed lines of research. As in [3]

and [4] we utilize a highly general, constraint-based model

to describe the task of a robot. From this model a set of

constraint-based controllers is derived, that serve as high-

frequency, low-level controllers. The long term reasoning

about the sequence of motions and actions is performed by

a reinforcement learning agent at a lower frequency. This

agent switches, in deterministic time, between the different

controllers to achieve its goal.

III. PROBLEM STATEMENT AND NOTATION

The domain model of this paper is a variation of the

dynamic constraint-graph [3] with a simplified notation. We

use the setup and task depicted in Fig. 1 as a running example

to explain this model.

We denote a configuration of a system as q ∈ R
n and

its velocity as q̇. In the example of Fig. 1, q comprises 23

values: three for the mobile base, 15 for the torso and the

arms, two for the head and one each for the hinges of lever,

valve, and door. Time is denoted as t.

In manipulation, the motion of robots and objects is

constrained by contacts. A discrete mode σ ∈ Σ encodes

the contact-state of the system and the constraints on con-

figurations. Σ is the finite set of modes. In the example, the

door, lever, and valve may be in an open or closed position.

Also, at most one of the three may be manipulated by the

robot at the same time. Since we predetermine the grippers

to be used this results in |Σ| = 20 modes in the example.

Each mode σ determines constraints on configurations via

the elements of the vector-valued function fσ:

fσ(q, t) ≤ 0. (1)

This may include equality constraints which can be rep-

resented as two inequalities with different signs. In the

example, when the robot manipulates the lever its gripper

must be at a fixed pose relative to the lever. Examples

for inequality constraints include limits on axis-positions or

distances between geometric bodies for collision-avoidance.

The constraints may be time-dependent, e. g., when a con-

veyor belt is part of the environment.

Additionally, a mode encodes constraints on velocities via

the elements of vσ:

d
dt
vσ(q, t) ≤ 0. (2)

When a robot grasps an object, the relative velocity of gripper

and object must be zero. Maximal velocities of robot-axes

form velocity-inequality constraints.
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Fig. 2. Model for a manipulation task of moving a lever: Three planes visu-
alize Vσ for different modes. Initially the lever is in a closed position (σA)
and the robot is not holding it. Thus, the lever does not move regardless of
the robot’s motion. At the intersection of VσA

and VσB
the lever can be

grasped. When grasped (mode σB) the lever moves along with the robot.
Within mode σC the lever is released in a different position. The thick line
shows a solution trajectory from a start state sstart to the goal region Sgoal.

The functions fσ and vσ are vector-valued, continuous,

and piecewise twice-differentiable. As each mode may im-

pose different numbers of constraints we omit the dimensions

of the constraint functions for brevity. The modes and

constraints can be constructed automatically as shown in [4].

The full state of a system s = (q, q̇, t) comprises posi-

tions, velocities, and time. We assume that this state is known

to the system. For a mode σ we denote the corresponding set

of valid states Vσ as the set of states, for which equations (1)

and (2) are fulfilled. The complete set of valid states V is

thus the union V =
⋃

σ∈Σ

Vσ .

Given a start state sstart ∈ V the goal for a system is now

to reach a state within a goal-set Sgoal ⊂ V on a continuous,

twice time-differentiable path without leaving the set of valid

states V . Fig. 2 shows such a motion for manipulating a lever.

As we aim to enable a reactive execution of plans the goal

for a planner is to find a controller k of the following form:

q̈ = k(q, q̇, t) = k(s), (3)

with q̈min ≤ q̈ ≤ q̈max. (4)

For all start-states sstart ∈ V for which a valid motion

through V towards Sgoal exists, this controller must produce

such a motion.

Several aspects of our domain model should be noted.

First, the output of the controller q̈ contains quantities that

are controllable, such as the axis-positions of the robot, and

possibly uncontrollable quantities, such as the position of

the lever. However, the constraints of equations (1) and (2)

force q̈ on physically plausible trajectories. Second, on a

physical robot additional actions, such as opening or closing

grippers, are required to switch from one mode to another.

We assume, that these actions occur automatically and in-

stantaneously and are thus not part of the planning domain.

Finally, all constraints on valid motions, including collision-

avoidance, are part of equations (1), (2), and (4).

IV. FEEDBACK PLANNING FOR MANIPULATION

In this section we explain the proposed feedback planner.

To simplify notation we assume that our system keeps track

of the current contact-state and thus mode. This mode is

written as a function σ(s) that takes the current system state s

as input. In a scenario as in Fig. 1 this mode is known to a

real robot via the state of its grippers.

We address feedback planning for manipulation with a

hierarchical control architecture. As in [3] we use the domain

model to automatically derive constraint-based controllers,

in the following referred to as low-level controllers. Two

types of low-level controllers are derived: The first type of

controller kσ′ computes a system-acceleration q̈ = kσ′(s)
that steers the system towards the valid states Vσ′ of

mode σ′ without leaving the set of valid states of the

current mode Vσ(s). This controller is intended to achieve

a mode-switch, e. g., make the system grasp or place an

object. The second type of controller kq′ steers the system

towards a given configuration q′, again without leaving the

valid states of the current mode Vσ(s). The purpose of this

type of controller is to drive the system around obstacles.

Constructing these controllers is a non-trivial task, as they

need to consider their target, the second order dynamics, and

the possibly time-variant constraints of the current mode.

How to construct them will be explained in Section IV-A.

A high-level controller chooses which of the low-level

controllers is active to control the system. This is done by

framing the selection of the active controller as a reinforce-

ment learning problem as described in Section IV-B. Fig. 3

visualizes a phase-portrait of the complete control scheme.

A. Low-Level Controller Synthesis

In the following we explain the construction of the con-

trollers kσ′ for mode switches and kq′ for motions to random

targets. The construction of these controllers is identical

to that of [3]. We restate this controller-synthesis with the

notation of this paper to make this work self-contained. For

brevity we omit how the velocity-constraints of equation (2)

are integrated into the controller synthesis.

The low-level controllers build on the eTC controller [7].

Our control-architecture switches between different low-level

controllers during motion. For this reason it is necessary to

use an acceleration-resolved control-scheme similar to [22]

to prevent discontinuities in the robot’s velocity.

We first explain how the mode-switching controllers kσ′

operate. Let us assume our system is at a valid

state s = (q, q̇, t), within mode σ and should move to the

valid states Vσ′ of mode σ′. We need to compute an

acceleration q̈ that steers the system towards Vσ′ without

leaving Vσ . This can be achieved with accelerations q̈ that

result in the following desired dynamics of the constraint

functions fσ and fσ′ :

f̈σ ≤ −Kfσ
p fσ −K

fσ
d ḟσ,

f̈σ′ ≤ −Kfσ′
p fσ′ −K

fσ′

d ḟσ′ ,
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Fig. 3. Constraint-based controllers and construction of the feedback plan (same task of manipulating a lever as in Fig. 2): The upper-left image shows the
phase-portrait of a random target controller kq1 that steers to a target configuration q1 (only drawn for VσA

and VσC
). In the upper-right and lower-left

image two mode-switching controllers kσB
and kσC

are shown. The complete feedback plan is obtained by switching between these controllers. This
controller is shown in the lower-right image. The thick line visualizes a trajectory of the system towards the goal. For this trajectory a sequence of four
active controllers is used: 1: The random target controller kq1 steers around the C-shaped obstacle. 2: kσB

steers towards a grasp pose. 3: kσC
is used

to move and then release the lever at its new position. 4: kq1 is used again to steer towards the goal region.

with f∗, ḟ∗, and f̈∗ being the value and time-derivatives of f∗
for a given state (q, q̇, t) and acceleration q̈. The matrices K∗

p

and K∗
d are diagonal and chosen to achieve stable and at least

critically damped dynamics. The reasoning of this approach

is: If each vector-element of the constraint-functions follows

its own decoupled, stable, and properly damped behavior,

eventually all constraints will converge to or stay below

zero. As the initial state s is already within Vσ it will stay

within Vσ .

Typically, the desired dynamics of fσ and fσ′ cannot be

obtained at the same time. For this reason we relax the

dynamics of fσ′ with slack variables ǫ. This leads to the

relaxed, linearized dynamics:

f̈σ,0 +
∂f̈σ

∂q̈
q̈ ≤ −Kfσ

p fσ −K
fσ
d ḟσ,

f̈σ′,0 +
∂f̈σ′

∂q̈
q̈ ≤ −Kfσ′

p fσ′ −K
fσ′

d ḟσ′ + ǫ,

(5)

where f̈∗,0 denotes the second-order time-derivative of f∗
with zero acceleration q̈ = 0. The acceleration q̈ is now

computed via a quadratic program:

minimize
x

x⊤Hx

subject to LA ≤ Ax ≤ UA

L ≤ x ≤ U.

(6)

The optimization variable x = [q̈, ǫ]
⊤

comprises the acceler-

ations q̈ and slack variables ǫ. The matrix H is diagonal with

positive weights for the accelerations and the slack variables.

L and U contain the limits on acceleration of equation (4).

The vectors LA, UA and the matrix A are derived from the

relaxed, desired dynamics in equation (5).

The result of this optimization ensures that the constraints

of the current mode σ will not be violated. Remaining

degrees of freedom are used to achieve the target dynamics

of fσ′ while also using as little acceleration as possible.

The construction of the random target controllers kq′

proceeds similarly. Given a target configuration q′ we replace

the constraints fσ′ with equality constraints fq′ :

q − q′ ≤ fq′(q, t) ≤ q − q′.

Other than that the random target controllers operate identi-

cally to the mode switching controllers.

B. High-Level Controller Synthesis

The idea behind the high-level controller is to create a

finite set of low-level controllers and then switch between

them as needed. As the set of modes is finite, there exist

only |Σ| different mode-switching controllers kσ′ . However,

a continuous set of controllers kq′ with a configuration q′

as target could be constructed. For this reason, we sam-

ple Nr ∈ N random configurations {q1, ..., qNr
} as targets

for Nr controllers. These random configurations do not need

to be valid configurations. This leads to a finite set of

controllers K with |K| = |Σ|+Nr:

K = {k1, ..., kn} = {kσ1
, ..., kσ|Σ|

, kq1 , ..., kqNr
}.

The high-level controller operates with a control cy-

cle ∆t and should bring the system into a goal state

within the shortest possible time. This results in a short-

est path problem with a continuous state-space, discrete

time-steps (∆t) and a discrete action-set (which con-

troller in K to activate). The evolution of the time-

discrete state si = (qi, q̇i, ti) follows the state-transition



function si+1 = T (si, ai), where ai ∈ {1, ..., |K|} is the

index of the active controller. This state-transition function T

simply integrates q̈ = kai
(q, q̇, t) twice over the time-interval

from ti to ti+1 = ti +∆t. In case a mode-switching con-

troller was used and the constraints fσ′ of the target mode σ′

are fulfilled within a numerical tolerance, we assume that the

tracked mode σ(s) switches to σ′.

The goal for the high-level controller is now to find a

sequence of actions {a0, a1, ..., aend} that leads from the

current state to the goal-region Sgoal in a minimum number

of steps. It is important to note that the high-level controller

is not responsible for any validity checks on the result

of applying a low-level controller. All safety requirements,

such as collision avoidance, are addressed by the low-

level controllers. Even though time and the action-space are

discretized this shortest path problem is still challenging

due to the continuous and high-dimensional configuration-

space. We address this by formulating the problem as a

reinforcement learning problem in which each action yields

a negative reward of −1 and termination occurs in the goal

set Sgoal. This means that the rewards of the reinforcement

learning problem are sparse. The sparsity of rewards is com-

pensated by the comparatively powerful low-level controllers

that enable to effectively explore the constraint-manifolds.

A policy is trained in simulation to form the high-level

controller. For this simulation it is sufficient to integrate

the accelerations computed by the active controller. Due

to the continuous state-space and finite action-space the

Deep-Q-Networks (DQN) of [23] are a suitable learning

method and were chosen for our approach. We use the full

state s = (q, q̇, t) as well as a one-hot encoding of the current

mode σ(s) as input to this network. The control flow of our

architecture can be seen in Fig. 4. As the controllers can

be simulated several times faster than required for real-time

execution and simultaneously in multiple threads, we use a

policy roll-out during execution to further stabilize the policy.

An implication of using only a finite number of random

target controllers is that the approach may be incomplete

for a planning problem given a choice of random targets.

Adapting our method to incorporate policy gradient methods

with continuous action-spaces for the high level controller

could address this. However, it is important to note that the

random targets have a different purpose than, e. g., random

samples in a probabilistic roadmap planner [24]. Typically,

the system cannot reach a random target within one cycle of

the high-level controller, if it can reach it at all. Therefore,

the samples serve as directions in configuration-space along

which the random target controllers may steer the system.

This means that even with a low number of targets Nr, the

high-level controller is typically able to move the system on

a rich set of trajectories.

Why do we use reinforcement learning to construct the

high-level controller? Other methods, such as composing

funnels [25] could be used to construct a feedback controller.

The reasoning is that these methods require us to estimate a

region of attraction for a controller, i. e., to perform computa-

tions that essentially go backwards in time. For manipulation

t q q̇

q̈

∫
dt

∫
dts=(q, q̇, t)
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Fig. 4. Control flow of the hierarchical controller: Given a current state s

the block H(s) produces a one-hot encoding of the current mode σ(s).
This encoding as well as the state s itself form the input to a deep-Q-
network (DQN) that computes the state-action values Q(s, a) of selecting a
controller ka. The controller with the maximal state-action value is selected
and its output is used as the new system acceleration q̈. This acceleration
is integrated twice to close the loop.

this is problematic due to the so called crossed foliation

issue [4]. For nearly all pairs of valid configurations there

exists no connecting path that does not involve at least one

mode switch. This makes the computation (or even defini-

tion) of regions of attraction difficult. Reinforcement learning

bypasses this by only requiring forward simulations. In our

previous work [3] we address this by using a kinodynamic

planner that also has no need for backwards computations.

V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation Details

a) Low Level Controller: The definition of the con-

straints (1) and (2), the computation of all required deriva-

tives, and the solution of the quadratic program (6) is based

on the eTaSL/eTC framework [7]. The entries of the diagonal

matrices K∗
p and K∗

d are chosen equally for all constraints.

We chose the entries such that each individual constraint

achieves a critically damped behavior with a time-constant

of 0.2 s. The low-level controllers operate at a rate of 200Hz.

We set the weights for the matrix H to 0.001 for the accel-

erations and to 1.0 for the slack variables. To prevent erratic

null-space motions we add soft-constraints (weight=0.001)

to achieve zero axis-velocities to all controllers. The number

of random-target controllers Nr was chosen as 20.

b) High Level Controller: The focus of this paper

is not on reinforcement learning but uses it as a tool to

create the high-level controller. For this reason, the network

architecture and the training were designed to minimize

implementation and debugging efforts.

As the ideal depth of the neural network is likely to

be different for different tasks, we chose the ResNet [26]
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Fig. 5. DUAL-Task: The cube on the left must be placed on the right side of the setup. To do so, the left robot must grasp the cube and hand it to the
right robot through a window in a wall. DELTA-Task: A delta-robot must grasp three boxes from rotating carriers and place them on a conveyor belt. Both
for grasping and releasing the boxes the robot must synchronize its movement to the time-variant environment.

architecture for the main body of the neural network. This

architecture is designed to allow the network to mimic the

behavior of more shallow networks if needed. The first layer

of our network is a dense layer with 64 units followed

by six ResNet bocks, each with two 64 unit dense layers

and ELU activations [27]. As the high-level controller has a

considerable action-space (|Σ| + Nr = 20 + 20 actions for

the example in Fig. 1) training is suffering from the typical

over-estimation of Q-learning. For this reason we employ

the combination of the final Dueling-Layer and double Q-

learning as presented in [28]. The total number of hidden

layers is thus 13.

We strictly separate between data generation and learning.

Data generation is done with 104 episodes with valid, random

start-states and at most 1000 steps of random actions per

episode. As a mode-switch requires some time for the

controllers to converge, we randomly repeat actions between

zero and ten times. The frequency of the high-level controller

was chosen as 1Hz. We use the resulting data set as one large

replay buffer without running new episodes during training.

The discount rate was set to γ = 0.95. We optimize

the weights of the network with the Adam optimizer [29]

with a learning-rate of 10−4, its parameters β1 = 0.9
and β2 = 0.999, and a batch size of 320. The weights of

the target network are updated after one epoch through the

entire data set and we train for a total of 100 epochs. For the

policy roll-out we use four actions with the highest Q-values

and perform a roll-out of four time steps, i. e., a total of four

simulated seconds.

B. Experimental Setup

To evaluate our approach we designed three differ-

ent manipulation-tasks as benchmarks. All benchmarks in-

volve motion through high-dimensional state-spaces with at

least 20 degrees of freedom.

The DUAL task requires a dual-arm robot to transport

a cube as shown in Fig. 5. It is designed to incorpo-

rate the typical interdependencies between motions, grasps,

and placements of manipulation planning. The gap in the

wall is 30 cm wide and thus forms a narrow tunnel in

configuration-space. This poses a difficult motion planning

problem as well.

In the DELTA task a delta-robot has to pick three boxes

from rotating carriers and place them on a conveyor. This

benchmark includes closed kinematic chains, multiple ob-

jects, and a time-variant environment. To pick or to place

the boxes the robot must synchronize its motion with the

carriers or the conveyor respectively.

The PR2 task is shown in Fig. 1 and consists of a PR2

robot that must operate a lever and a valve. To reach lever

and valve a door that blocks the way must be opened first.

While the PR2 is manipulating either lever, valve, or door its

head-mounted camera must point at the manipulated object.

This benchmark is created to verify that our approach can

address problems other than pick-and-place.

For these benchmarks we implemented the proposed ap-

proach as well as the planner of our previous work in [3].

This planner is the only previous approach we are aware

of that computes feedback plans for manipulation with

articulated robots. We refer to this planner as the ”constraint

planner” in this section. Before the experiments, we generate

ten sets of random targets and corresponding simulated

training datasets for each benchmark. This is used to train ten

DQNs per benchmark. Training multiple DQNs is necessary

for the evaluation as the set of random targets, the training

dataset, and the initial network weights are random variables.

The experiments are designed to assess the robustness

against disturbances in the configuration q and the quality of

the computed solutions. To evaluate the robustness of both

approaches we proceed as follows: For the constraint planner

we randomly sample a valid initial state and compute a plan.

Then a second random and valid state within the same mode

is sampled and the plan is executed for this disturbed state.

It is necessary to sample a state within the same mode since

the constraint planner, unlike the proposed approach, cannot

react to an unexpected mode change. Each trained agent of

our approach is also run on a random, valid initial state (our

approach does not need to plan once a policy is trained). As



TABLE I

SUCCESS RATES - DISTURBED EXECUTION

Benchmark DUAL DELTA PR2

proposed approach max 100% 100% 100%

10 different DQNs median 99.5% 100% 100%

mean 98.1% 99.9% 98.5%

min 93.0% 99.0% 86.0%

constraint planner [3] 11% 97% 57%

each benchmark can be solved in less than 20 seconds, we

assume that execution has failed if the goal is not reached

within 60 seconds. Each experiment is repeated 100 times.

They are run on two Intel Xeon 5122 CPUs at 3.6GHz.

C. Results

Table I shows the success rates of the proposed approach

and of the constraint planner for the three benchmarks. As the

ten trained agents per benchmark have different success rates

the maximal, median, average, and minimal success rates

are shown. For each benchmark, at least five trained agents

achieved a 100% success rate. For the DUAL and PR2 tasks

every trained agent is significantly (p-value < 1%) more

robust than the constraint planner. No significant difference

can be observed on the DELTA task as both approaches

have success rates close to 100%. We made the following

observations on the failures of both approaches:

Constraint planner: The typical failure mode for the DUAL

task of the constraint planner is to get stuck in an axis

limit. For the PR2 task the constraint planner is prone to get

the PR2’s arms tangled and cannot proceed due to collision

constraints. It should be noted that the random initial states

used for execution are sampled globally within the valid

set of states that are within the start mode (not just local

disturbances). In the DELTA task the last joint of the delta-

robot is continuous and thus has no relevant axis-limit and

the collision geometry is mostly convex. For this reason

the constraint planner succeeds with high probability during

disturbed execution.

Proposed approach: The failures of the proposed approach

we observed are due to cyclic switching between different

low-level controllers. This occurred mostly during the hand-

over of the dual-arm robot, where the trained agent alternates

between different controllers that attempt to switch to differ-

ent grasp modes. These infinite cycles mean that the high-

level controller does not ”pull through” with a mode switch.

This indicates that more sophisticated training methods could

further increase robustness.

Table II shows the execution times for the three bench-

marks. Additionally the planning times and combined plan-

ning and execution times of the constraint planner are shown.

The constraint planner is not an optimizing planner and

returns the first solution it finds. In contrast the reinforce-

ment learning that forms the high-level controller of our

approach aims at a time-optimal policy (for the given set

of controllers). If the training had converged to the global

optimum one would expect a clear advantage of the proposed

approach.

TABLE II

AVERAGE EXECUTION TIME IN SECONDS

Benchmark DUAL DELTA PR2

proposed approach max 20.1 19.5 19.4

10 different DQNs median 16.7 14.7 19.2

mean 16.8 15.1 19.1

min 13.4 13.0 18.9

constraint execution time 13.7 16.0 20.8

planner [3] planning time 3.83 4.58 2.44

planning + execution 17.6 20.6 23.2

Fig. 6. Real-world experiment with online collision avoidance for the
DUAL task: During execution, we add additional constraints to avoid an
obstacle that is detected via markers.

The results in Table II show, that this is not consistently

the case. For the DUAL and DELTA tasks there are trained

agents of the proposed approach with both better and worse

average execution times compared to the constraint planner.

Only for the PR2 task our approach has consistently bet-

ter performance. The observed behavior that causes these

inefficiencies is again brief oscillations between low-level

controllers.

When comparing the execution times of the proposed

approach with the combined planning and execution times of

the constraint planner the results are, on average, in favor of

the proposed approach. It should however be noted that our

approach requires that data generation and network training

can be done offline ahead of the actual execution. For the

benchmarks the combination of data generation and network

training took between 4.5 hours and 25 hours.

In addition we conducted two qualitative experiments. As

in [3] we can use the low-level controllers to add additional

constraints at runtime. We use this for online collision

avoidance in the DUAL task on a real robot as shown in

Fig. 6. While the high-level controller does not know about

these modifications, the low-level controllers will still avoid

collisions while respecting the constraints of the task.

As second qualitative experiments we execute the DUAL

task in simulation with an additional disturbance. Two sec-

onds after the cube is picked up by the left robot we

place it back on the surface to simulate an object that is

accidentally dropped. As the high-level controller provides a

global mapping between state and active controller it should



react and pick up the dropped object again.

The accompanying video shows all benchmarks as well

as the two qualitative experiments. In the qualitative experi-

ments the collision avoidance and the reaction to the dropped

part operated as intended.

VI. CONCLUSION

This paper introduced a novel feedback planner for con-

strained manipulation tasks. Our planner operates on a re-

cently proposed, constraint-based model. From this model a

set of constraint-based controllers is derived. This set serves

as discrete action-space for a reinforcement learning agent

that switches between controllers. The agent is trained offline

in simulation and encodes a global mapping of states to robot

accelerations for online control.

The advantage of this approach is that the system can

react online and in deterministic time to disturbances. This

includes reactions to a change of the contact-state, e. g.,

re-grasping an object that is accidentally dropped. As the

constraint-based controllers are derived from the underlying

domain model, safety-invariants, such as collision avoidance,

are fulfilled by the controllers. This also holds for states

to which the reinforcement learning does not generalize.

Simulated experiments of three distinct robots and tasks

show that the proposed method leads to a significant increase

in robustness compared to an existing approach.

A current limitation of our approach is that both action-

space and state-space of the reinforcement learning agent

grow linearly with the number of discrete modes, which

again grows exponentially with the number of manipulated

objects. Hence, a promising avenue for future research is to

investigate different representations of these spaces as well

as policy gradient methods to directly address a continuous

action-space.
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