
Planning and Control for Industrial
Manipulation

Philipp Sebastian Schmitt

Technische Fakultät

Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades

Doktor-Ingenieur

Betreuer: Prof. Dr. Wolfram Burgard

Planning and Control for Industrial
Manipulation

Philipp Sebastian Schmitt

Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur

Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan Prof. Dr. Rolf Backofen

Erstgutachter Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg

Zweitgutachter Prof. Dr. Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

Tag der Disputation 15. 12. 2020

Abstract

Manipulation tasks that are done manually today are likely automated tomorrow using

robots. These tasks include industrial applications such as assembly or logistics. Potential

applications also include robotic manipulators in households or in healthcare. The state-of-

the-art approach to automate manipulation is to hold the manipulated objects in precise

fixtures or part-feeders and to explicitly predetermine all motions of the robot. This

approach is not viable when tasks or environments change frequently. A manipulation

task might even be encountered only once. In these scenarios, the robot must compute its

motions autonomously.

Computing motions and actions for manipulation is a challenging task for several reasons.

The main difficulty arises due to the sequential interdependence of the motions of robots,

the motions of manipulated objects, and the interactions of robots and objects. Consider

the problem of putting an object into a box using a robot. To do so, the object must be

grasped by the robot and moved into the box. However, the way the object is placed into

the box constrains the way the object can be grasped as the robotic gripper should not

collide with the box. As a result, the motions of the robot and the object must be computed

simultaneously. This problem is called manipulation planning. Manipulation planning

involves reasoning about high-dimensional state spaces with both continuous and discrete

variables. In some applications it is important to minimize the cycle times of manipulation

tasks. This is especially important in the context of industrial automation. For this reason,

manipulation planners should, ideally, compute optimal motions for robots and objects.

There exists a vast variety of different robots, manipulation tasks, and interactions between

robots and objects. It is therefore necessary to employ models, that capture the constraints

of this variety of planning problems. Finally, when the environments of robots change

dynamically, motions and actions must be adapted online and in real-time.

The contributions of this thesis are algorithmic techniques to address these challenges

of manipulation:

(1) We propose an asymptotically optimal, sampling-based manipulation planner. This

planner efficiently computes high-quality solutions to realistic manipulation problems. We

prove probabilistic completeness and asymptotic optimality under a novel set of robustness

conditions.

(2) To address the variety of manipulation tasks, we propose a novel, constraint-based

model for manipulation. This model captures properties of manipulation tasks, such as

closed kinematic chains and time-variant environments. From this model we automatically

vi

derive constraint-based motion controllers and propose algorithms for feedback planning

that utilize these controllers. This enables manipulation where robots react in real-time

to estimates of the environment. Examples include reactions to measurements of object

poses and detected obstacles.

(3) Finally, we propose models and algorithms to include additional process steps within

manipulation. An example for such a process step would be joining two parts during

assembly. These processes are modeled as robotic skills. A sequence of skills and their

parameters are computed by a novel and asymptotically optimal task and motion planner.

This approach enables to automate complex, industrial assembly and is demonstrated with

the assembly of an electrical switching cabinet.

We evaluated all proposed approaches in extensive simulated experiments and on real

robots. For the optimal planners, the experiments support the optimality guarantees and

show significant improvements with respect to state-of-the-art planners.

Zusammenfassung

In vielen industriellen Automatisierungslösungen werden Gegenstände von Robotern ma-

nipuliert. Beispiele hierfür sind Montage oder Intralogistik. Die gängige Methode die

Bewegungen der Roboter zu programmieren, ist der sogenannte Teach-In. Dabei werden

die zu manipulierenden Objekte in präzisen Fixturen oder Teilezuführungen bereitgestellt.

Alle Zwischenpunkte der Bewegungen des Roboters werden einmal angefahren, abge-

speichert und für die eigentliche Produktion wieder abgespielt. Dieser Ansatz hat sich für

große Stückzahlen seit Jahrzehnten bewährt, stößt jedoch bei kleinen Stückzahlen schnell

an wirtschaftliche Grenzen. Im Extremfall wird ein Produkt nur einmal hergestellt. In

diesem Fall ist es notwendig, dass der Roboter seine Bewegungen selbst berechnet und

dabei mit weniger strukturierten Umgebungen ohne Fixturen umgehen kann. Insbesondere

kleine und mittelständische Betriebe könnten von einer autonomen Bewegungsgenerierung

profitieren, da hier kleine Losgrößen häufiger auftreten. Manipulatoren die ihre Bewe-

gungen autonom erzeugen könnten zudem in vielen nicht-industriellen Anwendungen

hilfreich sein. Beispiele hierfür sind Haushaltsroboter, Lieferroboter oder Systeme zur

Unterstützung bei Kranken- und Altenpflege. Diese Anwendungen zeichnen sich ebenfalls

durch eine hohe Varianz der Aufgaben und wenig strukturierte Umgebungen aus.

Das Ziel dieser Arbeit ist es innovative Modelle und Algorithmen zu entwickeln, die

es einem Robotersystem ermöglichen autonom Bewegungen für Manipulationsaufgaben

zu erzeugen. Diese sollten die folgenden Randbedingungen erfüllen: (1) Insbesondere

für industrielle Anwendungen sind die Zykluszeiten einer Automatisierungslösung ent-

scheidend. Aus diesem Grund sollte eine autonome Bewegungsgenerierung nicht nur eine

Manipulationsaufgabe lösen, sondern dies mit optimalen Bewegungen erreichen. (2) Es

existiert eine Vielfalt von Robotersystemen, Umgebungen und Manipulationsaufgaben.

Daher ist es entscheidend, dass die Modellierung der Problemstellung über die Kapazität

verfügt diese Vielfalt abzubilden. (3) In manchen Anwendungen ändert sich die Umgebung

des Robotersystems dynamisch. Ein Beispiel hierfür sind Personen die sich gemeinsam mit

einem mobilen Manipulator in einem Warenlager bewegen. Für diese Anwendungen ist

es unerlässlich, dass der Manipulator seine Bewegungen in Echtzeit an die sich ändernde

Umgebung anpasst.

Aus der Zielsetzung und den Randbedingungen dieser Arbeit ergeben sich einige Her-

ausforderungen, die im Folgenden anhand von Beispielen erläutert werden. Betrachten wir

einen Manipulator der ein Objekt in einen Behälter legen soll. Dazu ist es nötig, dass der

Manipulator das Objekt greift, es in den Behälter transportiert und sich danach wieder in

viii

seine Ursprungskonfiguration zurückbewegt. Zum Ablegen des Objekts ist es nötig, dass

das Objekt zuvor mit der richtigen Orientierung gegriffen wurde, da ansonsten der Manipu-

lator mit dem Behältnis kollidieren würde. Schlussendlich muss sowohl das Aufheben des

Objekts als auch das Ablegen so erfolgen, dass sich der Manipulator kollisionsfrei aus dem

Behältnis zurückziehen kann. Dieses Beispiel illustriert die sequentiellen Abhängigkeiten

von Bewegungen und Prozessschritten, die bei Manipulationsaufgaben entstehen. Um

diese Abhängigkeiten systematisch aufzulösen ist es nötig die gemeinsamen Bewegungen

von Robotern und Objekten über mehrere Schritte hinweg zu planen. Dieses Problem wird

als Manipulationsplanung bezeichnet. Manipulationsplanung findet in hoch-dimensionalen

Zustandsräumen statt und muss sowohl kontinuierliche Größen (Bewegungen, Greif-Posen)

als auch diskrete Variablen (Abfolge von Aktionen) berücksichtigen. Dieses hybride Pla-

nungsproblem ist insbesondere dann anspruchsvoll wenn optimale Lösungen gefordert

sind oder wenn Bewegungen in Echtzeit erzeugt werden müssen. Dies liegt daran, dass

nicht nur eine einzelne Bewegung des Manipulators berechnet werden muss, sondern eine

Sequenz von untereinander abhängigen Bewegungen von Roboter und Objekten.

Um die Vielzahl von existierenden Manipulationsaufgaben darstellen zu können werden

Modelle benötigt, die die Randbedingungen und die Dynamik dieser Aufgaben abbilden.

Typische Randbedingungen sind Achsbegrenzungen oder Kollisionsvermeidung. Je nach

Aufgabe können sich die Randbedingungen aber erheblich unterscheiden. Ein Beispiel

hierfür ist ein Delta-Roboter, der Objekte von einem Förderband greifen soll. Der Roboter

selbst ist hierbei eine geschlossene kinematische Kette, was bei der Planung berücksichtigt

werden muss. Zudem ist die Dynamik der Umgebung zeitvariant aufgrund des sich bewe-

genden Förderbands. Ein weiteres Beispiel ist ein Schweißroboter der Metallteile verbindet.

Das Verbinden der Teile mittels eines Schweißgeräts ist dabei ein Bestandteil der Aufgabe,

der modelliert und ausgeführt werden muss. Allerdings liegt die Wirkung und auch die

Ausführung (Aktivierung des Schweißgeräts) nicht in einer Bewegung des Roboters oder

der Objekte. Es ist daher nötig Modelle zu verwenden, die derartige prozessbezogenen

Eigenschaften einer Aufgabe abbilden können.

Der Beitrag dieser Arbeit sind Modelle und Methoden die autonome Bewegungsgene-

rierung für Manipulation ermöglichen und die zuvor genannten Randbedingungen und

Herausforderungen adressieren. Hierzu stellen wir folgende Ansätze vor:

1. Asymptotisch optimaler Manipulationsplaner: Dieser Planer erweitert einen asym-

ptotisch optimalen Bewegungsplaner, sodass sequentielle Manipulationsaufgaben

optimal gelöst werden können. Unter Annahme von Robustheitseigenschaften be-

weisen wir asymptotische Optimalität. Der Planer berechnet in weniger als einer

Sekunde hochqualitative Bewegungen für ein reales Manipulationsproblem.

2. Generische Modelle für Manipulation und reaktive Planung: Um Manipulation in

dynamischen Umgebungen abzubilden stellen wir ein innovatives Model für Mani-

pulationsprobleme vor. Dieses Modell ist insbesondere dafür geeignet automatisch

ix

Regler zu erstellen die zielgerichtete, reaktive Bewegungen für Manipulation erzeu-

gen. Ein Beispiel hierfür ist ein Regler der einen Roboter ein Objekt greifen lässt.

Dies gilt auch für Systeme mit komplexen Randbedingungen wie geschlossenen

kinematischen Ketten und zeitvarianter Dynamik. Basierend auf dem vorgestellten

Modell und den davon abgeleiteten Reglern stellen wir zwei Planungsansätze vor,

die eine reaktive Manipulationsplanung ermöglichen.

3. Kombinierte Aufgaben- und Bewegungsplanung in einem Skill Framework: Um

Prozess-Schritte abzubilden die nicht ausschließlich aus einer Bewegung bestehen

wird ein innovatives Model von Roboter-Fähigkeiten, sogenannte Skills, vorgestellt.

Ein wesentlicher Aspekt dieser Skills ist es, dass ihre Formulierung es ermöglicht in

einem kombinierten Aufgaben- und Bewegungsplaner verwendet zu werden. Hierbei

werden Skills von einem optimalen Planer aneinander gereiht und parametriert. Dies

geschieht in einer Regelschleife in der kontinuierlich neu geplant wird. Der Ansatz

wird an einer industriellen Schaltschrank-Montage validiert.

Diese Arbeit ist in sechs Kapitel unterteilt. Im ersten Kapitel werden die Problemstel-

lungen anhand von einigen Beispielen motiviert. Zudem werden die Forschungsfragen und

Beiträge der Arbeit erläutert.

Das zweite Kapitel gibt einen Überblick über die Grundlagen auf denen diese Arbeit auf-

baut. Dies beinhaltet die Beschreibung kinematischer Bäume in generalisierten Koordinaten

und die in dieser Arbeit verwendete Notation. Außerdem werden die Sampling-basierte

Bewegungsplanung sowie Manipulationsplanung kurz diskutiert.

Idealerweise sollten Manipulationsaufgaben nicht nur gelöst werden, sondern optima-

le Bewegungen erzeugt werden. Hierzu stellt Kapitel drei einen optimalen, Sampling-

basierten Manipulationsplaner vor. Dieser Planer erweitert einen optimalen Bewegungspla-

ner, sodass der gemeinsame Konfigurationsraum von Roboter und Objekten effizient und

im Grenzwert optimal durchsucht wird. Es wird zudem ein Satz von Robustheitsannahmen

vorgestellt unter denen die asymptotische Optimalität des Planers bewiesen wird. Um die

Planungszeiten zu reduzieren, wird eine generische Strategie vorgestellt, die es ermöglicht

einmal durchgeführte Berechnungen mehrfach zu verwenden. Mit diesem Ansatz werden

in einem realistischen Manipulationsszenario in weniger als einer Sekunde hochqualitative

Bewegungen berechnet.

Wie zuvor diskutiert, existiert eine Vielzahl von Robotersystemen und Manipulationsauf-

gaben. Wenn sich die Umgebung des Roboters dynamisch ändert, müssen die Bewegungen

des Roboters in Echtzeit angepasst werden. Kapitel vier stellt eine generische Modellierung

für Manipulationsaufgaben vor, mit der diese beiden Herausforderungen gelöst werden.

Hierbei ist die wesentliche Idee, automatisch einen Satz von Reglern aus der Modellierung

abzuleiten. Diese Regler erzeugen dabei einzelne, zielgerichtete Bewegungen innerhalb

einer Manipulationssequenz. Beispiele sind Regler, die Objekte aufheben oder ablegen oder

eine Tür öffnen oder schließen. Um die Manipulationsaufgabe zu lösen ist es ausreichend

x

zwischen diesen Reglern umzuschalten. Hierfür stellt Kapitel vier zwei Ansätze vor. Im

ersten Ansatz werden die Regler von einem kinodynamischen Planer in eine lineare Se-

quenz gereit. Das Ergebnis dieses Planers ist keine Trajektorie, sondern eine Sequenz von

Reglern, die bei der Ausführung auf Störungen reagieren. Beispiele für solche Störungen

sind Kollisionskörper, die zur Laufzeit entdeckt werden, oder verschobene Objekte. Ein

wesentlicher Aspekt hierbei ist es, dass die Reaktion der Regler die ursprüngliche Auf-

gabenmodellierung berücksichtigt. Der zweite Ansatz basiert darauf das Umschalten der

Regler als ein Reinforcement Learning Problem zu modellieren. In Simulation kann damit

ein Agent trainiert werden, der in Echtzeit zwischen den einzelnen Reglern umschaltet.

Der Vorteil dieses zweiten Ansatzes ist eine globale Abbildung von Zuständen auf aktive

Regler. Hiermit kann auf größere Störungen reagiert werden. Ein Beispiel ist ein Objekt

das von einem Roboter unbeabsichtigt fallen gelassen wird. Mit diesem Ansatz wird das

Objekt direkt wieder aufgehoben und die Manipulationsaufgabe fortgesetzt.

Für manche Manipulationsaufgaben sind zusätzliche Prozessschritte nötig, die sich nicht

sinnvoll als Planungsproblem über Bewegungen von Robotern und Objekten darstellen

lassen. Ein Anwendungsbeispiel bei dem dies auftritt ist die Montage von elektrischen

Komponenten in einem Schaltschrank. Hierbei werden die Komponenten zwar manipuliert,

müssen aber über eine bestimmte Bewegungsfolge mit dem Schaltschrank oder unter-

einander verbunden werden. Für die praktische Anwendung von Manipulationsplanung

ist es hilfreich dem Planer dieses Vorwissen bereitzustellen. Zu diesem Zweck wird in

Kapitel fünf ein neues Modell für Fähigkeiten des Roboters, sogenannte Skills, vorgestellt.

Dieses Modell ist so gestaltet, dass eine Sequenz von parametrierten Skills von einem

kombinierten Aufgaben- und Bewegungsplaner erstellt werden kann. Der ebenfalls neu

vorgestellte Planer berechnet asymptotisch optimale Sequenzen von Roboterbewegungen

und Skills. Mittels einer informierten Suchstrategie kann diese Planung zur Laufzeit re-

gelmäßig wiederholt werden um den Plan an neue Sensorinformationen anzupassen. In

Experimenten auf einem realen Multi-Roboter-System wurde mit diesem Ansatz ein Teil

einer industriellen Schaltschrank-Montage realisiert.

Im letzten Kapitel werden die Ergebnisse dieser Arbeit zusammengefasst und diskutiert.

Zusätzlich wird ein Ausblick über mögliche zukünftige Forschungsfragen gegeben. Die

Beiträge dieser Arbeit sind die Entwicklung, Analyse und experimentelle Validierung

innovativer Modelle und Planungsmethoden für Manipulation. Dies wird erreicht, indem

Methoden aus den Bereichen Manipulationsplanung, optimale Bewegungsplanung und

Constraint-basierte Aufgabenspezifikation und Regelung integriert und erweitert werden.

Alle entwickelten Ansätze wurden in ausführlichen Experimenten in Simulation und auf

realen Robotern validiert. Für die optimalen Planungsmethoden zeigen diese Experimente

eine signifikante Verbesserung der berechneten Bewegungen gegenüber vorherigen Ansät-

zen. Die Regler-basierten Ansätze dieser Arbeit ermöglichen eine reaktive Manipulation,

die auch in dynamischen Umgebungen eingesetzt werden kann. Hierdurch leistet diese

Arbeit einen Beitrag autonome Manipulation in weiteren Gebieten zu ermöglichen.

Acknowledgements

This work would not have been possible without the support of my colleagues at Siemens

and of Professor Wolfram Burgard at the University of Freiburg. Professor Burgard

supervised this thesis and provided valuable advice that shaped my understanding of

developing algorithms. Georg von Wichert made this work possible and strengthened my

understanding of model-based autonomous systems. I would like to thank my advisor,

Kai Wurm, for his support, especially by shaping and focusing my scientific writing. The

dual-robot setup used throughout this thesis was constructed and maintained together with

my colleagues and friends Vincent Dietrich, Bernd Kast, and Florian Wirnshofer.

I would like to thank the following people for proof-reading earlier versions of this thesis

or the preceding publications: Sebastian Albrecht, Wolfram Burgard, Vincent Dietrich,

Robert Eidenberger, Wendelin Feiten, Bernd Kast, Daniel Meyer-Delius, Werner Neubauer,

Georg von Wichert, Florian Wirnshofer, and Kai Wurm.

The work presented in this thesis was funded and supported by the Siemens AG. Siemens

provided a great work environment with wonderful colleagues and inspiring, industrial use

cases for robotics. Furthermore, Siemens granted access to an excellent robotics laboratory

that enabled the real world experiments presented in this thesis.

Parts of the presented work were funded by the TransFit project. TransFit is funded

by the German Federal Ministry of Economics and Technology (BMWi) according to a

resolution of the German Bundestag, grant no. 50RA1701, 50RA1702, and 50RA1703.

Finally, I would like to thank my family for the love and support throughout the years.

Contents

Abstract v

Zusammenfassung vii

Acknowledgements xi

Contents xiii

1 Introduction 1

1.1 Research Questions . 2

1.2 Key Contributions . 4

1.3 Outline . 5

1.4 Publications . 7

1.5 Notation, Recurring Symbols, and Abbreviations 9

2 Basics 13

2.1 Configurations and Kinematics . 14

2.2 Dynamics . 15

2.3 Constraints on Configurations . 17

2.4 Sampling-Based Motion Planning . 18

2.5 Sampling-Based Planning with Equality Constraints 22

2.6 Manipulation Planning . 24

3 Optimal, Sampling-Based Manipulation Planning 27

3.1 Problem Statement . 29

3.1.1 Planning Problem . 29

3.1.2 Primitive Operations . 31

3.2 Optimal Manipulation Planner . 32

3.2.1 Algorithm . 32

3.2.2 Roadmap Re-Use and Lazy Collision Checking 35

3.2.3 Detailed Illustration of RMR* 36

3.3 Analysis . 44

3.3.1 Computational Complexity . 44

xiv Contents

3.3.2 Completeness and Optimality 44

3.4 Implementation and Experiments . 46

3.4.1 Implementation Details and Experimental Setup 46

3.4.2 Results . 48

3.5 Related Work . 52

3.5.1 Optimal, Sampling-Based Motion Planning 52

3.5.2 Manipulation Planning . 53

3.6 Discussion . 54

3.7 Relation to a Previous Publication by the Author 55

4 Planning and Controlling Manipulation in Dynamic Environments 57

4.1 The Dynamic Constraint Graph . 59

4.2 Automatic Controller Synthesis . 62

4.2.1 Mode Change Controller . 63

4.2.2 Joint Target Controller . 65

4.2.3 Discussion of the Controllers . 66

4.3 Kinodynamic Feedback-Planning for Manipulation 67

4.3.1 Planning Algorithm . 67

4.3.2 Controlled Execution . 69

4.3.3 Implementation Details . 71

4.3.4 Experimental Setup . 71

4.3.5 Results . 73

4.4 Feedback Planning for Manipulation via Q-Learning 75

4.4.1 Learning Algorithm . 75

4.4.2 Implementation Details . 79

4.4.3 Experimental Setup . 79

4.4.4 Results . 81

4.5 Related Work . 83

4.6 Discussion . 86

4.7 Relation to Previous Publications by the Author 87

5 Planning Manipulation for Assembly in a Skill-Framework 89

5.1 Skills for Autonomous Assembly . 91

5.1.1 System State . 92

5.1.2 Skill Model . 93

5.1.3 Detailed Example: Mount Skill 96

5.2 Task and Motion Planning with Skills 98

5.2.1 Primitive Operations and Informal Problem Setting 98

5.2.2 Planning Algorithm . 100

5.2.3 Controlled Execution . 101

Contents xv

5.2.4 Implementation Details and Experimental Setup 102

5.2.5 Results . 103

5.3 Optimal Planning with Skills . 107

5.3.1 Reformulation as Multi-Modal Planning Problem 107

5.3.2 Optimal Planner . 112

5.3.3 Informed, Optimal Planner . 113

5.3.4 Completeness and Optimality 114

5.3.5 Implementation Details and Experimental Setup 116

5.3.6 Results . 118

5.4 Related Work . 121

5.5 Discussion . 124

6 Conclusions 127

6.1 Future Work . 129

Bibliography 135

Chapter 1

Introduction

Autonomous robotic manipulators have the potential to automate or assist a rich variety

of activities in several application domains. Robots that manipulate objects have proven

useful in industrial manufacturing. Examples include assembly, packaging, and logistics.

Also, many non-industrial domains could benefit from robotic manipulation. Robots

in households or care-facilities could support the elderly in manipulation tasks such as

preparing meals. Another field of application lies in areas that are inaccessible to humans.

This includes disaster recovery or space applications. Techniques developed for real world

manipulators could also be used in virtual environments, e. g., to animate non-player

characters in video games.

Most of these applications are out of reach for state-of-the-art methods to program

and deploy robots. Today, the main use of robots is in repetitive tasks in industrial mass

production. To automate these tasks the environments of robots are structured for the task

at hand and the motions of robots are predetermined for each application. Typically, the

manipulated objects are held in precise fixtures or part-feeders. Cages prevent humans

from approaching and thus render the robot’s environment predictable. When the task

changes, the environment of the robot must be restructured and the motions re-programmed.

For small lot sizes this approach is not economically viable. A product could even be

manufactured only once. In environments with less structure, e. g., households, this

approach is not feasible at all. These use cases can only be automated with robots that

autonomously compute their motions to fulfill a manipulation task.

In this thesis we propose and assess novel algorithms for autonomous manipulation. We

aim for robots that effectively and efficiently manipulate objects in a rich variety of tasks

and environments without detailed programming. This is a challenging problem for the

following reasons: In order to manipulate objects, robots must reason about a sequence

of motions and interactions with the manipulated objects. For efficient manipulation, this

reasoning should compute optimal motions. When the environment of a robot changes

dynamically, motions and actions must be adapted in real-time. There is an enormous

variety of robots, end-effector tools, environments, and tasks. Hence, the autonomous

motion generation must be grounded in models that capture this variety.

2 Chapter 1. Introduction

1 2 3

4 5 6

7 8 9

Figure 1.1: A manipulation problem: The task for the robot is to place a cube upside down on the

right table. To reorient the cube it must be (re-)grasped at least twice. The sequence of grasp poses,

placement poses, and the motions of robot and object are interdependent. For example, if the robot

grasps the object with a wrong orientation it cannot be placed correctly with the next motion.

1.1 Research Questions

In the following we motivate our research questions and illustrate their relevance with a

set of examples. Let us consider the exemplary manipulation task depicted in Figure 1.1.

In this example a robot must transport a cube onto a table and place it upside down. A

naive approach to manipulation would be to treat grasping and placing the cube separately.

One could compute a grasp pose, compute a robot configuration that solves the inverse

kinematics problem of positioning the gripper, and then plan a collision free motion towards

that configuration. Once the object is grasped, similar steps are repeated for placing it

again. This naive approach is likely to fail as the sequential robot motions, grasps, and

placements are interdependent. In the example at least two grasps and placements are

necessary to transport and turn the object. To solve this manipulation problem reliably it is

necessary to reason about a sequence of motions of the robot and the object simultaneously.

This is known as manipulation planning.

The interdependencies in a manipulation task do not only have consequences for the

reliability of manipulation but also for its efficiency. For example, if the sequence of

grasps and placements is not chosen well the robot may have to perform large intermediate

motions in order to avoid collisions or axis limits. Cycle times of robotic manipulation are

important, especially in industrial applications. For this reason it would be beneficial if

manipulation planning provided optimal sequences of motions for robots and objects. This

leads to the first research question of this thesis:

Research Question 1: How can a robot compute optimal sequences of motions and

interactions with objects?

1.1. Research Questions 3

Figure 1.2: Reactive manipulation in a dynamic environment: Two robots must transport a cube to

the right side of the setup. A human enters the workspace and is detected via markers. The robots

must avoid collisions in real-time. Avoiding the human must not result in self-collisions of the

robots. If possible, redundant degrees of freedom should be used to continue with the task.

Robots and manipulated objects form dynamic systems. Furthermore, models of these

systems and estimates of their current state are inherently inaccurate. This results in

deviations between the execution of a planned sequence of motions and the original plan.

An open-loop execution of planned trajectories is therefore likely to fail eventually. For

this reason autonomous manipulation benefits from closed-loop, real-time reactions to

disturbances and estimates of a robot’s environment. In some applications the environments

of robots change dynamically as well. An example would be humans and robots that

operate in a shared workspace as shown in Figure 1.2. In these scenarios robots must adapt

their motions to the changing environment in real-time. To be safe and useful a reactive

manipulation must address several challenges. Reacting to external disturbances must not

violate the constraints of the manipulation task. For example, a robot must not violate

its axis limits while avoiding collisions with a human worker. When safety constraints

are fulfilled a robot should use remaining degrees of freedom to continue the execution

of its task. In some cases reactions must include changing the sequence of motions and

interactions with manipulated objects. For example, if an object is accidentally dropped it

must be picked up again before continuing with the task. These challenges are subsumed

in the second research question:

Research Question 2: How can a robot reason about sequences of dynamic motions

and interactions with objects in real-time?

There exists a rich variety of robot kinematics and geometries, end-effectors, envi-

ronments, and manipulation tasks. The combination of hardware setup and task defines

the constraints on safe and goal-directed motions for a manipulator. For this reason it

4 Chapter 1. Introduction

1 2

3 4

Figure 1.3: Constrained manipulation task: A mobile manipulator has to operate a valve and a

lever. It must first open a door that blocks the path. As additional constraint, the head-mounted

camera must point at the lever, door, or valve respectively while they are being manipulated.

is necessary to employ models that can capture these constraints. In many applications

these constraints go beyond what can be modeled as collision free motion planning. An

example can be seen in Figure 1.3. In this example a mobile manipulator has to operate

a door, a valve, and a lever. When the robot manipulates these objects closed kinematic

chains are formed that constrain the motion of the robot and the objects. Additionally, the

head-mounted camera of the robot must point at any object that is currently manipulated.

The choice of a suitable model for these constraints is a challenge for describing tasks,

planning motions, and controlling motions during execution.

Manipulation may also include process steps that cannot be meaningfully modeled as

motions of robots or objects. An example would be an arc welding task in which a robot

has to join parts by moving and activating an arc welding torch. Another example is shown

in Figure 1.4. In this example a dual-arm robot must assemble an electrical component on

a top-hat rail. The robot has to perform a force-controlled assembly that is specific to this

scenario. Both for planning and execution the underlying models must capture this process

related knowledge. This leads to the third research question:

Research Question 3: What models are suitable to describe, plan, and control manipu-

lation?

1.2 Key Contributions

The contributions of this thesis are novel models and algorithms to plan and control robotic

manipulation. Our work integrates and extends the research on manipulation planning,

1.3. Outline 5

1 2

3 4

Figure 1.4: Manipulation with additional process steps: A dual-arm robot must mount an electrical

component onto a top-hat rail. The component must be re-oriented via a handover before the actual

assembly. The force-controlled assembly strategy is a process step that must be included in the

planning domain.

optimal motion planning, and constraint-based task specification and control. The goal is

to make robotic manipulation more flexible, efficient, and reliable. This thesis proposes:

• an asymptotically optimal manipulation planner (Chapter 3),

• a novel and highly flexible domain model for constrained manipulation tasks in

dynamic environments (Chapter 4),

• algorithms to create feedback plans that enable reactive manipulation (Chapter 4),

• an asymptotically optimal task and motion planner (Chapter 5), and

• a control architecture for integrated task and motion planning for industrial manipu-

lation (Chapter 5).

1.3 Outline

The remainder of this thesis is structured as follows. In Chapter 2 we introduce the

background for this thesis. This includes modeling the state of motion of robots and

objects and a brief introduction to sampling-based motion planning and manipulation

planning.

6 Chapter 1. Introduction

When robots perform manipulation tasks autonomously, they need to determine their

own movement, as well as how to grasp and release objects. Reasoning about motions

of robots and objects simultaneously leads to a multi-modal planning problem in a high-

dimensional configuration space. In Chapter 3 we propose an asymptotically optimal

manipulation planner. This approach extends an optimal sampling-based motion planner

to efficiently and optimally explore the configuration space of robots and objects. We intro-

duce a novel set of robustness conditions under which we prove probabilistic completeness

and global, asymptotic optimality. Furthermore, we introduce generic strategies for the

preprocessing of planning problems. This preprocessing allows to re-use computations,

such as collision checks, across different modes of the manipulation problem. Our planner

efficiently computes high quality solutions to realistic manipulation problems. We imple-

mented this approach for a set of typical pick and place scenarios in simulation and on

a real robot. Extensive simulations show that this approach significantly outperforms a

state-of-the-art planner.

In Chapter 4 we propose methods to control motions and interactions with objects in

real-time. This is necessary whenever a robot’s environment changes dynamically. An

important insight of this chapter is that planning complex, constrained manipulation and

reactive execution are both enabled by suitable underlying models. To this end we propose

an innovative model for manipulation problems, the dynamic constraint graph. In this

model the different modes or contact states of manipulation are associated with a set

of constraint functions. These modes form a graph that encodes potential changes in

contact states, e. g., for grasping or releasing objects. This model extends a state-of-the-art

model by incorporating second-order dynamics and time-variance. From this model we

automatically derive a set of constraint-based controllers. Reactive manipulation can then

be implemented by switching between these reactive, low-level controllers. We present

two methods that perform this switching of controllers: one is based on a kinodynamic

planner, the other formulates the selection of the active controller as a reinforcement

learning problem. A key advantage of this approach is that the controllers adhere to

the constraints of the planning domain. For example, when a robot executes a plan and

simultaneously avoids collision with a human worker, it will not cause self-collisions as a

result. We implemented these approaches for several distinct robots, environments, and

tasks. This includes time-variant environments and robots with closed kinematic chains.

In real world experiments the proposed approaches enable sequential manipulation with

real-time reactions to detected obstacles and measurements of object poses.

A key aspect of manipulation is that it often involves process steps that cannot be

meaningfully modeled as motions of robots and rigid objects. Industrial examples are

joining processes such as welding, gluing, or snap fit assemblies. In Chapter 5 we propose

models and planning algorithms to address these processes in industrial manipulation. We

introduce an innovative model of robotic skills, that encapsulates simulation and execution

of motions and process steps. This skill model is designed to be used within a combined

1.4. Publications 7

task and motion planner to create a sequence of parametrized skills as plans. For this

purpose we also propose an asymptotically optimal combined task and motion planner.

Under a set of robustness conditions we proof probabilistic completeness and asymptotic

optimality of the planner. Furthermore, we introduce an informed search strategy that

speeds up planning and convergence towards optimal plans. We implement our skill model

and planner for an industrial assembly use case. In this use case a real robot assembles

electric components on a top-hat rail as typically used in switching cabinets. The efficiency

of the proposed planning approach enables to continuously plan and re-plan sequences of

skills during execution.

We summarize and discuss the results of this thesis in Chapter 6. Additionally, we

provide an outlook of potential avenues for future research.

1.4 Publications

Intermediate results of this thesis have been published in proceedings of peer reviewed

conferences. The contents of these publications were developed in pursuit of this thesis

with the author of this thesis as main contributing author. For this reason contents of

these publications, including text passages and images, are used without further citation

throughout this thesis.

• Planning Reactive Manipulation in Dynamic Environments

P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G.v. Wichert, W. Burgard

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

Best Conference Paper Award - Winner

© IEEE 2019

• Modeling and Planning Manipulation in Dynamic Environments

P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G.v. Wichert, W. Burgard

2019 IEEE International Conference on Robotics and Automation

© IEEE 2019

• Optimal, Sampling-Based Manipulation Planning

P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G.v. Wichert,

W. Burgard

2017 IEEE International Conference on Robotics and Automation

Best Robotic Manipulation Paper Award - Finalist

© IEEE 2017

8 Chapter 1. Introduction

The following list shows publications that resulted from collaborations. Their contents

are not the main focus of this thesis. These publications are cited in this thesis where the

respective contents are used.

• Controlling Contact-Rich Manipulation under Partial Observability

F. Wirnshofer, P. S. Schmitt, G.v. Wichert, W. Burgard

2020 Robotics: Science and Systems

• Hierarchical Planner with Composable Action Models for Asynchronous Par-

allelization of Tasks and Motions

B. Kast, P. S. Schmitt, S. Albrecht, W. Feiten, J. Zhang

2020 IEEE: International Conference on Robotic Computing

• Robust, Compliant Assembly with Elastic Parts and Model Uncertainty

F. Wirnshofer, P. S. Schmitt, P. Meister, G.v. Wichert, W. Burgard

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

• State Estimation in Contact-Rich Manipulation

F. Wirnshofer, P. S. Schmitt, P. Meister, G.v. Wichert, W. Burgard

2019 IEEE International Conference on Robotics and Automation

• Robust, Compliant Assembly via Optimal Belief Space Planning

F. Wirnshofer, P. S. Schmitt, W. Feiten, G.v. Wichert, W. Burgard

2018 IEEE International Conference on Robotics and Automation

• Configuration of Perception Systems via Planning over Factor Graphs

V. Dietrich, B. Kast, P. S. Schmitt, S. Albrecht, M. Fiegert, W. Feiten, M. Beetz

2018 IEEE International Conference on Robotics and Automation

1.5. Notation, Recurring Symbols, and Abbreviations 9

1.5 Notation, Recurring Symbols, and Abbreviations

Notation for mathematical expressions:

Notation Meaning

x scalar

x column vector

x⊤ row vector

A matrix

0k column vector of k zeros

Ik k × k identity matrix
∂f

∂x
partial derivative of f with respect to x

{. . .} set

(·)r subscript r denotes a quantity related to one or multiple robots

(·)o subscript o denotes a quantity related to one or multiple objects

10 Chapter 1. Introduction

Recurring Symbols:

Symbol Domain Meaning

nr N dimensionality of the robot configuration

no N dimensionality of the object configuration

n N dimensionality of a configuration (n = nr + no)

qr R
nr configuration of one or multiple robots

qo R
no configuration of one or multiple objects

q R
n configuration (q =

[
q⊤

r , q⊤
o

]⊤
)

q̇ R
n velocity or time-derivative of the configuration

q̈ R
n acceleration or second time-derivative of the configuration

T Set of trajectories through configuration space

τ T Trajectory of configurations τ : [tstart, tend]→ R
n

nu N dimensionality of the control input

u R
nu control input

Φ Set of control trajectories

φ Φ Trajectory of controls φ : [tstart, tend]→ R
nu

Σ set of discrete modes or contact states

σ Σ discrete mode or contact state

Π set of contact parameterizations

π Π contact parameterization

t R time

N Set of nodes of a graph

E Set of edges of a graph

1.5. Notation, Recurring Symbols, and Abbreviations 11

Abbreviations:

Abbreviation Meaning

CR-DQN Constrained, Reactive Deep Q-Network

CR-EST Constrained, Reactive Expansive Space Tree

DoF Degree of Freedom

DQN Deep Q-Network

EST Expansive Space Tree

eTaSL expression graph-based Task Specification Language

eTC expression graph-based Task Controller

FOBT Factored Orbital Bellman Tree

iTaSC instantaneous Task Specification using Constraints

LGP Logic Geometric Programming

MM-EST Multi Modal Expansive Space Tree

MM-PRM Multi Modal Probabilistic Roadmap

PRM Probabilistic Roadmap

PRM* Optimal Probabilistic Roadmap

PTR Probabilistic Tree of Roadmaps

RMR* Optimal Random Manipulation Roadmap

RRT Rapidly Exploring Random Tree

RRT* Optimal Rapidly Exploring Random Tree

Chapter 2

Basics

The aim of this chapter is to give a brief overview of the models and algorithms for

motion planning and control that form the building blocks of this thesis. A comprehensive

overview of planning algorithms and the corresponding models is provided by LaValle [1].

Before we can plan or control motions of a robot, we need to model its state of motion

as described in Section 2.1 and its dynamics with respect to available control inputs in

Section 2.2. We use the dual-robot setup depicted in Figure 2.1 to explain the concept of a

configuration space and its dynamics.

Motions of robots are constrained by physics, safety requirements, and by the task

they should fulfill. In Section 2.3 we introduce different sources of such constraints

that arise in manipulation. This lays out the basics for motion planning and control. In

Section 2.4 we provide an overview of sampling-based motion planning. This planning

paradigm has shown good empirical performance and theoretical guarantees for practically

Figure 2.1: Exemplary setup of a robot and a manipulated object: The setup consists of two robot

arms, two parallel grippers, and one manipulated object, a cube. Both robot arms are redundant,

seven-axis manipulators.

14 Chapter 2. Basics

qr,1

qr,2

qr,7

qr,8

qr,14

qo

xw
yw

zw

Figure 2.2: Configuration space for the dual-robot setup of Figure 2.1: The configuration of the

robot qr comprises 14 axis positions qr,1 to qr,14. The pose of the object is encoded in qo. A suitable

representation for this pose is a vector-quaternion representation. The full configuration q =
[
q⊤

r , q⊤
o

]⊤
encodes the poses of all rigid bodies in this setup. Image taken from [2] and modified.

relevant motion planning problems. In Section 2.5 we give an overview over techniques

for sampling-based motion planning with equality constraints. Finally, we introduce the

concept of manipulation planning in Section 2.6.

2.1 Configurations and Kinematics

To plan or control robot motions it is necessary to describe the state of motion of a system.

The models we introduce in this section are based on the work of LaValle [1]. Robots are

mechanisms that are built from multiple components that we assume to be rigid bodies.

Each of these rigid bodies has a position and orientation in the three-dimensional space it

inhabits and thus six degrees of freedom (DoF). In principle one could describe the state

of motion of a system via the six-DoF states of all of its components. However, this is

not a practical approach due to the large number of resulting variables and constraints

between them. For this reason we encode the state of motion of a system via n variables

as the configuration q ∈ R
n as shown in Figure 2.2. This configuration q =

[
q⊤

r , q⊤
o

]⊤
is

composed of the configuration of one or multiple robots qr and one or multiple objects qo.

Throughout this thesis we refer to quantities related to robots or objects with subscripts (·)r

2.2. Dynamics 15

and (·)o respectively.

In the example of Figure 2.2 the pose of each robot arm can be efficiently encoded with

seven axis positions. The resulting 14 values form the robot configuration qr ∈ R
nr , with nr

being the number of axes. All positions and orientations of the components of the robot

can then be computed via forward kinematics given a robot configuration qr.

The vector qo encodes the poses of all moving (non-robot) objects of a system. In

the example, this encodes the position and orientation of the cube relative to a reference

coordinate system. We chose a vector plus unit quaternion representation for the poses of

objects. In the example this results in no = 7 variables.

We denote time as t. In some scenarios, some components of a setup may have time-

dependent positions. Examples are conveyor belts or machines that operate periodically,

e. g., forge hammers.

Figure 2.2 illustrates, that few variables, q and t, can encode the positions of a mecha-

nism, but also that this encoding is in general not unique or minimal. The order in which

axis positions occur in qr is arbitrary as well as the choice of the reference coordinate

system for qo. Using a unit quaternion for orientations in qo introduces one redundant

variable per object for computational reasons.

Given a system configuration q and time t we can define the velocity q̇ and acceleration q̈

of configurations as first and second-order time derivatives. For computational reasons

it is common practice to represent the orientation of objects with four-dimensional unit

quaternions. The rotational velocities (and deeper derivatives) are typically represented

via three-dimensional angular velocity vectors. This means that the vectors q and q̇ have

different dimensionalities during computations. We omit these technical details in the

remainder of this thesis and represent q̇ as if it had dimensionality n.

2.2 Dynamics

In this thesis we address manipulation both from a geometric perspective for planning as

well as from a dynamic perspective for planning and control. For the latter it is necessary to

model the dynamics of the configuration of a system. We consider prehensile manipulation

only, which covers a wide variety of manipulation tasks, especially in an industrial context.

This means that at all times objects are either rigidly grasped by a robot or at rest in the

environment.

Prehensile manipulation without sliding contact allows to model dynamics with a

second-order and control affine differential equation:

q̈ = a(q, q̇, t) + B(q, t)u. (2.1)

Here, u ∈ R
nu is the nu dimensional control input. The vector-valued function a determines

the acceleration of the system that is independent from the control input u. The n × nu

matrix B models the affine dependency between the acceleration q̈ and the control input u.

16 Chapter 2. Basics

Let us consider the example of Figure 2.2. In this example the object is rigidly grasped

by a robot. For this reason, the velocity of the object q̇o can be modeled by the no × nr

Jacobian matrix J as q̇o = Jq̇r. The Jacobian J is a function of qr, qo, and t. If the object is

placed J is a zero matrix. We assume that the robots are equipped with a controller that

allows to directly command the robot accelerations q̈r = u. In the example, this results in

the following equivalent for Eq. (2.1):

q̈ =

[
q̈r

q̈o

]

=

[
0nr

J̇q̇r

]

︸ ︷︷ ︸

a(q,q̇,t)

+

[
Inr

J

]

︸ ︷︷ ︸

B(q,t)

u,

where Inr denotes an nr×nr identity matrix. In the example the dynamics are not dependent

on the time t. When the environment comprises time-variant components, such as conveyor

belts, the dynamics may be time-variant as well.

Naturally, the controls u must be bounded to prevent damage to the system. We assume

that the bounds on controls are given as a symmetric and affine inequality:

–kmax ≤ c(q, q̇, t) + D(q, t)u ≤ kmax. (2.2)

Again, c denotes a control-independent term and D an affine dependency on u. The sum of

these terms must fulfill the box constraint defined by kmax.

Let us again consider the example of Figure 2.2, where the control input is equal to the

acceleration of the robot q̈r = u. If we simply assume that the accelerations of the robot

axes are bounded by conservatively chosen maximal values q̈r,max, Eq. (2.2) is equivalent

to the trivial box constraint:

–kmax = –q̈r,max ≤ 0nr
︸︷︷︸

c(q,q̇,t)

+ Inr
︸︷︷︸

D(q,t)

u ≤ q̈r,max = kmax.

In case we want to accurately model the influence of the robot’s motor torques τm we

need to consider the dynamics of rigid bodies:

M(q, t)q̈r + τc(q, q̇, t) + τg(q, t) = τm.

Here, M is the inertia matrix and τc and τg model Coriolis forces and gravity. As we assume

prehensile manipulation, no contact forces need to be modeled. If we assume that the

motor torques τm are bounded by τmax this results in the following equivalent of Eq. (2.2):

–kmax = –τmax ≤ τc(q, q̇, t) + τg(q, t)
︸ ︷︷ ︸

c(q,q̇,t)

+ M(q, t)
︸ ︷︷ ︸

D(q,t)

u ≤ τmax = kmax.

2.3. Constraints on Configurations 17

a b c

Figure 2.3: Different systems and tasks with different constraints on configurations: (a) Two fixed

manipulators transport a cube. This is a standard instance of manipulation planning and only

requires to model limits on axis positions, collisions, grasp poses, and placements. (b) A delta

robot places objects on a conveyor belt. This example includes closed kinematic chains. Also,

some constraints, e. g., collision-avoidance, are time-variant due to the moving conveyor belt. (c) A

mobile manipulator operates a door. In this scenario closed kinematic chains appear or disappear

depending on the current contact state.

2.3 Constraints on Configurations

Robotic motion in general and manipulation in particular must fulfill constraints that arise

due to physics and due to the task of the robot. An example for a physical constraint is that

objects do not move unless they are actively manipulated. Tasks may constrain motions as

well, e. g., a glass of water should be held upright so that its contents are not spilled. The

origin of such constraints may be ambiguous, e. g., a robot cannot move its gripper through

a wall and we typically wish for it not to attempt such a motion. A variety of constraints

that arise in manipulation is shown in Figure 2.3.

We denote the constraints on configurations via equality constraints f and inequality

constraints g:

f(q, t) = 0, g(q, t) ≤ 0. (2.3)

The functions f and g are vector-valued and each vector element describes a separate con-

straint that configurations must fulfill. Examples for equality constraints arise for example

in closed kinematic chains as in example (b) of Figure 2.3. Typical examples for inequality

constraints are axis limits. Technically, it is not necessary to model equality constraints

as they can be represented as two inequalities with different signs. We deliberately add

the distinction between equality and inequality constraints as it is critically important for

sampling-based planners as discussed in the next two sections. In general the constraints

may be time-variant, e. g., when the robot’s environment contains a conveyor belt.

Motions may also be constrained at the velocity level via the functions v and w:

d
dt

v(q, t) = 0, d
dt

w(q, t) ≤ 0. (2.4)

When a robot transports an object in its gripper, the relative velocity between object and

gripper must be zero. Maximal velocities of robot axes are velocity inequality constraints.

18 Chapter 2. Basics

At this point we make no assumptions on the properties of the functions f, g, v, and w,

except that v and w must be at least piecewise differentiable with respect to t.

The following list shows examples of typical sources of constraints in manipulation.

• Axis-limits and maximal velocities: Due to physical limitations or due to safety

aspects the positions and velocities of robot axes must typically be limited. This

results in inequality constraints.

• Collision avoidance: One of the most important constraints is collision avoidance.

Collisions could occur between different components of the robot, the robot and

its environment, or manipulated objects and the robot. One way to formulate

these constraints is as inequality constraints on distances between geometric bodies.

Another way would be via an indicator function that returns the result of a collision

check.

• Contact state The contact state of manipulation constrains the relative motion of

robots and manipulated objects. If an object is placed it does not move at all. When

it is grasped, the relative velocity between gripper and object is zero.

• Closed kinematic chains: Some robots, e. g., the delta-robot in example (b) of

Figure 2.3 form closed kinematic chains. In some scenarios a task may produce a

closed kinematic chain as well. Example (c) of Figure 2.3 shows such a scenario

where a robot opens a door. These closed chains result in equality constraints.

• Task specific constraints: Many scenarios include constraints that are specific to

the task at hand. The task of example (c) of Figure 2.3 requires that the robot points

its head mounted camera at the object that it currently manipulates with its grippers.

With the constraints in place we can define motion planning problems. Starting from an

initial configuration qstart we aim to reach a set of goal configurationsQgoal ⊂ R
n. We need

to compute a trajectory of configurations τ : [tstart, tend]→ R
n and a trajectory of controls φ :

[tstart, tend]→ R
nu between the current time tstart and terminal time tend with tend ≥ tstart. The

trajectory of configurations τ must start in the current configuration τ (tstart) = qstart and end

in the set of goal configurations τ (tend) ∈ Qgoal. At all times the dynamics of Eq. (2.1), the

limits on control inputs of Eq. (2.2), and the constraints of Eq. (2.3) and Eq. (2.4) must be

fulfilled.

2.4 Sampling-Based Motion Planning

Motion planning in the context of manipulation poses two substantial challenges: it involves

high-dimensional configuration spaces and complex, non-linear collision constraints. Most

robotic manipulators have at least six degrees of freedom. The resulting high-dimensional

2.4. Sampling-Based Motion Planning 19

configuration space cannot be discretized meaningfully to apply classical search algorithms

such as A*. Furthermore, in the context of collision-free motion planning, there exists no

explicit representation of which areas of the configuration space are valid, i. e., at least

collision free. For complex and potentially non-convex geometries it is only possible to

check whether a given configuration or trajectory segment is valid. This collision checking

is an operation that uses a relatively large amount of processing time.

Sampling-based motion planning bypasses both of these challenges. Instead of main-

taining an explicit representation of the valid configurations, planners only check randomly

sampled configurations and trajectory segments for collisions. This random sampling

leverages the so called “visibility” properties of motion planning for manipulation [3].

While manipulation involves high-dimensional configuration spaces, it typically does not

involve labyrinth-like geometries. Most planning problems can be solved with few point

to point motions to avoid obstacles. Manipulation typically occurs in environments that

are organized to allow efficient motions. Examples are industrial workplaces or kitchens.

In the following we explain three sampling-based planners and discuss their properties.

These algorithms are the Probabilistic Roadmap (PRM) [4], the Rapidly exploring Random

Tree (RRT) [5], and the Expansive Space Tree (EST) [6]. The reason for explaining these

three algorithms is that we use variants of these approaches in this thesis. Furthermore, it

is worthwhile to understand the differences in the assumptions that are made on planning

domains. In their basic forms PRM and RRT are suitable for geometric planning only. For

this reason we omit control inputs when describing these two algorithms.

Procedure: PRM(qstart) infinite version

1 N ← {qstart}, E ← {}

2 while true do

3 qnew ← sampleRandom()

4 if isValid(qnew) then

5 N .add(qnew)

6 for qnear ∈ kNearest(N , qnew) do

7 τ ← localPlanner(qnear, qnew)

8 if pathValid(τ) then

9 E .add((qnear, τ , qnew))

10 E .add((qnew, τreversed, qnear))

Kavraki et al. [4] introduce one of the first sampling-based motion planners, the Proba-

bilistic Roadmap (PRM). Like all three discussed planners, PRM proceeds to build a graph

of nodesN and edges E . An infinite version of this graph construction without termination

condition is shown in procedure PRM. In its main loop a random configuration qnew is

sampled via the procedure sampleRandom. The procedure isValid checks whether this

configuration fulfills the constraints of the planning problem, typically by performing a

20 Chapter 2. Basics

P
R

M
R

R
T

1 2 3 4

qstart

Qgoal

qstart

Qgoal

Figure 2.4: Motion planning with PRM and RRT: The upper half of the image shows the construc-

tion of a probabilistic roadmap. In the lower half the construction of a rapidly exploring random

tree can be seen. (1) In both cases the goal is to plan a motion from a configuration qstart to a goal

set Qgoal (marked blue). The green areas show valid configurations, i. e., configurations that are at

least collision-free. (2), (3) The planners build a graph structure to search through the configuration

space. For RRT this is a tree. (4) Once a solution is found (marked red) the search terminates.

collision check. If this succeeds, the configuration qnew is added to the set of nodesN . The

procedure kNearest returns (at most) k configurations within N that are closest to qnew

with respect to some distance measure. For each of these configurations qnear the procedure

localPlanner produces a trajectory τ from qnear to qnew. The procedure pathValid checks

whether all configurations along τ are valid. If this succeeds an edge from qnear to qnew is

added to E . As PRM deals with geometric planning, the trajectory τ is reversible and a

reversed edge is added as well (τreversed). Naturally, in a practical implementation this is

not repeated forever and the search terminates when a path to a goal is found. Figure 2.4

shows the graph construction of PRM.

One advantage of PRM is that the constructed graph is re-usable across multiple planning

queries as long as the environment of the robot remains constant. When the environment

changes between queries this advantage is lost and PRM performs unnecessary computa-

tions. The Rapidly exploring Random Tree (RRT) by Lavalle [5] is designed to be more

efficient in single-query scenarios. Instead of building a cyclic graph, RRT builds a tree

rooted in qstart. This is shown in procedure RRT (as infinite tree construction) and in

Figure 2.4. The main loop of the planner is similar to that of PRM with two changes.

Instead of attempting a connection to the k nearest nodes in the graph, only the closest node

is considered. Also, new nodes are only added if they can be connected to the currently

built tree. This prevents the planner from exploring parts of the configuration space that

are disconnected from the initial configuration.

2.4. Sampling-Based Motion Planning 21

Procedure: RRT(qstart) infinite version

1 N ← {qstart}, E ← {}

2 while true do

3 qnew ← sampleRandom()

4 if isValid(qnew) then

5 qnear ← nearest(N , qnew)

6 τ ← localPlanner(qnear, qnew)

7 if pathValid(τ) then

8 N .add(qnew)

9 E .add((qnear, τ , qnew))

Both PRM and RRT rely on the procedure localPlanner to connect two configurations.

This is problematic when dynamics are considered and especially difficult if the planning

problem is time-variant. While there exist variants of RRT that address this, a more generic

and elegant solution is to plan without the procedure localPlanner. This is done with

the Expansive Space Tree (EST), introduced by Hsu et al. [6]. Like the RRT, the EST

proceeds to build a search tree in configuration space. However, the tree expansion of

the EST follows an inverted logic relative to RRT. With RRT and PRM a random node

within the configuration space is sampled and then connected to the currently built graph

structure. In contrast, EST samples an existing node of the currently built tree and expands

it to a new configuration. This is shown in procedure EST.

Procedure: EST(qstart) infinite version

1 N ← {sstart}, E ← {}

2 while true do

3 qold ← sampleWeighted(N)

4 φ← randomControls()

5 qnew, τ ← simulateControls(qold,φ)

6 if pathValid(τ) then

7 N .add(qnew)

8 E .add((qold, (τ ,φ), qnew))

In its main loop the EST algorithm selects a random node from N using the procedure

sampleWeighted. This weighted sampling puts larger weights on areas of the config-

uration space that are sparsely populated by the currently built search tree. A typical

implementation is to coarsely discretize the configuration space into a grid. Then nodes

can be selected with a probability that is inversely proportional to the number of nodes

in the same grid cell. After selecting a node, a random control trajectory φ is sampled

via sampleControls. By integrating the system dynamics via integrateDynamics a new

22 Chapter 2. Basics

Figure 2.5: Constrained motion with a delta robot: On the left a delta robot is shown that moves

around an obstacle. The robot forms a closed kinematic chain which imposes equality constraints

on its axis positions. The right image shows a schematic visualization of the resulting constraint

manifold. In the visualization this is a two dimensional surface within an three dimensional

embedding configuration space.

configuration qnew is obtained. If the path to this configuration is valid a new node and

edge is added to the graph.

2.5 Sampling-Based Planning with Equality Constraints

The typical constraints that are considered in sampling-based motion planning are axis

limits and collision avoidance. Both can be represented as inequality constraints on

configurations. Many applications, especially in manipulation, require to consider equality

constraints as well. An example is a delta robot with closed kinematic chains as shown in

Figure 2.5.

In their basic forms, the planners of the previous section are unable to solve problems

with equality constraints. The reason is that equalities force solutions of the planning

problem onto lower-dimensional manifolds in the configuration space. This is also shown

in Figure 2.5. As these manifolds have zero relative volume with respect to the embedding

configuration space, there is typically zero probability of randomly sampling configurations

or trajectories on these manifolds.

To address this, a variety of modifications to standard sampling-based planners have

been proposed. Kingston et al. [7] provide a survey of the proposed approaches and

introduce a classification of the underlying mechanisms to resolve equality constraints.

The following list shows the five categories of approaches that were identified in [7]:

1. Relaxation of the constraints: A simple approach is to relax all equality constraints

within a tolerance and solve the relaxed planning problem with standard sampling-

based planners. This approach has two major drawbacks. Even small violations

of the constraints may have severe consequences on a real robot. In the example

of the delta robot of Figure 2.5, small errors in the closure of the kinematic chain

result in large internal forces in the mechanism. One motivation to use sampling-

2.5. Sampling-Based Planning with Equality Constraints 23

a b c

Figure 2.6: Techniques for sampling based planning with equality constraints: (a) Projected

sampling: Configurations are sampled without considering the equality constraints. In a second step

the resulting configurations are projected onto the constraint manifold. (b) Projected local planning:

Two configurations that lie on the constraint manifold need to be connected. A local planner is

used that does not adhere to the constraints and the resulting trajectory is then projected onto the

manifold. (c) Local planning within a tangent space: To connect two configurations a series of

motions in the local tangent of the constraint manifold is computed. Images adapted from [7].

based planners is to exploit the good visibility properties of many motion planning

problems. Unless very large tolerances are used these properties are not given

anymore and the performance of sampling-based planners degrades.

2. Projection onto the constraint manifolds: The idea of projection methods is to

use the standard operations of sampling-based planners as if no equality constraint

was present and then project the result onto the constraint manifolds. This can be

done both for sampling constrained configurations and for constrained local planning

as shown in Figure 2.6.

3. Motion in a tangent space: The idea of this method is to locally linearize the

equality constraints. This results in a tangent plane to the constraint manifold. As

shown in Figure 2.6 one can now repeatedly move in these planes for local planning.

4. Atlas: The idea of an atlas is to approximate the constraint manifold with a finite set

of plane segments.

5. Re-parameterization: With this method the planning problem is reformulated

in a different configuration space that does not involve equality constraints. An

example would be to plan in the tool coordinates of the delta robot in Figure 2.5.

The tool coordinates are not constrained by equalities and the axis positions can

later be retrieved via inverse kinematics. This approach has two major advantages.

The equality constraints are exactly fulfilled. The other four methods only fulfill

the constraints within a numerical threshold. Also, the full spectrum of sampling-

based planners may be used including optimal planners. The downside of this

24 Chapter 2. Basics

Figure 2.7: A sequential manipulation task: The upper row shows a robot that picks a cube from

one surface and places it on another. In the middle row a schematic 2D representation of this

task is shown. The sequence of motions comprises three contact states. In the lower row the

collision free configurations of the robot are shown in green. As can be seen, the set of collision

free configurations changes when the robot grasps or releases the object.

approach is that a suitable re-parameterization needs to be found. Ideally, such a

re-parameterization should be able to generalize across a set of planning problems.

The algorithms that are proposed in this thesis are closely related to the tangent space

approach or the re-parameterization method.

2.6 Manipulation Planning

The previous sections introduced methods to plan a single robotic motion. For manipulation

this is not sufficient. Figure 2.7 shows a pick and place task in which a cube is transported

by a robot. This task requires a sequence of motions in which the robot makes or brakes

contact with the transported object. A naive approach to this manipulation problem would

be to treat grasping and placing the object separately. Given the initial pose of the object

one could compute a grasp pose, i. e., a relative transform between object and gripper.

Then one would solve the inverse kinematics problem of finding a robot configuration

that positions the gripper in this pose. Finally, one would plan a motion towards this

configuration. After the object has been grasped, one would compute a placement pose and

a corresponding robot configuration and again plan a motion towards this configuration.

This naive approach is however likely to fail. The reason for this is that the sequential

robot motions and interactions with the object are interdependent. If an object is grasped

2.6. Manipulation Planning 25

robot

robot
object

qstart

Qgoal

a: object placed
b: object grasped
c: object placed

a

b

c

Figure 2.8: Model for a pick and place task: Three planes visualize the constraint manifolds for

different contact states. Initially the object is placed (a) and the robot is not holding it. Thus, the

object does not move, irrespective of the robot’s motion. At the intersection of the manifolds for

placement (a) and grasp (b) the object can be grasped. When grasped (b) the object moves along

with the robot. Finally, the object is released in a different placement pose (c). The thick line shows

a trajectory from a start configuration qstart to the goal region Qgoal.

from a wrong direction it may not be possible to place it again without a collision of

the gripper and the surface the object is placed upon. For this reason it is necessary to

plan the motions of the robot and the object simultaneously. This leads to the problem of

manipulation planning [8].

Manipulation can be modeled as an instance of constrained motion with a special struc-

ture. Let us recall that an n-dimensional configuration is composed of an nr-dimensional

robot configuration and an no-dimensional object configuration. For prehensile manipula-

tion, the system is assumed to be in one of two conceptual states. The object may either be

resting in the environment or be rigidly grasped by the robot. When the object is placed it

does not move. When the object is grasped it moves along with a gripper. This means that

manipulation occurs in an n-dimensional embedding configuration space, but all motions

occur on manifolds that are at most nr-dimensional. Figure 2.8 shows these manifolds for

a pick and place task.

While manipulation planning can formally be modeled as constrained motion it is worth

to view it as a separate class of planning problems for two reasons. The first reason is what

has been named the crossed foliation issue [9]. This issue refers to the fact that almost

all pairs of valid configurations lie on different constraint manifolds. Let us consider

the example in Figure 2.8. The two parallel planes drawn in blue refer to configurations

in which the object is placed. It is not possible to move the system from one of these

manifolds to the other without at least two changes of contact state. To move an object it

26 Chapter 2. Basics

must be grasped and released again. While Figure 2.8 shows only three manifolds, real

world manipulation problems typically have an infinite number of such manifolds. This is

due to continuous sets of possible ways objects can be grasped or placed. A second reason

to consider manipulation as a separate class of planning problem is that its multi-modal

structure can be actively leveraged for planning and control.

Throughout this thesis we will use the following notation to describe the special, con-

strained structure of manipulation. At all times, the system is in a discrete mode or contact

state σ with σ ∈ Σ. Here, Σ denotes the finite set of possible modes. In the example of

Figure 2.7 there is a total of |Σ| = 18 modes that describe the contact state of the cube. The

cube could either be resting on the left surface, be grasped by the gripper, or be resting on

the right surface. For each of these cases one of the six sides of the cube may be in contact

with a surface or the right finger of the gripper. This defines 18 modes that constrain the

motion of robot and object. The definition of modes for a manipulation problem is not

unique.

A mode σ typically under-constrains the system configuration. An example is a mode for

the placement of the cube. In this case the cube may be in any pose on the surface in which

the contacting side is parallel to the surface and at the correct height. This leaves three

under-constrained degrees of freedom: translation along the x- and y-axis and rotation

around the z-axis.

For the purpose of manipulation planning, it is helpful to make the constraints on the

relative motion of robot and object explicit. For this purpose we introduce the contact

parameterization π. This parameterization denotes both the mode and the relative transform

of an object to the part of the robot or environment it is attached to. An example would

be a contact state in which the object is grasped along with a relative transform between

gripper and object. Generally, the contact parameterization π is an element of a continuous

set of possible contact parameterizations π ∈ Π. Given a robot configuration qr and

a contact parameterization π the object configuration qo can be computed via forward

kinematics qo = fk(qr, π). With slight abuse of notation we treat a pair (qr, π) as a

configuration q.

Chapter 3

Optimal, Sampling-Based Manipulation

Planning

In the previous section we introduced the problem of manipulation planning. Solving this

problem is a challenging task. As with motion planning, manipulation requires reasoning

about high-dimensional configuration spaces. Additionally, it involves discrete variables

that indicate whether or not an object is currently grasped by the robot. To be useful in

practice, a manipulation planner must also address the following challenges:

• Continuous sets of grasps and placements: For typical manipulation problems

there exist continuous sets of grasps and placements for each object. Consider the

example depicted in Figure 3.1: A seven-axis robot manipulates a cube. The cube

may be placed in any position or orientation on one of two surfaces as long as one

of its sides is in contact with the surface. These sets of grasps and placements

are too large to be meaningfully discretized and manually selecting suitable grasps

and placements defeats the point of planning. Another difficulty arises due to the

redundant degree of freedom of the robot. For most pairs of grasps and placements

there exists a continuous set of robot configurations that allow a transition from

grasp to placement.

• Incomplete sampling-based motion planning: Motions for manipulation occur

in high-dimensional configuration spaces. Furthermore, it is time-consuming to

decide which parts of these configuration spaces are valid, i. e., at least collision

free. Sampling-based planning addresses these issues and has shown good empirical

performance for many relevant motion planning problems. However, sampling-based

planners such as probabilistic roadmaps [4] are only probabilistically complete. This

means that these algorithms cannot decide whether a planning query is infeasible.

Most of the results of this chapter have been previously published by the author in conference proceedings.

For improved readability we omit citations of this previous publication throughout this thesis. Instead, the

relation between this chapter and the previous publication is discussed in detail in Section 3.7.

28 Chapter 3. Optimal, Sampling-Based Manipulation Planning

1 2 3

4 5 6

7 8 9

Figure 3.1: Planned manipulation sequence: A robot with seven axes and a parallel gripper must

manipulate a cube. The target is to place the cube on the right table and place it upside down. To

do so, the robot must (re-)grasp the object at least twice. The shown sequence of motions was

computed by the planner we propose in this chapter and executed on a real robot.

For manipulation planning this is problematic, as motion planners are often used as

sub-algorithms.

• Optimality: In most applications, the efficiency of robotic motions is important.

Industrial manipulation requires low cycle times, as they directly contribute to the

financial impact of automation. Robots that operate in households must move swiftly

and predictably in order to be accepted by humans. These issues can be addressed

by planning optimal motions.

Previous works have solved some of these challenges. Continuous grasps and placements

have been addressed by Simeon et al. [10]. The incompleteness of sampling-based motion

planners is solved with the PTR planner by Hauser [11]. For special cases of manipulation,

optimal planners have been proposed, e. g., by Han et al. [12]. Despite the importance of

robotic manipulation to the best of our knowledge no previous approach addresses all three

challenges.

The contribution of this chapter is an asymptotically optimal manipulation planner. We

extend an optimal, sampling-based motion planner to efficiently explore the combined

configuration space of robot and object. Under a novel set of robustness conditions, we

prove global, asymptotic optimality and probabilistic completeness. These result are

validated in extensive simulations and on a real robot. The simulated experiments show a

significant reduction in cost relative to a state-of-the-art planner. We further propose two

methods to re-use and delay computations during planning. Our planner computes high

quality solutions to realistic manipulation problems in less than one second.

This chapter is structured as follows: We introduce a formal problem definition in

Section 3.1. For this planning problem we propose a novel manipulation planner in Sec-

3.1. Problem Statement 29

π1 π2 π3

Qfree,π1
Qfree,π2

Qfree,π3

Figure 3.2: Robot configuration and contact parameter: The upper row of images shows a pick

and place sequence with three different contact parameters π1 to π3. In π1 and π3 the object is

placed and does not move when the robot moves. In π2 the object is grasped and moves along with

the robot. The lower row of images shows the corresponding collision free configurations for the

robot Qfree,π1 to Qfree,π3 as green areas. Note how these areas change when the object is grasped or

released as the object effectively becomes part of the robot or the environment.

tion 3.2.1. To reduce planning times we introduce two generic strategies to re-use and to

delay computations in Section 3.2.2. In Section 3.3 we analyze the computational com-

plexity of the algorithm and prove asymptotic optimality and probabilistic completeness.

We implemented our approach on a real robot and validated it in extensive simulations.

The setup of these experiments and their results are discussed in Section 3.4. We elaborate

the contribution of this chapter in relation to previous works in Section 3.5 and conclude

this chapter in Section 3.6.

3.1 Problem Statement

3.1.1 Planning Problem

In this chapter we consider prehensile manipulation of a single rigid object by a robot. The

configuration of a system is written as vector q ∈ R
n. This configuration q =

[
q⊤

r , q⊤
o

]⊤
is

composed of a robot configuration qr ∈ R
nr and of an object configuration qo ∈ R

no . In

the example of Figure 3.1 the robot configuration can be described by nr = 7 axis positions

and the object configuration by no = 7 values for a vector-quaternion representation.

At all times, the object is assumed to be rigidly attached to the robot or to the envi-

ronment, i. e., it is either grasped or placed. This state of attachment is described via

the contact parameter π ∈ Π. A contact parameter describes to which link of robot or

30 Chapter 3. Optimal, Sampling-Based Manipulation Planning

environment the object is attached as well as the relative transform between link and object.

Here, Π is the set of possible contact parameters. Figure 3.2 shows a schematic example

of a robot and an object with three different contact parameters.

Given a configuration of the robot qr and a contact parameter π one can compute the

object configuration via forward kinematics qo = fk(qr, π). With slight abuse of notation,

we treat a pair (qr, π) ∈ R
nr × Π equivalently to q ∈ R

n.

At all times our system must fulfill constraints on the configuration q. Axis-limits of the

robot can be explicitly represented via the configuration space of the robot qr ∈ Qr ⊂ R
nr .

We want to prevent the system from colliding with itself, the object, and the environment.

Given a contact parameter π, the set Qfree,π ⊂ Qr denotes the robot configurations that

do not cause collision. This set is visualized in Figure 3.2 for three different contact

parameters.

To manipulate an object it is necessary to grasp or to release it, i. e., to change the

contact parameter. Let πx be a contact parameter where an object is placed and πy where

it is grasped. To change from πx to πy it is necessary that the gripper of the robot is

positioned correctly relative to the placed object. Formally, to change between contact

parameters πx and πy the robot configuration qr must be within a set of transition config-

urations Qπx,πy
⊂ R

nr . In Figure 3.2 these sets consist of only one point and lie at the

end of the dashed blue lines. For most pairs of contact parameters these sets are empty.

With a redundant manipulator as shown in Figure 3.1 these sets may consist of several

disconnected manifolds that represent the solutions of the inverse kinematics problem of

positioning the gripper.

Let τ : [0, 1]→ Qr be a continuous path segment in the robot configuration space. A

path {(τi, πi)}i≤k with i, k ∈ N>0 is a sequence of path segments and contact parameters of

length k. Please note that τi is a trajectory of the robot configuration only. The trajectory

of the full system is encoded in the pair (τi, πi). In this chapter we consider geometric

planning only. For this reason we omit velocities and controls and thus may normalize

time intervals as [0, 1].

Using this definition of paths and path segments, we can now define valid paths. Intu-

itively, a valid path is a motion of robot and object that is geometrically plausible. This

means that (1) the path must be collision free, (2) the configuration of the robot is continu-

ous across path segments, and (3) the contact parameter may only change from πi to πi+1

at physically plausible transition configurations within Qπi,πi+1 . In Figure 3.2 the dashed

line shows a valid path.

Definition 1 (Valid Path) A path is valid iff

(1) τi(t) ∈ Qfree,πi
for t ∈ [0, 1], i ∈ 1 . . . k,

(2) τi(1) = τi+1(0) for i ∈ 1 . . . k – 1, and

(3) τi(1) ∈ Qπi,πi+1 for i ∈ 1 . . . k – 1.

We assume that the system is at an initial configuration qstart = (qr,start, πstart) and should

3.1. Problem Statement 31

reach a set of goal states Qgoal ⊂ R
n. We define feasible paths as those that (1) are valid,

(2) begin in the initial state, and (3) end in the goal set.

Definition 2 (Feasible Path) A path is feasible iff

(1) it is valid,

(2) (τ1(0), π1) = (qr,start, πstart), and

(3) (τk(1), πk) ∈ Qgoal.

The cost function C assigns a non-negative cost to each path:

C : {(τi, πi)}i≤k →

k∑

i=1

Cp(τi) +
k–1∑

i=1

Ct(πi, πi+1). (3.1)

This cost is composed of two components: The function Cp assigns non-negative cost to

each path segment. An example for Cp is the Euclidean distance that the robot travels

within R
nr . The function Ct assigns positive and lower-bounded cost to transitions, with

Ct > Ct,min > 0. An example is a constant cost per transition. Our rationale here is that we

want to minimize both the motions of the robot and the number of (re-)grasps. Let F be

the set of feasible paths. Given the cost function we can define the optimal cost.

Definition 3 (Optimal Cost) The optimal cost C∗ ∈ R is the infinum of the cost function

across all feasible paths {(τi, πi)} ∈ F:

C∗ = inf
{(τi,πi)}∈F

C({(τi, πi)})

The goals for feasible and optimal planning are now to find feasible paths or feasible

paths that approach the optimal cost respectively.

3.1.2 Primitive Operations

We assume that a set of primitive operations, common to manipulation, is available to our

planner. The procedure sampleFree(π) returns a random sample ofQfree,π or failure if this

is not possible. A simple implementation is rejection sampling within Qr combined with a

collision check.

A call to sampleContact returns a random contact parameter π ∈ Π. This can be

implemented with an algorithm that generates grasp poses and placement poses.

Finally, sampleTransition(π1, π2) returns a random sample of Qπ1,π2 . A practical im-

plementation is a randomized inverse kinematics solver. As the set Qπ1,π2 is empty for

most pairs of contact parameters this procedure may return failure as well.

32 Chapter 3. Optimal, Sampling-Based Manipulation Planning

3.2 Optimal Manipulation Planner

This section introduces a novel and asymptotically optimal manipulation planner. Sec-

tion 3.2.1 explains our algorithm: Optimal Random Manipulation Roadmap (RMR*). In

Section 3.2.2 we introduce two strategies to speed up planning.

3.2.1 Algorithm

Our planner operates with two phases. In the first phase, called roadmap construction,

a large probabilistic roadmap is built across different contact states. This roadmap is

reusable for multiple planning queries if the environment of the robot and the shape of the

manipulated object remain constant. In the second phase, called query, a path is planned

from an initial configuration towards a goal set.

The roadmap construction phase of RMR* is shown in procedure build-Roadmap.

It takes the integers Nc, Ni, and Nt as input to determine the size of the roadmap. buil-

dRoadmap proceeds to build an undirected graph of nodesN and edges E . We sample Nc

contact parameters using sampleContact and store them in the set Πsampled. For each

contact parameter π ∈ Πsampled, a roadmap within Qfree,π is built according to the PRM*

algorithm [13]. This is done with procedure buildPRM*. Finally, the separate roadmaps

are connected via transitions using procedure connectRoadmaps.

Procedure: buildRoadmap(Nc, Ni, Nt)

1 N ← {} E ← {}

2 Πsampled ← {}

3 for 1 ≤ i ≤ Nc do

4 πnew = sampleContact()

5 Πsampled.add(πnew)

6 buildPRM*(πnew, Ni)

7 for π1 6= π2 ∈ Πsampled do

8 connectRoadmaps(π1, π2, Nt)

PRM* [13] is an asymptotically optimal motion planner. The procedure buildPRM*

takes a contact parameter π and the integer Ni as input and proceeds to build a probabilistic

roadmap with at most Ni samples within Qfree,π. The procedure connectConfiguration

is a shorthand for the connection mechanism of PRM*. This procedure adds edges to E

between a configuration (qr,new, π) and nodes of N that have the same contact parameter π.

To connect two roadmaps with different contact parameters πx and πy the procedure

connectRoadmaps samples at most Nt transitions within Qπx,πy
. Then connectConfigu-

ration is used to connect these transitions to the separate roadmaps. The result is a large

probabilistic roadmap that spans multiple contact states.

3.2. Optimal Manipulation Planner 33

Procedure: buildPRM*(π, Ni)

1 for 1 ≤ i ≤ Ni do

2 qr,i ← sampleFree(π)

3 N .add((qr,i, π))

4 for 1 ≤ i ≤ Ni do

5 connectConfiguration(qr,i, π)

Procedure: connectRoadmaps(π1, π2, Nt)

1 for 1 ≤ i ≤ Nt do

2 qr,new ← sampleTransition(π1, π2)

3 N .add((qr,new, –))

4 connectConfiguration(qr,new, π1)

5 connectConfiguration(qr,new, π2)

The second phase of our algorithm is the query phase. In the spirit of the PRM algo-

rithm [4], we first attempt to connect a start configuration (qr,start, πstart) to the previously

constructed manipulation roadmap. Then we use a standard graph search algorithm,

e. g., [14], to find the minimal-cost path to a goal set Qgoal. Typically, the initial contact

state πstart is not an element of the sampled contact parameters Πsampled. Therefore, it is nec-

essary to construct a docking roadmap with Ni nodes using PRM*. The start configuration

is connected to this roadmap. We then connect the docking roadmap to the manipulation

roadmap with at most Nt transitions per contact in Πsampled. Figure 3.3 visualizes the

roadmaps built by RMR*.

Procedure: query((qr,start, πstart),Qgoal, Ni, Nt)

1 N .add((qr,start, πstart))

2 buildPRM*(πstart, Ni)

3 connectConfiguration(qr,start, πstart)

4 for π ∈ Πsampled do

5 connectRoadmaps(π, πstart, Nt)

6 return graphSearch((qr,start, πstart), (N , E),Qgoal)

34 Chapter 3. Optimal, Sampling-Based Manipulation Planning

Qgoal

Qfree,π2

Qfree,π1

Qfree,πstart

qstart

Figure 3.3: Roadmap construction of RMR*: The green areas visualize the valid areas Qfree,πx

of the robot configuration space for three different contact parameters πx. The striped areas show

transition regions Qπx,πy . Dots mark nodes of the roadmaps built by RMR*. Solid lines mark edges

for which the robot moves but the contact state stays constant. Dashed lines mark a change of

contact state.

The two roadmaps on the right with contact states π1 and π2 are constructed during the offline

roadmap construction phase. The roadmap on the left with contact state πstart is constructed during

the query phase.

3.2. Optimal Manipulation Planner 35

3.2.2 Roadmap Re-Use and Lazy Collision Checking

Even though the roadmap construction phase of our algorithm must be called only once,

its runtime quickly becomes a bottleneck as hundreds of contact states and thousands of

nodes per contact are sampled. To reduce runtime, we re-use collision checks and nearest

neighbor searches across the construction of the Nc within-contact roadmaps. Furthermore

we employ lazy collision checking [15].

Instead of building the within-contact roadmaps at line 7 of buildRoadmap, we first

build a PRM* with Ni nodes for a planning scene with no object. We can then check which

nodes and edges of this roadmap lie within Qfree,π for all π ∈ Πsampled. This has several

advantages. We will never sample a configuration or try to connect an edge for which

the robot is in self-collision or collides with its static environment. Furthermore, nearest-

neighbor search can be shared across all Nc roadmaps and the necessary data-structures for

search can be reused for the connection of transitions.

As a second measure to reduce the runtime of our approach, we do not check if an edge

of the within-contact roadmaps is valid during roadmap construction. We employ the graph

search algorithm at the end of procedure query with the assumption that all edges are valid.

If a path is returned, we check only edges on this path. Should one edge be invalid, we

remove it from the set of edges E and repeat the graph search.

36 Chapter 3. Optimal, Sampling-Based Manipulation Planning

3.2.3 Detailed Illustration of RMR*

In this section we illustrate the operation of RMR* step by step. Manipulation planning is

notoriously difficult to visualize and it is worth to go through our planner in detail to avoid

misunderstandings. We use the manipulation task of Figure 3.2 as exemplary planning

problem. The task comprises a robot and a cube that must be placed on the right side of

the 2D environment.

random placements random grasps

π1

π2

π3

π4

π5

π6

π7

Qfree,π1

Qfree,π2

Qfree,π3

Qfree,π4

Qfree,π5

Qfree,π6

Qfree,π7

Figure 3.4: Sample contact parameters: The first step of RMR* is to sample a set of Nc contact

parameters using procedure sampleContact (Lines 5 and 6 of buildRoadmap). To the left three

different, random placements of the cube are shown (π1 to π3). Four different grasps are shown to

the right (π4 to π7). The green areas show the corresponding collision free robot configurations.

3.2. Optimal Manipulation Planner 37

Figure 3.5: Build one roadmap per contact: For each contact parameter π a roadmap is build

within Qfree,π (Line 7 of buildRoadmap). Each roadmap is built with the PRM* algorithm and

contains at most Ni nodes. PRM* is an optimal motion planner and in the limit of Ni all pairs of

nodes within a contact parameter will be connected with optimal paths.

38 Chapter 3. Optimal, Sampling-Based Manipulation Planning

Figure 3.6: Connect roadmaps: The individual roadmaps that were built with PRM* do not have

any connections across contacts. To connect the full roadmap, we sample and connect transition

configurations (Line 9 of buildRoadmap).

This is done in procedure connectRoadmaps. For a pair of contacts πx and πy, Nt transitions are

sampled within Qπx,πy (Lines 2 and 3 of connectRoadmaps). These transitions are then connected

to the roadmaps within Qfree,πx and Qfree,πy via the connection mechanism of PRM* (Lines 4 and 5

of connectRoadmaps). It is important to note that the transition regions Qπx,πy may be continuous

sets for real robots. In the 2D-example these sets consist of only one point and thus only one

transition is drawn per pair of contacts.

Connecting the roadmaps results in a large manipulation roadmap that spans multiple contact states.

As long as the environment of the robot and the shape of the manipulated object remain constant,

this roadmap can be reused for multiple planning queries.

3.2. Optimal Manipulation Planner 39

qr,start

πstart

Qgoal

Figure 3.7: Query: An online query to the planner comprises an initial configuration (qr,start,πstart)

and a goal set Qgoal. Both the robot configuration space Qr and the set of contact parameters Π are

continuous sets. For this reason there is typically zero probability that the initial configuration is

part of the roadmap.

40 Chapter 3. Optimal, Sampling-Based Manipulation Planning

Figure 3.8: Build docking roadmap: As first step of the query a so called docking roadmap is

build within Qfree,πstart (Line 2 of query). The initial robot configuration qr,start is connected to this

docking roadmap in Line 3 of query.

3.2. Optimal Manipulation Planner 41

Figure 3.9: Connect docking roadmap: To connect the docking roadmap to the remaining graph

we again sample and connect transitions (Line 5 of query). This results in a large roadmap that is

also connected to the initial configuration.

42 Chapter 3. Optimal, Sampling-Based Manipulation Planning

Figure 3.10: Graph search: After the initial configuration is connected to the roadmap a standard

graph search is used to find a path to a configuration within the goal set. (Line 6 of query)

3.2. Optimal Manipulation Planner 43

Figure 3.11: Convergence to the optimum of RMR*: As the size of the roadmap is increased with

the parameters Nc, Ni, and Nt the solution improves on average. In the limit the configuration space

of robot and object is densely explored and the cost of the solution almost surely converges to the

optimum.

44 Chapter 3. Optimal, Sampling-Based Manipulation Planning

3.3 Analysis

3.3.1 Computational Complexity

Let us recall that the procedure connectConfiguration(qr,new, π) represents the connec-

tion mechanism of the PRM* algorithm. This procedure has a complexity of O(log n)

where n is the number of nodes within the roadmap that qr,new should be connected to.

Building an entire PRM* has a complexity of O(n log n) [13]. Within RMR*, n is the

number of nodes that share the same contact parameter π. Thus, n = Ni holds.

We are building a total of Nc roadmaps with Ni nodes each. So the construction of the

roadmaps without transitions has a complexity of O(NcNi log Ni).

As we sample Nc contact states, there are less than N2
c transition regions within the

constructed roadmap. For each of the transition regions at most Nt transitions are sampled

and connected via connectConfiguration. Thus, connecting the individual roadmaps

via transitions has a complexity of O(N2
c Nt log Ni). The complexity of the roadmap

construction phase of RMR* is therefore O((NcNt + Ni)Nc log Ni).

Building the docking roadmap and connecting it to the manipulation roadmap has a time

complexity of O((NcNt + Ni) log Ni). The following upper bounds hold for the number of

vertices and edges within (V , E):

|V | ∈ O((NcNt + Ni)Nc)

|E| ∈ O((NcNt + Ni)Nc log Ni)

These upper bounds can be used to estimate the time complexity of the graph search

via O(|E| + |V | log |V |) [16].

3.3.2 Completeness and Optimality

In order to prove probabilistic completeness and asymptotic optimality of RMR* we need

to define some properties of the planning problems.

Definition 4 (Segment Robustness)

A triple (qr,1, qr,2, π) ∈ Qr ×Qr ×Π is segment robust iff the PRM* algorithm is asymptot-

ically optimal while planning from qr,1 to qr,2 within Qfree,π.

Definition 5 (Goal Robustness)

A tuple (qr, π) ∈ Qr × Π is goal robust iff (Qfree,π × {π}) ∩ Qgoal 6= ∅ and the PRM*

algorithm is asymptotically optimal while planning from qr to Qgoal within Qfree,π.

The required conditions for segment and goal robustness are omitted for brevity and can

be found in [13].

3.3. Analysis 45

Let {πi}i≤k with i, k ∈ N>0 be a sequence of contact states. Also, let {qr,j}j<k with j ∈ N>0

be a sequence of robot configurations that allow a transition between these contact states.

The optimal cost is denoted as C∗. The value C∗({πi}) denotes the cost of an optimal path

using only the contact states within {πi}. Finally, C∗({πi}, {qr,j}) is defined as the optimal

path cost using only the contacts in {πi} and transitions in {qr,j}. These definitions imply:

C∗ ≤ C∗({πi}) ≤ C∗({πi}, {qr,j}).

Definition 6 (Transition Robustness)

A pair of a configuration and a sequence of contacts ((qr,start, πstart), {πi}) is transition

robust iff: For every ǫ ∈ R>0 there exists a probability Pǫ > 0, such that when sampling

a sequence of transitions {qr,j} using sampleTransition the following holds at least with

probability Pǫ:

• C∗({πi}, {qr,j}) ≤ C∗({πi}) + ǫ

• (qr,k–1, πk) is goal robust.

• All consecutive pairs of qr,start and qr,j are segment robust within the corresponding

contact states.

Intuitively, transition robustness states that sampling transitions between contacts and

connecting them to PRM* roadmaps within these contacts is equivalent to building one

large PRM*.

As transition costs are lower bounded by Ct,min > 0, it is sufficient to consider only a

paths with a finite number of contact states. Let k∗ be the smallest number of contacts

necessary to approximate C∗.

Definition 7 (Contact Robustness)

A planning problem is contact robust iff: For every ǫ ∈ R>0 there exists Pǫ > 0, such that

when sampling a sequence of contacts {πi}i≤k∗ using sampleContact the following holds

at least with probability Pǫ:

• C∗({πi}) ≤ C∗ + ǫ

• ((qr,start, πstart), {πi}) is transition robust.

For problems, that have a solution, the random variable CRMR*(Nc, Ni, Nt) is defined as the

solution cost returned by our planner. If our planner fails this variable is set to Cfail ≫ C∗.

Theorem 1 (Optimality of RMR*) For a planning problem that is contact robust, RMR*

almost surely converges to the optimal cost C∗ as Nc, Ni, and Nt approach infinity.

P(lim
NC ,Ni,Nt→∞

CRMR∗(Nc, Ni, Nt) = C∗) = 1

46 Chapter 3. Optimal, Sampling-Based Manipulation Planning

Proof. Let ǫ > 0. From the contact robustness of our planning problem follows, that RMR*

will almost surely sample a sequence of k∗ contacts {πi} which is transition robust and for

which C∗({πi}) ≤ C∗ + ǫ holds, as Nc approaches infinity.

From the transition robustness of this sequence follows that RMR* will almost surely

sample a set of k∗–1 transitions {qr,j} which are consecutively segment robust, (qr,k∗–1, πk∗)

is goal robust and for which C∗({πi}, {qr,j}) ≤ C∗({πi}) + ǫ holds, as Nt approaches infinity.

Between consecutive pairs of start configuration and transitions our algorithm will

build increasingly larger PRM* roadmaps, which are asymptotically optimal in Ni due to

segment robustness. Within contact state πk∗ PRM* is asymptotically optimal in Ni due to

goal robustness. Therefore CRMR*(Nc, Ni, Nt) will, almost surely, not exceed C∗({πi}, {qr,j})

by more than ǫk∗, as Ni approaches infinity.

From this follows that RMR* will almost surely return a solution that is no larger

than C∗ + ǫ(2 + k∗) for any ǫ > 0. This implies asymptotic optimality. �

Theorem 2 (Probabilistic Completeness of RMR*) For a planning problem that is contact

robust, RMR* is probabilistically complete as Nc, Ni, and Nt approach infinity.

This theorem follows trivially from asymptotic optimality. The discerning reader will

have noticed, that our proofs do not build upon the underlying physical mechanics of

manipulation, like the distribution of placements or grasps in Π or the shapes of Qπx,πy
.

Instead we make assumptions on probabilities of sampling contacts or transitions in helpful

areas of Π and Qr. We argue that the operations sampleContact and sampleTransition

are typically not part of the solution but part of the problem setting. For this reason we do

not build our proofs upon assumptions that lie within the mechanics of these operations.

3.4 Implementation and Experiments

3.4.1 Implementation Details and Experimental Setup

The industrial manipulator used throughout our experiments consists of a 7-axis, redundant

robotic arm, a parallel gripper, and a monocular camera. We designed seven benchmark

tasks that revolve around moving a cube into a target area on a table or into a box. For

some of the tasks it is necessary to re-grasp the object several times in order to change its

orientation.

The benchmarks are designed to pose problems with different levels of difficulty. It is

well known that narrow tunnels in the configuration space pose difficult problem instances

for sampling based planners [3]. In our experiments we added such tunnels by design, both

in the configuration space of the robot (picking and placing in a box) and in the contact

space of the object (changing the orientation of the object).

The experimental setup and one of the two initial positions of the object can be seen in

Figure 3.12. In all experiments the joints of the robot were initially at their zero position.

3.4. Implementation and Experiments 47

Figure 3.12: Experimental Setup: The cube on the left must be brought into one of goal regions

marked in blue. The arrows depict the optimal manipulation sequence for benchmark 4. First, the

object is placed on the table with a 90 degree turn. Then it is re-grasped and placed bottom up in

the box.

Table 3.1: Benchmark Problems

Initial Object Position Goal Area Goal Orientation

1 lower table upper table any

2 lower table upper table bottom up

3 lower table box any

4 lower table box bottom up

5 box upper table any

6 box upper table bottom up

7 box box bottom up

The blue areas mark the two goal regions for the object. Table 3.1 lists the seven benchmark

tasks used in our experiments.

As the cost function for the path segments Cp we chose the Euclidean distance traveled

in the robot configuration space. The cost for transitions Ct was chosen to be 3.0 for all

transitions. With this cost function transitions and motions of the robot have approxi-

mately equal cost in the experiments. This equally discourages unnecessary re-grasps and

inefficient motions.

Grasps and placements of the cube were randomly distributed around its six faces.

Placements are only sampled within the areas marked blue in Figure 3.12. Transitions are

computed via rejection sampling. We used an analytic inverse kinematics solver for which

the redundancy parameters were chosen randomly.

To evaluate our planner we compared the quality of its solutions to that of the Probabilis-

48 Chapter 3. Optimal, Sampling-Based Manipulation Planning

1 4 7 10 13 16 19 22 25
n

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

1

2

3

4

5

6

7

Figure 3.13: Success rates for the seven benchmark tasks: Each line visualizes the success rate for

one benchmark with different parameter settings for our algorithm: Nc = 10n, Ni = 100n, Nt = n.

tic Tree of Roadmaps (PTR) planner presented in [11]. This approach from the literature

was chosen for two reasons: It is capable of handling manipulation planning problems

with continuous contact states without requiring complete motion planners. Furthermore,

in its basic form, it does not require domain-specific adaptations, like heuristics, that are

hand crafted for the problem class at hand.

Both algorithms were then used to solve all of the seven benchmark tasks. Our approach

was run with 25 different settings for Nc, Nt, and Ni. Due to the probabilistic nature of the

two algorithms, we repeated this experiment 30 times.

The solutions of both approaches were additionally run through a standard path simpli-

fication [17]. We used the open source library FCL [18] for collision checks which was

accessed via the planning scene of MoveIt! [19]. For nearest neighbor search we used

randomized k-d trees [20] implemented in the FLANN library [21]. To speed up roadmap

construction it was run in parallel using OpenMP [22]. All experiments were run on a

ten-core Intel Xeon E5-2650v3.

3.4.2 Results

Figure 3.13 shows the success rates of our approach on all seven benchmarks with 25

different parameter settings. We have chosen to increase the input parameters Nc, Ni, and Nt

in a linear fashion. At their highest setting, we build a manipulation roadmap with 250

contact states, 2500 nodes per within-contact roadmap, and at most 25 transitions between

each pair of contact states. As one can see, the success rates quickly converge towards one

for all benchmark tasks.

3.4. Implementation and Experiments 49

1 4 7 10 13 16 19 22 25
n

10

20

30

40

50

60

70

m
ea

n
co

st

1

2

3

4

5

6

7

Figure 3.14: Path costs without post-processing for the seven benchmark tasks: Each line visualizes

the average costs of successful runs for one benchmark with different parameter settings: Nc = 10n,

Ni = 100n, Nt = n.

1 4 7 10 13 16 19 22 25
n

20

30

40

50

60

70

80

co
st

Figure 3.15: Distribution of path costs without post-processing for benchmark 7: Each box plot

visualizes the distribution of costs for different parameter settings for our algorithm: Nc = 10n,

Ni = 100n, Nt = n. The red line depicts the median. The first and third quartile are represented by

the box, minimum and maximum by the whiskers.

50 Chapter 3. Optimal, Sampling-Based Manipulation Planning

1 4 7 10 13 16 19 22 25
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n
qu

er
y

ti
m

e
[s

]

1

2

3

4

5

6

7

0

10

20

30

40

50

m
ea

n
ro

ad
m

ap
ti

m
e

[s
]

roadmap time

Figure 3.16: Average query and roadmap times without post-processing for the benchmark tasks

with different parameter settings: Nc = 10n, Ni = 100n, Nt = n.

Figure 3.14 depicts the average cost for successful queries and indicates convergence in

solution cost for all seven benchmarks. To visualize the distribution of costs, Figure 3.15

shows a series of box plots of the solution costs returned for benchmark 7. This benchmark

is the most difficult one within our experiments, as the object has to be grasped and placed

at least two times and the robot must go through two tunnels while picking from and

placing into the box. As one can see, not only the average cost but also its variance is

reduced as the parameter settings are increased.

The average times for roadmap construction and query needed to achieve these results

are depicted in Figure 3.16. It can be seen that highly reliable and close to optimal planning

is possible with query times below one second.

To compare the solution quality of our approach to that of the Probabilistic Tree of

Roadmaps (PTR) planner, Table 3.2 shows the results of both approaches across our

benchmark tasks. The table depicts the average cost and the standard error of the mean (in

brackets) for both planners, with and without post-processing. Our planner is run with the

maximum settings from the previous experiments: Nc = 250, Ni = 2500n, Nt = 25. Both

planners were run 30 times.

We analyzed the resulting data-set under the assumption that our samples follow inde-

pendent Gaussian-distributions with unequal variance. Significance levels were therefore

computed via Welch’s unequal variances t-test. Two observations can be made: RMR*

significantly (at 0.1% level) outperforms PTR in all seven tasks, both with and without post-

processing. Furthermore the post-processing significantly (also at 0.1% level) improves

the solution cost of our planner. This second observation shows that our planner has not

fully converged to an optimal path even at its highest settings. This result is not surprising,

as 2500 nodes for the PRM* cannot be expected to sufficiently explore the 7-dimensional

3.4. Implementation and Experiments 51

Table 3.2: Average cost and standard error of the mean

Benchmark

1 2 3 4 5 6 7

PTR 15.2 64.3 19.4 78.1 15.5 53.8 70.2

[1.14] [3.64] [1.86] [4.17] [1.04] [3.12] [3.80]

PTR with 14.6 56.6 17.4 69.7 14.9 49.3 63.6

post-processing [1.07] [3.16] [1.65] [3.48] [1.04] [3.23] [3.54]

RMR* 9.8 23.8 12.1 25.3 10.6 24.3 25.8

[0.07] [0.18] [0.07] [0.23] [0.10] [0.23] [0.20]

RMR* with 8.6 20.3 10.6 21.1 9.1 20.6 21.5

post-processing [0.04] [0.11] [0.06] [0.22] [0.07] [0.21] [0.14]

configuration space of the robot. To visualize the distribution of solution costs of both

planners at all seven benchmarks, Figure 3.17 shows the corresponding box plots. As can

be seen, RMR* produces solutions of higher quality with much lower variance in cost.

Finally, we implemented our approach on a real robot. The manipulation sequence

shown in Figure 3.1 is a solution path of RMR*. This demonstrates that the proposed

approach is applicable to realistic manipulation scenarios.

52 Chapter 3. Optimal, Sampling-Based Manipulation Planning

P
T

R

R
M

R
*0

1

2

3

4

5

6

no
rm

al
iz

ed
co

st

1

P
T

R

R
M

R
*

2

P
T

R

R
M

R
*

3

P
T

R

R
M

R
*

4

P
T

R

R
M

R
*

5

P
T

R

R
M

R
*

6

P
T

R

R
M

R
*

7

Figure 3.17: Comparison of PTR and RMR*: Each box plot depicts the distribution of normalized

cost without post-processing for a different benchmark. Costs are normalized to the average cost

returned by our planner. The red line depicts the median. The first and third quartiles are represented

by the box, minimum and maximum by the whiskers.

3.5 Related Work

Our work integrates and extends two strands within the planning literature: optimal,

sampling-based motion planning and manipulation planning.

3.5.1 Optimal, Sampling-Based Motion Planning

Planning for robotic manipulators typically involves high-dimensional configuration spaces.

Sampling-based motion planning has shown good empirical performance in this setting

and is the state-of-the-art paradigm for motion planning. Typical planners include RRTs [5]

or PRMs [4]. Karaman and Frazzoli [13] provide a proof of the sub-optimality of these

approaches as well as asymptotically optimal counterparts of the original planners: RRT*

and PRM*.

For these planners several improvements and extensions have been proposed. To speed

up convergence, heuristic guidance during sampling is introduced by Gammell et al. [23].

Hauser [24] uses lazy collision checking to defer expensive computations until a better

path has been found. Optimal, sampling-based, kinodynamic planning is addressed by

Karaman and Frazzoli [25]. An extension of the original RRT* for constrained motion is

presented by Jaillet and Porta [26].

These optimal motion planners are not suitable for manipulation due to the so called

3.5. Related Work 53

crossed foliation issue [9]. Manipulation involves motion on a potentially infinite number

of constraint manifolds that cannot be meaningfully explored with the previously discussed

planners. We do however use the PRM* algorithm [13] as a subroutine of our planner.

An alternative view on optimal planning is proposed by Hauser and Zhou [27]. Instead of

planning in a state space one can also plan in a state-cost space. This augmented planning

problem is always a kinodynamic planning problem as cost is essentially underactuated.

By repeatedly using a kinodynamic planner, e. g., the EST [6], in state-cost space one can

then obtain optimal motions in the limit of repetitions. This approach is not feasible for

manipulation, as no probabilistically complete kinodynamic planner has been proposed to

explore the constrained configuration spaces of manipulation.

3.5.2 Manipulation Planning

The first approach to manipulation planning was presented by Alami et al. [8] and considers

the planning problem in which an object is assumed to be either at a stable placement or

grasp. Placements and grasps are chosen from a finite set. Manipulation is then formulated

as a graph search with alternating transit and transfer paths, for which individual motion

planning queries must be solved. Continuous grasps and placements are addressed by

Simeon et al. [10]. This is done by modeling the connected components within the

intersection of stable placements and grasps as closed-chain systems.

Typically, manipulation planners use motion planners as subroutines. This is problem-

atic when sampling-based planners are used, as these planners are only probabilistically

complete. These planners cannot decide within finite time if a planning query is infeasi-

ble. The incompleteness of sampling-based motion planners is addressed by Hauser and

Latombe [28] by building a roadmap of roadmaps with the Multi-Modal-PRM (MM-PRM).

This idea is then extended to the Probabilistic Tree of Roadmaps (PTR) planner [11] to

also address continuous contact states. An RRT-like planner for the same problem class is

proposed by Hauser and Ng-Thow-Hing [29].

To address a wider class of planning problems, Cambon et al. [30] propose a hybrid

planner to integrate task and motion planning. Dornhege et al. [31] propose an extension

to the PDDL standard [32] to combine symbolic and motion planning via semantic attach-

ments. Garret et al. [33] reformulate heuristics from the symbolic planning domain [34]

for task and motion planning with very long running tasks. In [35], a second heuristic

guided planner is proposed, that is capable of handling continuous contact states and the

incompleteness of sampling based motion planning.

The approaches discussed so far are capable of solving a variety of manipulation

planning problems but do not compute optimal motions. Heuristic methods to improve the

quality of planned trajectories have been proposed by Harada et al. [36] and by Zhang and

Shah [37].

For special cases of manipulation, optimal planners have been proposed. When only

54 Chapter 3. Optimal, Sampling-Based Manipulation Planning

planar tabletop rearrangement with overhand grasps and fixed placement positions is

considered, manipulation planning can be reduced to a discrete graph search. Han et

al. [12] provide an optimal planner for this scenario and analyze the complexity of this

planning problem. For manipulation problems that allow a factorization of the configuration

space, Vega-Brown and Roy [38] propose an asymptotically optimal manipulation planner,

the Factored Orbital Bellman Tree (FOBT). This factorization is possible, e. g., for a mobile

robot that pushes objects in a plane. It is however not applicable to manipulation with

articulated robots.

The planner we proposed in this chapter is closest related to the MM-PRM [28] and

FOBT [38] planners. Similar to FOBT we use a factored sampling strategy but use explicit

sampling of transitions like with MM-PRM. To connect the samples of our roadmap we

use the connection mechanism of the PRM* planner [13]. The combination of factored

sampling and explicit transitions allows our approach to compute optimal motions for

manipulation problems with articulated and redundant robots.

Another approach to optimal manipulation planning is the logic geometric program-

ming by Toussaint [39]. However, this approach requires to model tasks exclusively via

differentiable constraints. This type of model is incompatible with the black box model

of collisions and other constraints employed in most of the literature and this chapter and

makes a comparison difficult.

3.6 Discussion

This chapter presented an asymptotically optimal manipulation planner. We established

convergence under a set of new robustness conditions and validated the practicality of our

approach in extensive simulations and on a real industrial manipulator.

The proposed planner is capable of returning high quality solutions to complex manipu-

lation tasks in less than a second. This is achieved without relying on problem specific

heuristics or simplifications as our algorithm directly works with the primitive operations

common to manipulation.

The scope of our approach is limited to prehensile manipulation of one single object.

Promising areas for future research include extending the approach to new problem

domains, as well as methods to increase the speed of convergence for larger problems.

Like the original PRM algorithm, the proposed planner leverages a preprocessing of the

geometry of the environment. This offline preprocessing is time consuming, but allows

online queries to be solved efficiently and reliably. Promising areas of application are in

industrial manipulation tasks, such as machine tending. A robot could feed parts that are

detected online with a camera to a CNC machine. In this scenario the environment of the

robot is static and only the positions of robot and object differ between queries.

When the environment or the shape of the manipulated object changes between queries,

3.7. Relation to a Previous Publication by the Author 55

the preprocessing turns into a disadvantage. The planner will explore areas of the configu-

ration space that are not meaningful to the task. In the following chapters we therefore

develop algorithms for manipulation planning that do not require a preprocessing phase.

3.7 Relation to a Previous Publication by the Author

The results of this chapter have been previously published within conference proceedings:

Optimal, Sampling-Based Manipulation Planning

P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G.v. Wichert, W. Burgard

2017 IEEE International Conference on Robotics and Automation

© IEEE 2017

The author of this thesis is the main contributing author of this previous publication

and its contents were developed in pursuit of this thesis. For this reason, large parts of

this chapter are identical to this previous publication. To improve readability we omitted

citations of this publication throughout this thesis. The content has been modified and

extended within this thesis.

Changes Relative to the Conference Proceedings Besides changes in wording and

formatting most of this chapter is identical to the previous publication. Larger changes are

listed in the following.

• Change of notation: To achieve a consistent notation across this thesis, we modified

the problem statement, descriptions of the algorithms, and the mathematical analysis

to follow the notation of this thesis.

• Changes to the problem statement and structure of the proof of asymptotic optimality:

The definitions of Section 3.1.1 and proofs of Section 3.3 use the infinum of cost

instead of the minimum.

• Detailed visualization of the algorithms: The illustrations of Section 3.2.3 were

added.

• Related work: The contents of Section 3.5 were modified to follow the citation style

of this thesis and additional references were added.

Contributions of Coauthors The previous publication was written together with Werner

Neubauer, Wendelin Feiten, Kai Wurm, Georg v. Wichert, and Wolfram Burgard.

• Werner Neubauer provided consulting with respect to the motion planning aspects

of this work. He recommended the inclusion of lazy collision checking into the

algorithm.

56 Chapter 3. Optimal, Sampling-Based Manipulation Planning

• Wendelin Feiten provided consulting with respect to the mathematical analysis and

the structure of the assumptions and proofs made in Section 3.3.

• Kai Wurm revised the paper and gave guidance on scientific writing.

• Georg v. Wichert and Wolfram Burgard provided valuable advice.

Chapter 4

Planning and Controlling Manipulation

in Dynamic Environments

In the previous chapter we considered geometric manipulation planning, where a robot

grasps and places a single object. We took a standard view on manipulation planning: A

system is assumed to be in one of two contact states: The object is either rigidly attached

to the robot or to the environment. In each of these contact states, motions of the robot can

be planned with standard, geometric motion planners.

While this view is suitable for many tasks, such as machine tending, there exist a variety

of scenarios to which it is not applicable. In the following we discuss a set of challenges in

relevant manipulation tasks that break assumptions of this view:

• Task specific constraints: Some manipulation tasks constrain the motion of the

robot due to physics or due to additional constraints specified by a user. Consider

the task depicted in Figure 4.1. A mobile manipulator opens a door. While the robot

opens the door there are two closed kinematic chains. One is formed by the robot

and the door as the door has only one degree of freedom. The second chain is formed

due to constraints specified by a user: The head mounted camera must point at the

door while it is held by the robot. To address these constraints, we need models that

can capture them and algorithms that solve constrained manipulation tasks.

• Time-variance and dynamics: Some manipulation tasks occur in time-variant

environments. A typical example is a conveyor belt that moves parts independently

of the robot as shown in Figure 4.2. Time-variance must be addressed both in the

models of a planning problem and in the planner itself. Furthermore, time-variance

requires that the dynamics of the robot are considered during planning. It is not

possible to plan a geometric trajectory first and add a time parametrization before

execution.

Most of the results of this chapter have been previously published by the author in conference proceedings.

For improved readability we omit citations of these previous publications throughout this thesis. Instead, the

relation between this chapter and the previous publications is discussed in detail in Section 4.7.

58 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

1 2 3 4 5

Figure 4.1: Constrained manipulation task: A mobile manipulator opens a door. (1) Initially, the

robot approaches the door and (2) grasps it. (3) While the robot manipulates the door, robot and

door form a closed kinematic chain. Additionally, the head mounted camera must point at the door

while the robot manipulates it. (4) Once the door is opened the robot releases it and (5) proceeds

through it.

• Real-time reactions to changes in the environment: Models of robots and esti-

mates of environments are inherently inaccurate. Planning trajectories and executing

them open-loop is therefore likely to fail eventually. In some scenarios, environ-

ments may change dynamically, e. g., a human might enter the workspace of a robot.

Hence, robots should react in real-time to estimates of their environments, such as

measurements of object poses and detected obstacles.

Previous work has partially addressed these challenges. Constraint-based task specifi-

cation and control [41] allows to model complex and constrained robotic motion and to

1 2

3 4

Figure 4.2: Manipulation in a dynamic environment: The goal of the robot is to place the cube on

the left side of the blue wall. The problem is time-variant as the cube is initially moving to the right

on a conveyor belt. In order to achieve the goal, the right manipulator must grasp the cube and hand

it to the left manipulator through an opening in the wall.

4.1. The Dynamic Constraint Graph 59

control it in real-time. However, the sequential interdependencies of manipulation are not

resolved. Mirabel and Lamiraux propose the constraint graph [9] as a generic model for

complex manipulation tasks and a corresponding geometric manipulation planner. To the

best of our knowledge no previous approach addresses all of the discussed challenges in

the context of sequential manipulation tasks.

The key insight of this chapter is that a suitable model structure enables planning and

control of complex, sequential manipulation tasks. As our first contribution we propose

a new model for manipulation tasks: the dynamic constraint graph. This model extends

the constraint graph [9] to second-order dynamics and time-variance. From this model we

automatically derive a set of motion controllers. Examples include controllers that pick

or place objects or that open or close a door. Sequential manipulation tasks can then be

solved by switching between these controllers. As our second contribution we propose

two methods to implement such a switching control scheme. The first method formulates

the choice of the active controller as a kinodynamic planning problem. The second method

uses reinforcement learning to switch between controllers. We implemented the proposed

methods for three distinct robots and tasks. In real-world experiments, our approach

enables manipulation with online collision avoidance and reactions to estimates of object

poses.

4.1 The Dynamic Constraint Graph

We specify manipulation tasks in a modular way that facilitates planning and reactive

execution. In this section we introduce a new model: the dynamic constraint graph. This

model extends the constraint graph introduced by Mirabel and Lamiraux [9] to incorpo-

rate second-order dynamics and time-variance. We use the setup and the corresponding

manipulation task depicted in Figure 4.2 as an exemplary model instance.

A configuration q ∈ R
n and its time derivative q̇ encode the continuous state of a

system. In the example this vector q comprises the 14 axis positions as well as a vector-

quaternion representation for the pose of the cube. Time is represented by t.

A discrete mode σ ∈ Σ encodes the contact state of a system and is an element of the

finite set of modes Σ. In the example the cube may either be at rest on a surface, moved by

a conveyor, or held by one of two grippers. Since the cube has six sides that may be in

contact with surface, conveyor, or grippers the example features |Σ| = 24 discrete modes.

The discrete mode determines both the system dynamics and the constraints that a

configuration q must fulfill.

A system is governed by the control input u ∈ R
nu . In the example u comprises 14 axis-

accelerations. Given a mode σ, a system follows a control-affine, second-order dynamic:

q̈ = aσ(q, q̇, t) + Bσ(q, t)u, (4.1)

60 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

where aσ(·) denotes the acceleration q̈ for zero control input and Bσ(·) denotes its affine

dependency on u. In the example, the acceleration of the 14 axes is equal to u, indepen-

dently of σ. The acceleration of the cube depends on the mode σ and the configuration

of the robot. In case of a grasp, the acceleration of its pose is determined by the forward

kinematics of the grasping robot. When the cube is placed on a surface its acceleration is

zero. If an object is placed on a conveyor belt, Eq. (4.1) is time-dependent.

Naturally, the controls u must be bounded to prevent damage to the system. We assume

that the bounds on controls are given as a symmetric and affine inequality:

–kmax ≤ cσ(q, q̇, t) + Dσ(q, t)u ≤ kmax. (4.2)

Again, cσ denotes a control-independent term and Dσ an affine dependency on u. The

sum of these terms must fulfill the box constraint defined by kmax. These affine limits on

controls enable to model torque limits. However, in the example we assume a conservative

limit on axis accelerations –umax ≤ u ≤ umax.

Each mode σ is associated with a set of piecewise twice differentiable constraints fσ

and gσ, that must hold while the system is in that mode or to transition into that mode:

fσ(q, t) = 0, gσ(q, t) ≤ 0. (4.3)

In the example the inequality constraints gσ comprise axis limits as well as collision

avoidance. The geometry of the robots and cube is approximated by convex primitives and

their pairwise penetration depth must remain negative. Equality constraints fσ arise due to

the contact state of the object. If the cube is placed, its center must be at a fixed height

above the surface and its contacting side be anti-parallel to the surface. This also implies

that the pose of the cube is under-constrained: two translational axes and one rotational

axis are free.

Additionally, constraints may be imposed at the velocity level:

d
dt

vσ(q, t) = 0, d
dt

wσ(q, t) ≤ 0. (4.4)

Axis velocity limits are given as inequality constraints. The relative velocity of the cube

to the surface or a gripper must be zero when placed or grasped respectively. While the

system is in mode σ the constraints fσ, gσ, vσ, and wσ must be fulfilled.

The full state of a system x = (σ, q, q̇, t) ∈ X comprises the current mode, the config-

uration, its velocity, and time. We assume that this state is known to the system. For a

mode σ we denote the corresponding set of valid states Vσ as the set of states, in which the

system is in that mode and Eq. (4.3) and Eq. (4.4) are fulfilled. Figure 4.3 visualizes these

sets for the example task.

Following the ideas of [9], the modes σ ∈ Σ form a graph. To transition from a

mode σ1 in this graph to mode σ2, the second mode must be in the first mode’s set of

neighbors: σ2 ∈ Neighbors(σ1). Additionally, the constraints fσ2 , gσ2 , vσ2 , and wσ2 of σ2

4.1. The Dynamic Constraint Graph 61

robot

robot

object
xstart

Xgoal

σA: object placed

σB: object grasped

σC: object placed

VσA

VσB

VσC

Figure 4.3: Model of a pick and place task: Three planes visualize Vσ for different modes. White

areas represent configurations that are in collision. Initially the object is placed (mode σA) and the

object does not move when the robot moves. At the intersection of VσA
and VσB

the object can be

grasped. When grasped (mode σB) the object is moved along with the robot. Within mode σC the

object is placed again in a different orientation. The thick line represents a trajectory for robot and

object that leads from a start state xstart to a goal region Xgoal.

σA: door closed σB: door grasped σC: door open

grasp release

release grasp

Figure 4.4: Exemplary dynamic constraint graph for the task of Figure 4.1: In mode σA the door is

closed, which is the only constraint specific to that mode. Some constraints are shared across all

modes. This includes collision avoidance and axis limits. In mode σB the robot is holding the door

and the camera must point at the grasp point. Mode σC constrains the door to be open.

62 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

must be fulfilled. For example, to grasp a resting cube the gripper must be positioned

in a grasping pose relative to the cube and all constraints on axis limits and distances of

collision bodies must be fulfilled. Switching a mode, i. e., opening or closing grippers in

the example, is assumed to happen instantaneously and is an explicit decision of the robot

and not part of the system dynamics.

Mirabel and Lamiraux [9] show that this graph, described by the set of modes Σ, the

neighborhood-function Neighbors(·), and the corresponding constraints, can be constructed

automatically for typical manipulation tasks. Some of the constraints of Eq. (4.3) and

Eq. (4.4) of the current mode are automatically fulfilled by the system dynamics Eq. (4.1)

similar to the explicit constraints of [42]. For example, while an object is grasped the

constraints on the relative velocity of object and gripper are automatically fulfilled by the

forward kinematics. Figure 4.4 shows the graph structure for the example of Figure 4.1.

We assume that the system is at an initial state xstart = (σstart, qstart, q̇start, tstart) and should

reach a set of goal states Xgoal ⊂ X . The goal for a manipulation planner is to find a

trajectory of states x and controls u that has the following properties:

• The trajectory begins in xstart and ends within Xgoal.

• There is a finite number of mode switches.

• A mode σ– may only change to another mode σ+ if they are neighbors in the dynamic

constraint graph, i. e., σ+ ∈ Neighbors(σ–).

• The dynamics of Eq. (4.1) are fulfilled and the limits on the control input u of

Eq. (4.2) are fulfilled.

• At all times the constraints of Eq. (4.3) and Eq. (4.4) are fulfilled. That is, for the

current state x with mode σ we require x ∈ Vσ.

Figure 4.3 shows such a trajectory of states x as the thick line. In this chapter we address

reactive manipulation. For this reason, we aim to instantiate such a trajectory with a

controller u = k(x).

4.2 Automatic Controller Synthesis

We can use the dynamic constraint graph to automatically construct motion controllers.

These motion controllers implement a movement of the robot that is goal-directed with

respect to the planning problem.

We construct two types of controllers. The first type steers the system towards the

intersection of the constraint manifolds of two modes, i. e., it attempts a mode change.

Examples include controllers that open or close a door or that pick or place an object. The

second type of controller steers the system towards a desired robot configuration. This

4.2. Automatic Controller Synthesis 63

robot

robot

object

robot

robot

object

σA: object placed

σB: object grasped

σC: object placed

VσA

VσB

VσC

VσA

VσB

VσC

Grasp object Place object

Figure 4.5: Phase diagrams for mode change controllers: The left image shows a phase diagram

of a controller that attempts to grasp an object. In the right image a phase diagram is shown for

placing the object in a different orientation. The controllers are not required to converge globally to

their goal. This can be seen in the left image as some trajectories get stuck in the C-shaped obstacle.

type of controller is intended to explore the collision free areas of the configuration space.

With these two types of controllers we can formulate manipulation planning as switching

between motion controllers. In the following we explain how the two types of controllers

can be constructed and their resulting properties. The controllers in this section are based

on the eTC controller [43] that we modified to an acceleration resolved control scheme

similar to [44].

4.2.1 Mode Change Controller

We first explain how a mode change controller operates. Let us assume our system is

currently at a valid state x = (σ, q, q̇, t) and should transition to a mode σ′ ∈ Neighbors(σ).

Thus, controls u need to be computed that eventually lead to a state fulfilling the constraints

of mode σ′. Until these constraints are fulfilled the constraints of the current mode σ must

not be violated. Figure 4.5 shows phase diagrams for two such controllers.

Let us recall that a mode σ defines the constraint on positions

fσ(q, t) = 0, gσ(q, t) ≤ 0,

and on velocities

d
dt

vσ(q, t) = 0, d
dt

wσ(q, t) ≤ 0.

In the following we omit the equality constraints fσ and vσ as they can be represented

as two inequalities with different signs in the computations. We can implement a mode

64 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

change with controls u that result in the following desired dynamics of the constraint

functions:

g̈σ ≤ –Kg
σgσ – Dg

σġσ,

ẅσ ≤ –Dw
σẇσ,

g̈σ′ ≤ –K
g

σ′gσ′ – D
g

σ′ ġσ′ ,

ẅσ′ ≤ –Dw
σ′ẇσ′ ,

with g∗, ġ∗, and g̈∗ being the value and time-derivatives of g∗ for given q, q̇, t and u. The

matrices Kg
∗, Dg

∗, and Kw
∗ are diagonal and chosen to achieve stable and at least critically

damped dynamics. If each vector element of the constraint functions follows its own

decoupled, stable, and properly damped behavior, eventually all constraints will converge

to or stay below zero. As the initial state x is already within Vσ it will stay within Vσ.

The acceleration of the constraint functions can be linearized via:

g̈σ = g̈σ,0 +
∂g̈σ

∂u
u, ẅσ = ẅσ,0 +

∂ẅσ

∂u
u.

Here, g̈∗,0 denotes the second-order time-derivative of g∗ with zero controls u = 0. Typi-

cally, the desired dynamics of the constraint functions of σ and σ′ cannot be obtained at

the same time. For this reason we relax the desired dynamics for the constraint functions

of mode σ′ with slack variables ǫg′ and ǫw′ . This leads to the relaxed, linearized dynamics:

g̈σ,0 +
∂g̈σ

∂u
u ≤ –Kg

σgσ – Dg
σġσ,

ẅσ,0 +
∂ẅσ

∂u
u ≤ –Dw

σẇσ,

g̈σ′,0 +
∂g̈σ′

∂u
u ≤ –K

g

σ′gσ′ – D
g

σ′ ġσ′ + ǫg′ ,

ẅσ′,0 +
∂ẅσ′

∂u
u ≤ –Dw

σ′ẇσ′ + ǫw′ .

(4.5)

The controls u are now computed via a quadratic program:

minimize
x

x⊤Hx

subject to bl ≤ Ax ≤ bu.
(4.6)

The optimization variable x =
[
u⊤, ǫ⊤g′ , ǫ

⊤
w′

]⊤
comprises the control input and slack

variables. The matrix H is diagonal with positive weights for the accelerations and the

slack variables. The vectors bl, bu and the matrix A are derived from the relaxed, desired

dynamics in Eq. (4.5) and the bounds on control inputs in Eq. (4.2).

This optimization ensures that the constraints of the current mode σ will not be violated.

Remaining degrees of freedom are used to achieve the desired dynamics for mode σ′ while

also using as little controls as possible.

4.2. Automatic Controller Synthesis 65

robot

robot
object

σA: object placed
σB: object grasped
σC: object placed

VσA

VσB

VσC

q′
r

Figure 4.6: Phase diagram of a joint target controller: The goal for the controller is to reach a

desired robot configuration q′
r without leaving the set Vσ of the current mode σ.

We assume that a mode change controller performs a mode switch to the target mode σ′

as soon as this is possible, i. e., as soon as the constraints of mode σ′ are fulfilled within

a numerical tolerance. Furthermore, we assume that after such a mode switch the task

is either fulfilled or a different controller takes over. This is ensured with the planning

algorithms we present in the following sections.

4.2.2 Joint Target Controller

The purpose of the joint target controller is to explore the collision free parts of the

configuration space. For this purpose we separate the configuration q⊤ =
[
q⊤

r , q⊤
o

]
into a

robot configuration qr and an object configuration qo.

Again, let us assume our system is currently at a valid state x = (σ, q, q̇, t). The goal

of the joint target controller is now to steer the system to a desired robot configuration q′
r

without leaving the mode σ or violating its constraints. Figure 4.6 visualizes a phase

diagram for such a controller.

This can again be implemented with controls u that result in the following desired

dynamics of the constraint functions and the robot configuration qr:

g̈σ ≤ –Kg
σgσ – Dg

σġσ,

ẅσ ≤ –Dw
σẇσ,

q̈r = –Kr(qr – q′
r) – Drq̇r.

66 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

These desired dynamics are again linearized and relaxed:

g̈σ,0 +
∂g̈σ

∂u
u ≤ –Kg

σgσ – Dg
σġσ,

ẅσ,0 +
∂ẅσ

∂u
u ≤ –Dw

σẇσ,

q̈r,0 +
∂q̈r

∂u
u = –Kr(qr – q′

r) – Drq̇r + ǫr.

The controls u are now computed using a similar quadratic program as with the mode

change controller.

4.2.3 Discussion of the Controllers

The two kinds of controllers are used by a planner as so called steering functions or local

planners. A planner can now explore the set Vσ of a mode σ using the joint target controller

or attempt a mode switch with a mode change controller. Intuitively, the controllers operate

similarly to the tangent space approach discussed in Section 2.5. Once a plan is found

using the controllers one can store the sequence of controllers instead of the trajectory they

instantiated during planning. This has the advantage, that during execution the controllers

react in real-time to disturbances while respecting the constraints of the original planning

problem.

We use a modified variant of the eTC controller [43] to construct the controllers. Other

control frameworks, e. g., the Stack of Tasks [45], could be used as well. It is worth

discussing a few technical issues that arise when using the dynamic constraint graph in

combination with the presented controllers.

Stability: Even if the controllers exactly achieve the desired dynamics of the constraint

functions, it is not guaranteed that the system remains stable. The reason is that the

system may have redundant degrees of freedom that result in an unstable self-motion in

the null-space of the constraint functions. This instability of acceleration resolved, local

control schemes has been discussed by Suh and Hollerbach [46]. We address this by adding

additional soft constraints to the optimization to achieve zero velocities on all robot axes.

These additional constraints receive small weights so that the effect on the actual task of

the controller, e. g., a mode switch, is small.

Overshoot after mode switches: For inequality position constraints, it is possible that

the controllers overshoot the limit of the inequality after a mode change. This may happen

if the corresponding constraint function has a large positive velocity shortly before the

mode switch.

However, this is not a problem for typical manipulation tasks. The reason for this is

that there are two structures of planning problems that prevent this and that are common

4.3. Kinodynamic Feedback-Planning for Manipulation 67

to typical manipulation tasks. The first structure is that the same inequality constraints

must be fulfilled both in the current and the following mode. Examples are axis limits and

collision avoidance which must be fulfilled in all modes.

The second structure is that a position inequality constraint related to the task usually

comes with a corresponding zero velocity equality constraint for the same constraint

function. An example is the placement of an object on a surface. The x-position of the

object during placement is usually constrained via a position inequality as we want to

specify a region in which the object should be placed. This constraint could potentially be

overshot. However, after the object is placed it does not move, which implies that there is

an additional constraint to ensure that the velocity of the object is zero. For this reason it

cannot overshoot the position constraint after the mode switch.

Feasibility of the quadratic program: The quadratic program in Eq. (4.6) that we use

to compute the controls may be infeasible. This happens when the desired constraint

dynamics of the current mode are in conflict.

If this happens, a straightforward approach is to relax the constraints of the current mode

with high weights. Even if the desired dynamics of the constraint functions are not fulfilled

in one control cycle, the system usually recovers without actual constraint violations in the

following cycles. In the following sections we will present additional methods to address

this in the proposed feedback planners.

4.3 Kinodynamic Feedback-Planning for Manipulation

In this section we present a kinodynamic feedback planner for manipulation. The idea is

to transform the dynamic constraint graph into task specifications for motion controllers

as described in the previous section. These controllers can then be simulated during

planning as steering functions. A kinodynamic planner, similar to the Expansive Space

Tree (EST) [6], uses these steering functions to build a search tree. As our planner extends

the EST to constrained manipulation tasks and enables reactive execution it is called

Constrained Reactive Expansive Space Tree (CR-EST).

4.3.1 Planning Algorithm

Before we describe our planner we introduce the primitive operations that are used to

explore the configuration space. Procedure randomController(σ)→ kq returns a joint tar-

get controller kq that steers towards a randomly chosen robot configuration on a trajectory

that satisfies the constraints of mode σ. The procedure simulateController(x, k)→ xnew

takes a state x and controller k as input and returns the state xnew to which the system is

moved by the controller.

68 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

Procedure transitionController(σ, σ′)→ kσ′ takes modes σ and σ′ as input and returns

a mode change controller kσ′ that steers towards the intersection of both mode’s constraint-

manifolds while satisfying the constraints of σ. We assume that all controllers terminate if

their targets are reached within a numerical tolerance and that the mode change controllers

perform a mode switch when this happens.

The procedure simulateController simulates a controller until it reaches its target, i. e.,

the target mode or the random robot configuration. In this case the resulting state is

returned. In case the optimization problem of equation Eq. (4.6) is infeasible the procedure

returns failure. This may happen when the dynamics of safety constraints are in conflict.

Controllers may also become stuck locally. To address this simulateController returns

failure after a (simulated) time-out.

1 Procedure: buildSearchTree(xstart) infinite version

2 N ← {xstart}, E ← {}

3 while true do

4 x← (σ, q, q̇, t)← sampleWeighted(N)

5 kq ← randomController(σ)

6 xnew ← simulateController(x, kq)

7 N .add(xnew), E .add((x, kq, xnew))

8 for σ′ ∈ Neighbors(σ) do

9 kσ′ ← transitionController(σ,σ′)

10 xnew ← simulateController(x, kσ′)

11 N .add(xnew), E .add((x, kσ′ , xnew))

With these procedures we can define our planner, CR-EST. Our algorithm builds a

search-tree of nodes N and edges E rooted in the initial state xstart. The procedure build-

SearchTree shows the pseudocode for the tree construction without termination condition.

In each iteration the planner samples a random node from the current set (forward search!)

of nodes N using the procedure sampleWeighted. This sampling puts larger weight on

nodes that lie in sparsely populated areas of the state space. From this node we attempt

to steer towards a random configuration, as well as to all neighboring modes. Naturally,

the implemented planner has no infinite loop and the tree construction is stopped if a node

within Xgoal is found or a time budget is depleted. Figure 4.7 shows the construction of

the search tree. If a controller gets stuck locally its result is discarded after a (simulated)

time-out. Figure 4.7 shows this as the path that ends in a red cross.

4.3. Kinodynamic Feedback-Planning for Manipulation 69

robot

robot
object

xstart

Xgoal

σA: object placed
σB: object grasped
σC: object placed

VσA

VσB

VσC

Figure 4.7: Exploration of the configuration space by CR-EST: The thick line represents a trajectory

for robot and object that leads from a start state xstart to a goal region Xgoal. Thin black lines show

alternative motions attempted by the planner as part of the search tree. If a controller gets stuck

locally its result is discarded after a (simulated) time-out. This is shown as the black line that ends

in a red cross.

4.3.2 Controlled Execution

The result of our planning algorithm is a sequence of constraint-based controllers. Fig-

ure 4.8 shows the phase portrait of such a controller sequence for a pick and place task.

Using this sequence of controllers, an accurately modeled and undisturbed system will

reach a goal state. If the execution is disturbed the controllers can meaningfully react.

This is due to the fact that the parametrization of the controllers is based on the planning

domain (safety constraints) and the decisions of the planner (non-safety constraints).

70 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

1: move to target 2: grasp object

3: release object 4: move to target

Figure 4.8: Phase-portrait of a controller sequence for a pick and place task: In step 1 the goal of

the controller is to reach a target axis configuration. This is necessary for step 2, where the goal of

the controller is to grasp the object by reaching the intersection of grasp mode and placement mode.

If the grasping was attempted first, the system would get stuck in the C-shaped obstacle region. In

step 3 the object is placed at a different placement position. Finally, in step 4, the robot retracts

from the object.

4.3. Kinodynamic Feedback-Planning for Manipulation 71

4.3.3 Implementation Details

The definition of the constraints in Eq. (4.3) and Eq. (4.4), the system dynamics in Eq. (4.1),

and the computation of all required derivatives is based on a custom implementation of the

eTaSL/eTC framework [43]. For computations related to kinematics we use the Kinematics

and Dynamics Library [47]. We solved the optimization problem inside the control loop of

Eq. (4.6) using the qpOASES solver [48, 49]. All constraints share the same parameters for

desired constraint dynamics K∗
∗ and D∗

∗, assuming unit-free constraint functions. As units

of measurement for our constraint functions we used seconds for time, radians for joint

angles, meters for translations, and components of unit quaternions for rotatory Cartesian

quantities. We chose elements of K∗
∗ as 20 and set D∗

∗ to achieve a damping ratio of 1.1.

The weights for the matrix H where set to 0.001 for the control inputs and to 1.0 for the

slack variables. We added weakly weighted (0.001) non-safety constraints to achieve zero

axis velocities that prevent unnecessary motions and stabilize the system.

Most of the constraints, such as axis limits and collision constraints, are present in all

modes of the constraint graph. For efficiency, these constraints are used only once as

safety constraints in the computations. Constraints that are explicitly addressed by the

system dynamics of Eq. (4.1) are also omitted in the computations, similar to the explicit

constraints of Mirabel and Lamiraux [42].

The time-out parameter for the controller simulation was chosen as 10 (simulated)

seconds. As control frequency we use 200 Hz during execution and 40 Hz during simulation

to speed up planning. The procedure sampleWeighted uses a grid-based discretization

of the state space typical for kinodynamic planners. As grid cells we use the mode of

the state resulting in 24 cells in the experiments. This is a low number of cells compared

to kinodynamic motion planners. However, this is compensated by the constraint-based

controllers, that are comparatively powerful (and computationally expensive) steering

functions that avoid collisions.

4.3.4 Experimental Setup

As experimental setup we use the dual-arm robot depicted in Figure 4.2. It comprises two

seven-axis manipulators, each equipped with a parallel gripper. The goal is to move a cube

that is placed on the right to the left side of the setup.

We designed five benchmarks to pose different challenges to manipulation planners.

Benchmark 1 comprises no additional obstacles, i. e., the walls of Figure 4.2 are missing

and the left manipulator may directly pick and place the cube. Benchmark 2 adds the

lower obstacle and therefore makes a re-grasp necessary, where the right robot hands the

object to the left one. Benchmark 3 and Benchmark 4 comprise both obstacles with a

height of the opening set to 0.4 m and 0.2 m respectively. These two scenarios where added

to stress the motion planning aspects of manipulation. Benchmark 5 adds time-variance

72 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

Figure 4.9: Online collision avoidance: While the robot is executing a plan, a person, that is tracked

via markers, enters the workspace. The person’s arm is approximated by a sphere and the robot

reacts online to satisfy the collision-constraints. This is done while ensuring that no self-collisions

occur. Remaining degrees of freedom are used to execute the plan.

by placing the cube on a conveyor belt as shown in Figure 4.2. At the beginning of

Benchmark 5, the cube is not resting on the surface but moving away from the wall (0.2 m

opening) with a constant velocity of 5cm/s.

We implemented these benchmark scenarios for the planner presented in this chapter

as well as for the RMR* algorithm of the previous chapter. RMR* is an asymptotically

optimal, sampling-based manipulation planner. This allows to compare both planning

times and costs of the resulting solutions. As the problem setting involves acceleration-

controlled robots we implemented RMR* with the trajectory generators of [50, 51] as local

planners. To allow a meaningful comparison of planning times, RMR* was implemented

in an incremental fashion that does not separate between roadmap construction and query

as presented in the previous chapter. Each benchmark is planned 70 times with different

random seeds. The time variant Benchmark 5 was not implemented for RMR*. Both

planners were implemented in C++, use multiple threads and were run on a ten-core Intel

Xeon E5-2650v3.

On the real robot we implemented two qualitative experiments to validate the reactive

execution of manipulation plans. The first experiment is designed to incorporate measure-

ments of object poses into the reactive execution. A plan for Benchmark 4 is computed

for an assumed pose of the cube. Then the actual pose of the cube is measured with a

camera and the original plan is executed. In the second real-world experiment additional

online collision-avoidance is added. While a plan is executed we use a tracking system to

detect a person that must be avoided. Figure 4.9 shows this experiment for Benchmark 4.

The avoidance of this obstacle must not lead to self-collisions or violations of axis limits.

4.3. Kinodynamic Feedback-Planning for Manipulation 73

Redundant degrees of freedom should be used to execute the manipulation plan.

4.3.5 Results

The average success rates of our planner over time are shown in Figure 4.10. CR-EST

reliably solves the five benchmark problems. A surprising outcome is the consistency of

planning times that appears to be independent of the difficulty of the benchmark.

Table 4.1 shows the average planning times and execution times of plans for both CR-

EST and RMR*. RMR* shows the typical behavior of sampling-based, collision-free

planners: planning times deteriorate as more obstacles and “tunnels” are added. CR-EST

shows relatively consistent planning times across all benchmarks. We attribute this to

the nature of the steering functions employed by our approach. As the constraint-based

controllers receive the distances between collision bodies as inequality constraints, colli-

sions simply do not occur, neither during execution nor during planning. This effectively

implements a wall-following steering function that allows to efficiently solve the bench-

marks with a tunnel in the configuration space (Benchmarks 3-5). However, simulating

controllers is more time consuming than collision checking and RMR* plans faster when

few obstacles are present.

Even though CR-EST does not attempt to compute optimal solutions, it is interesting to

compare the quality of solutions to that of RMR*. RMR* was implemented to minimize

the duration of solution trajectories. The first solution returned by RMR* however is

arguably representative for typical sampling-based manipulation planners. Table 4.1 shows

that solutions of CR-EST have longer durations than both the first solution returned by

RMR* and the best solution after one minute of optimization. A possible explanation is

that the linear target dynamic for the constraint-functions under-utilizes the axis limits on

acceleration and velocity compared to the time-optimal local planner of [50]. In practice

this means that with CR-EST the robot moves slower but smoother especially when close

to obstacles.

In the real-world experiments the execution of plans reacted to measurements of object

poses as well as obstacles that are detected online.The plans consisting of constraint-

controllers encode not only the current target state but also the constraints of the planning

domain such as axis limits and self-collision avoidance. Therefore, the robot does not only

avoid the detected obstacle during execution, but does so in a way that no self-collisions

occur. If redundant degrees of freedom remain, they are used to achieve the current target

that is encoded in the plan.

However, it is possible to disturb the robot sufficiently so that the execution becomes

stuck locally. This may happen if the controller is blocked by a combination of collision

bodies or by being pushed into a kinematic reconfiguration where axis limits prevent the

controllers to progress towards the goal. In practice this can be easily compensated by

stopping and re-planning after a time-out.

74 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

0 5 10 15 20 25 30
planning time [s]

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

s
ra

te

benchmark 1

benchmark 2

benchmark 3

benchmark 4

benchmark 5

Figure 4.10: Success rates of CR-EST: Each line visualizes the success rate of 70 planning queries

for one of the five benchmark tasks.

Table 4.1: Planning and Execution Times

all values in seconds Benchmark

[standard error of the mean] 1 2 3 4 5

CR-EST planning time 7.89 10.5 9.27 8.39 6.79

[0.43] [0.59] [0.50] [0.46] [0.26]

execution time 14.3 17.1 17.7 17.3 17.9

[0.37] [0.36] [0.20] [0.09] [0.14]

RMR* planning time 6.44 8.18 21.3 >300 /

[0.67] [0.79] [1.54] / /

execution time 10.7 11.8 14.9 / /

of first solution [0.34] [0.44] [0.57] / /

best time at 60s 5.76 5.90 7.19 / /

4.4. Feedback Planning for Manipulation via Q-Learning 75

A useful property of our approach is that planning and controlled execution both function

reasonably in invalid states. Examples include violations of axis limits as well as objects

that are pushed into the collision margin of the robot. The controllers will steer towards

valid states according to the target dynamics of the constraint-functions.

4.4 Feedback Planning for Manipulation via Q-Learning

The approach of the previous section uses a sampling-based planner to compute a sequence

of motion controllers. As a consequence, it is not possible to obtain plans in deterministic

time. Also, planning takes several seconds on average. This is problematic, e. g., when the

environment contains fast, time-variant components, such as fast moving conveyor belts.

For this reason we introduce a second feedback planner in this section, that selects the active

controller in real-time. We achieve this by reformulating the problem as a reinforcement

learning problem. A reinforcement learning agent selects, with a low control frequency,

which motion controller to activate. Due to the hierarchical structure of this approach,

we will refer to the motion controllers as low-level controllers and to the reinforcement

learning agent as high-level controller.

4.4.1 Learning Algorithm

In this section we first formulate manipulation planning as a deterministic reinforcement

learning problem and then approximate the solution to this problem using a Deep Q-

Network (DQN) [52]. A full explanation of reinforcement learning or deep learning as a

method for function approximation is out of the scope of this chapter. Sutton et al. [53]

provide an overview of reinforcement learning methods and their theory. An introduction

to deep learning is provided by Goodfellow et al. [54].

The core idea of this section is to reformulate the action space of a manipulation planner.

Instead of computing controls u that are continuous across time, we select actions at discrete

time instants with a cycle time of ∆t. At each discrete time step we do not chose a control

input but an active controller. Given a state x = (σ, q, q̇, t) and the controller synthesis

in Section 4.2 there are two sets of possible controllers. There are |Neighbors(σ)| < |Σ|

applicable mode change controllers available and a continuous set of joint target controllers

that steer to a robot configuration qr ∈ R
nr .

The idea is to create a finite set of such low-level controllers and then switch between

them as needed. As the set of modes is finite, there exist only |Σ| different mode switch-

ing controllers kσ′ . However, a continuous set of controllers kq′ with a configuration q′

as target could be constructed. For this reason, we sample Nr ∈ N random configura-

tions {q1, ..., qNr} as targets for Nr controllers. These random configurations do not need to

76 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

be valid configurations. This leads to a finite set K of controllers with |K| = |Σ| + Nr:

K = {k1, ..., knk
} = {kσ1 , ..., kσ|Σ| , kq1 , ..., kqNr

}.

The high-level controller operates with a control cycle ∆t, and should bring the system

into a goal state within the shortest possible time. This results in a shortest path problem

with a continuous state space, discrete time steps (∆t), and a discrete action set (which

controller in K to activate).

Even though time and the action space are discretized this shortest path problem is

challenging due to the continuous and high-dimensional configuration space. We address

this by formulating the problem as a reinforcement learning problem in which each action

yields a negative reward of –1 and termination occurs in the goal set Xgoal. A policy is

trained in simulation to form the high-level controller. Due to the continuous state space

and finite action space, Deep Q-Networks [52] are a suitable learning method and were

chosen for our approach. As input to this network we use an encoding H(x). This encoding

contains positions q, velocities q̇, time t, and a one-hot encoding of the current mode σ. A

DQN can now be trained in simulation for the given dynamic constraint graph an a goal

set Xgoal.

The action space of our reinforcement learning problem consists of motion controllers

that are designed for constrained motion. As switching between these controllers is

implemented with a Deep Q-Network we name our approach Constrained, Reactive Deep

Q-Network (CR-DQN). The control flow of our architecture can be seen in Figure 4.11. A

phase portrait of the approach is shown in Figure 4.12.

An implication of using only a finite number of random target controllers is that the

approach may be incomplete for a planning problem given a choice of random targets.

However, it is important to note that the random targets have a different purpose than

random samples in a probabilistic roadmap planner [4]. Typically, the system cannot

reach a random target within one cycle of the high-level controller (if it can reach it at

all). Therefore, the samples serve as directions in configuration space along which the

random target controllers may steer the system. This means that even with a low number

of targets Nr, the high-level controller is typically able to move the system on a rich set of

trajectories.

4.4. Feedback Planning for Manipulation via Q-Learning 77

t q q̇ q̈ σ∫
dt

∫
dtx = (σ, q, q̇, t)

x xu

u1

u2

unk

u

k1(·)

k2(·)

knk
(·)

ar
gm

ax

se
le

ct
or

a∗

DQN

Q(x, a)

H(·)

Dynamics
+

Mode Change

Figure 4.11: Control flow of the hierarchical controller: The block H(x) produces an encoding of

the current state x including a one-hot encoding of mode σ. This encoding forms the input to a deep-

Q-network (DQN) that computes the state-action values Q(x, a) of selecting a controller ka. The

controller with the maximal state-action value is selected and its output is used as the new control

input u. Given the current state x and controls u the system dynamics result in the acceleration q̈.

This acceleration is integrated twice to close the loop.

78 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

move to random target: kqr grasp object: kσB

release object: kσC
complete feedback plan

VσA

VσB

VσC

1
2

3

4

Figure 4.12: Phase portrait of the low-level controllers and the complete controller: The upper

left image shows the phase portrait of a random target controller kqr that steers to a desired robot

configuration qr (only drawn for VσA
and VσC

). The random target qr is drawn as a red line since

the object configuration is ignored. In the upper right and lower left image two mode switching

controllers kσB
and kσC

are shown. The complete feedback plan is obtained by switching between

these controllers. This controller is shown in the lower right image. The thick line visualizes a

trajectory of the system towards the goal. For this trajectory a sequence of four active controllers

is used: Step 1: The random target controller kqr steers around the C-shaped obstacle. Step 2:

Controller kσB
steers towards a grasp pose. Step 3: Controller kσC

is used to move and then release

the object at its new position. Step 4: Controller kqr is used again to steer towards the goal region.

4.4. Feedback Planning for Manipulation via Q-Learning 79

4.4.2 Implementation Details

We use the same automatic controllers synthesis as in the last section with one minor

modification: For all constraints, the desired dynamics are designed to have a time-constant

of 0.2 s with critical damping. The number of joint-target controllers nk was arbitrarily

chosen as 20.

The focus of this chapter is not on reinforcement learning but uses it as a tool to create

the high-level controller. For this reason, the network architecture and the training were

designed to minimize implementation and debugging efforts.

As the ideal depth of the neural network is likely to be different for different tasks,

we chose the ResNet [55] architecture for the main body of the neural network. This

architecture is designed to allow the network to mimic the behavior of more shallow

networks if needed. The first layer of our network is a dense layer with 64 units followed

by six ResNet bocks, each with two 64 unit dense layers and ELU activations [56].

The high-level controller has a considerable action space. In the PR2 Task there

are |Σ| + Nr = 20 + 20 different controllers, where at least the 20 joint target controllers

are available in each step. For this reason training is suffering from the typical over-

estimation of Q-learning [57]. To address this we employ double Q-learning [58] and the

final Dueling-Layer as presented in [59]. The total number of hidden layers is thus 13.

We strictly separate between data generation and learning. Data generation is done

with 104 episodes with valid, random initial states and at most 1,000 steps of random

actions per episode. As a mode switch requires some time for the controllers to converge,

we randomly repeat actions between zero and ten times. The frequency of the high-level

controller was chosen as 1 Hz. We use the resulting data set as one large replay buffer

without running new episodes during training.

The discount rate was set to γ = 0.95. We optimize the weights of the network with the

Adam optimizer [60] with a learning rate of 10–4, its parameters β1 = 0.9 and β2 = 0.999

and a batch size of 320. The weights of the target network are updated after one epoch

through the entire data set and we train for a total of 100 epochs. We model the network

and optimize its parameters using Keras [61] together with Tensorflow [62].

As the controllers can be simulated several times faster than required for real-time

execution and simultaneously in multiple threads, we use a policy roll-out during execution

to further stabilize the policy. For the policy roll-out we use four actions with the highest

Q-values and perform a roll-out of four time steps, i. e., a total of four simulated seconds.

4.4.3 Experimental Setup

To evaluate CR-DQN we designed three different manipulation-tasks as benchmarks. All

benchmarks involve motion through high-dimensional state spaces with at least 20 degrees

of freedom and are shown in Figure 4.13.

80 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

DUAL

DELTA

PR2

Figure 4.13: Tasks in the experiments:

DUAL Task: A cube on the left must be placed on the right side of the setup. The left robot must

grasp the cube and hand it to the right through an opening in a wall.

DELTA Task: A delta-robot must grasp three boxes from rotating carriers and place them on a

conveyor belt. Both for grasping and releasing the boxes the robot must synchronize its movement

to the time-variant environment.

PR2 Task: A mobile manipulator has to operate a valve and a lever. It must first open a door that

blocks the path. Additionally, the head-mounted camera must point at the lever, door, or valve

respectively while they are being manipulated.

The DUAL task requires a dual-arm robot to transport a cube. It is designed to incorporate

the typical interdependencies between motions, grasps, and placements of manipulation

planning. The gap in the wall is 0.3 m wide and thus forms a narrow tunnel in the

configuration space. This poses a difficult motion planning problem as well.

In the DELTA task a delta-robot has to pick three boxes from rotating carriers and place

them on a conveyor. This benchmark includes closed kinematic chains, multiple objects,

and a time-variant environment. To pick or to place the boxes the robot must synchronize

its motion with the carriers or the conveyor respectively.

The PR2 task consists of a PR2 robot that must operate a lever and a valve. To reach lever

and valve a door that blocks the way must be opened first. While the PR2 is manipulating

either lever, valve, or door its head-mounted camera must point at the manipulated object.

This benchmark is created to verify that our approach can address problems other than

pick-and-place. Furthermore, this task contains multiple kinematic chains that are either

closed or open depending on the state of the system.

For these benchmarks we implemented CR-DQN as well as CR-EST. CR-EST is the

only other approach we are aware of that computes feedback plans for manipulation with

4.4. Feedback Planning for Manipulation via Q-Learning 81

Table 4.2: Success Rates - Disturbed Execution

Benchmark DUAL DELTA PR2

CR-DQN max 100% 100% 100%

10 different networks median 99.5% 100% 100%

mean 98.1% 99.9% 98.5%

min 93.0% 99.0% 86.0%

CR-EST 11% 97% 57%

articulated robots. We generated ten sets of random targets and corresponding simulated

training datasets for each benchmark. This is used to train ten CR-DQNs per benchmark.

Training multiple CR-DQNs is necessary for the evaluation, as the set of random targets,

the training dataset, and the initial network weights are random variables.

The experiments are designed to assess the robustness of the two approaches against

disturbances in the configuration q and the quality of the computed solutions. To evaluate

the robustness we proceeded as follows: For CR-EST we randomly sampled a valid initial

state and computed a plan. Then a second random and valid state within the same mode

was sampled and the plan was executed for this disturbed state. It was necessary to sample

a state within the same mode since CR-EST, unlike CR-DQN, cannot react to unexpected

mode changes. Each trained CR-DQN was also run on a random, valid initial state (CR-

DQN does not need to plan once a policy is trained). As each benchmark can be solved

in less than 20 seconds, we assume that execution has failed if the goal is not reached

within 60 seconds. Each experiment was repeated 100 times. They were run on two Intel

Xeon 5122 quad-core CPUs at 3.6 GHz.

4.4.4 Results

Table 4.2 shows the success rates of both approaches for the three benchmarks. As the ten

trained agents per benchmark have different success rates the maximal, median, average,

and minimal success rates are shown. For each benchmark, at least five trained agents

achieved a 100% success rate. For the DUAL and PR2 tasks every trained CR-DQN is

significantly (p-value < 1%) more robust than the CR-EST. No significant difference can

be observed on the DELTA task as both approaches have success rates close to 100%. We

made the following observations on the failures of both approaches:

CR-EST: The typical failure mode for the DUAL task of CR-EST is to get stuck in an

axis limit. For the PR2 task CR-EST is prone to get the PR2’s arms tangled and cannot

proceed due to collision constraints. In the DELTA task the last joint of the delta-robot is

continuous and thus has no relevant axis limit and the collision geometry is mostly convex.

82 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

Table 4.3: Average Execution Time in Seconds

Benchmark DUAL DELTA PR2

CR-DQN max 20.1 19.5 19.4

10 different networks median 16.7 14.7 19.2

mean 16.8 15.1 19.1

min 13.4 13.0 18.9

CR-EST execution time 13.7 16.0 20.8

planning time 3.83 4.58 2.44

planning + execution 17.6 20.6 23.2

For this reason CR-EST succeeds with high probability during disturbed execution. It

should be noted that the random initial states used for execution are sampled globally

within the valid set of states that are within the start mode (not just local disturbances as in

the previous section). Furthermore, we do not let CR-EST re-plan if it gets stuck, which

would likely increase robustness considerably.

CR-DQN: The failures of CR-DQN we observed are due to cyclic switching between

different low-level controllers. This occurred mostly during the hand-over of the dual-arm

robot, where the trained agent alternates between different controllers that attempt to

switch to different grasp modes. These infinite cycles mean that the high-level controller

does not “pull through” with a mode switch. This indicates that more sophisticated training

methods could further increase robustness.

Table 4.3 shows the execution times for the three benchmarks. Additionally, the planning

times and combined planning and execution times of CR-EST are shown. CR-EST is

not an optimizing planner and returns the first solution it finds. In contrast the goal for

the reinforcement learning that forms the high-level controller of CR-DQN aims at a

time-optimal policy (for the given set of controllers). If the training had converged to the

global optimum one would expect a clear advantage of CR-DQN.

The results in Table 4.3 show, that this is not consistently the case. For the DUAL and

DELTA tasks there are trained CR-DQNs with both better and worse average execution

times compared to CR-EST. Only for the PR2 task our approach has consistently bet-

ter performance. The observed behavior that causes these inefficiencies is again brief

oscillations between low-level controllers.

When comparing the execution times of the proposed approach with the combined

planning and execution times of CR-EST the results are, on average, in favor of CR-DQN.

It should however be noted that CR-DQN requires that data generation and network training

can be done offline ahead of the actual execution. For the benchmarks the combination of

4.5. Related Work 83

data generation and network training took between 4.5 hours and 25 hours.

In addition we conducted two qualitative experiments. As in the previous section we can

use the the low-level controllers to add additional constraints at runtime. We use this for

online collision avoidance in the DUAL task on a real robot as shown in Figure 4.9. While

the high-level controller does not know about these modifications, the low-level controllers

will still avoid collisions while respecting the constraints of the task.

As second qualitative experiments we execute the DUAL task in simulation with an

additional disturbance. Two seconds after the cube is picked up by the left robot we place

it back on the surface to simulate an object that is accidentally dropped. As the high-level

controller provides a global mapping between state and active controller it should react and

pick up the dropped object again. In the qualitative experiments the collision avoidance

and the reaction to the dropped part operated as intended.

4.5 Related Work

Specifying and controlling robotic motions for manipulation is a challenging problem.

One reason for this is that motions that are relevant to a task occur in coordinate systems

that are different from the controllable degrees of freedom of the robot. In many cases, the

robot has redundant degrees of freedom relative to the task. An example is a seven axis

robot that picks an object with a suction cup. As the suction cup has a rotational symmetry,

the task constrains only five degrees of freedom. Thus, two redundant degrees remain.

Siciliano and Slotine [63] present a framework for specifying and controlling motions

for redundant manipulators. Tasks are represented as a hierarchy of constraint functions.

The velocities of the robot axes are then recursively projected into the null-space of the

Jacobians of the constraint functions. This allows to flexibly compose an arbitrary number

of individual tasks. Mansard et al. [45] provide a software framework, the stack of tasks,

that allows to specify such a control scheme using a graph representation.

To unify a flexible task specification, motion control, and state estimation De Schut-

ter et al. [41] introduce a framework for instantaneous Task Specification using Con-

straints (iTaSC). In this framework, tasks are described as closed, virtual kinematic chains.

These closed chains are dependent on the robot configuration, geometric feature variables,

and uncertain model parameters. From the loop closure equations, motion controllers

and state estimators are derived automatically. Several extensions to this framework have

been developed, such as the inclusion of inequality constraints [64] and geometric path

constraints [65]. Aertbeliën and De Schutter [43] introduce the eTaSL/eTC framework

that enables the definition of such constraints via a graph-structure of computational ex-

pressions. This enables to efficiently program complex multi-robot motions with online

collision avoidance. Manipulation requires not a single robot motion but a sequence of mo-

tions and interactions with objects. Scioni et al. [66] propose a scheduler that automatically

84 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

composes and sequences constraint-based controllers based on a constraint satisfaction

problem.

However, constraint-based controllers are not suitable to address the sequential inter-

dependence of motions and actions that arise in multi-robot manipulation. Our approach

makes use of a constraint-based specification of a manipulation problem using the eTaSL

framework [43]. To address the sequential interdependencies of manipulation we simulate

motion controllers as local planners.

Reasoning about the sequence of motions of robots and objects in an integrated fashion

is known as manipulation planning and was first adressed by Alami et al. [8]. As manipu-

lation requires reasoning about high-dimensional configuration spaces, sampling based

approaches [11, 28, 67] have shown good empirical performance. Several extensions have

been proposed, such as heuristic guidance for large scale planning problems [33, 35] and

optimal planners [38, 40].

A shared limitation of these manipulation planners is the difficulty to adapt them to new

domains or to incorporate new constraints to a given domain. This is due to the fact, that

these planners rely on problem-specific sampling algorithms and sometimes also steering

functions. A more generic approach to planning, is to model manipulation as constrained

motion, where constraints arise due to contacts [68]. An overview of sampling-based

planning methods for such constrained motion is provided by Kingston et al. [7]. Mirabel

and Lamiraux [9] present the constraint graph as a systematic approach to model different

contact states of manipulation and the resulting constraints. Furthermore, a planner is

proposed that operates on this model. The HPP framework [69] supports the definition of

such planning domains. In [42] a method is proposed that leverages explicit constraints

to speed up planning. Toussaint proposes a constraint-based approach to manipulation

planning, called Logic Geometric Programming (LGP) [39]. While the constraint graph [9]

assigns different constraints to different contact states, LGP [39] views constraints as part

of high-level actions. Large scale manipulation problems can then be solved by repeatedly

solving trajectory optimization problems. This work has been extended to problems with

partial observability of the contact state by Phiquepal and Toussaint [70].

The model proposed in this chapter, the dynamic constraint graph, modifies and extends

the constraint graph [9] in several ways. As first modification we introduce an explicit

parameter for time and thus enable time-dependent constraints. This allows to model

time-variant environments including conveyor belts. As second modification we model our

system with second-order dynamics and consequently allow constraints on velocities and

control inputs. This is necessary both for time-variant systems and for a switching control

scheme. As third modification our model has no need for the parametrized constraints

of [9] (equivalent to the contact parameter of the previous chapter). The reason is that this

kind of constraint can be subsumed as combination of position and velocity constraints

in our model. This simplifies the implementation of our approach and the modeling

of manipulation tasks. Like in LGP [39], we model all constraints, including collision

4.5. Related Work 85

avoidance, as constraint functions. This is critically important for online, reactive control

that should also not cause collisions.

The planners discussed so far compute trajectories that solve a planning problem but

assume a known and static environment. These trajectories do therefore not encode how

to react to unforeseen disturbances. Burridge et al. [71] present a general approach to

combine deliberate planning and reactive execution. Local controllers, or funnels, for

which a region of attraction is known are structured as a tree of controllers that covers the

state space. For manipulation this approach is problematic due to the so called crossed

foliation issue [9]. For nearly all pairs of valid configurations there exists no connecting

path that does not involve at least one mode switch. This makes the computation (or even

definition) of regions of attraction difficult.

Bozma and Koditschek [72] present a feedback planner for a one-dimensional manip-

ulation problem. This planner uses a set of controllers that are switched in a provably

correct way to manipulate two objects. In [73] this approach is experimentally validated

for a two-dimensional environment with multiple objects. Vasilopoulos et al. [74] combine

an optimal manipulation planner with reactive controllers. A provably correct feedback

manipulation plan can be constructed for two-dimensional environments with known,

non-convex and unknown, convex obstacles. These approaches are currently limited to

spherical robots in two-dimensional environments. In contrast, our approaches scale to

scenarios with articulated robots with 20 actuated joints.

For dynamic and non-prehensile manipulation tasks Woodruff and Lynch [75] present

an integrated approach to planning and control that operates in two stages. In the first stage

a dynamically feasible manipulation plan is computed that may include non-prehensile

actions such as throwing or balancing an object. Within the second stage a feedback

controller is designed that stabilizes the motion of the object along this trajectory whenever

the robot is in contact with the object. However, this controller does not address safety or

task-related constraints, such as collision avoidance.

The planner-based approach we present in this chapter formulates the problem of

manipulation as a kinodynamic planning problem that is solved by sequencing constraint-

based controllers. As the controllers are derived from the domain model, the reactive

execution adheres to the constraints of the planning domain.

A different approach to construct a feedback policy for manipulation is to train a

reinforcement learning agent within a physics simulator. Andrychowicz et al. present recent

successes for pick and place tasks [76] and in-hand manipulation [77]. Reinforcement

learning can capture complex, long-term interdependencies of the decision problem and

operates, by construction, in real-time. However, the task specification of reinforcement

learning is a reward function, which makes the implementation of hard constraints, like

collision-avoidance or precise grasping, difficult. For successful reinforcement learning,

considerable efforts are typically required to shape this reward function. Furthermore,

reinforcement learning struggles with high control-frequencies, as these effectively increase

86 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

the time-horizon of the problem.

With the proposed learning-based approach to manipulation planning we make use of

reinforcement learning but bypass some of its challenges. As we automatically derive

controllers from the underlying planning problem we decouple the learning from the

hard constraints, such as collision avoidance, and from the high control-frequencies. The

constraint-based motion controllers prevent the system from collisions or violations of axis

limits and operate with a high control frequency (in our experiments: 200 Hz). The long

term reasoning about the sequence of motions and actions is performed by a reinforcement

learning agent at a lower frequency. This agent switches, in deterministic time, between

the different controllers to achieve its goal. As the motion controllers implement goal

directed motions, such as grasping an object or opening a door, there is a high probability

that the reinforcement learning agent will explore such behaviors during training. This

results in a problem formulation that does not require any reward shaping.

4.6 Discussion

This chapter addressed the issue of modeling and executing complex manipulation tasks in

dynamically changing environments. To this end we proposed a new model: the dynamic

constraint graph. This model enables to describe tasks by composing constraint functions

in a modular and flexible way.

For this model we presented a method to automatically derive motion controllers that

implement goal directed motions, e.g, a controller for opening a door. These controllers

were then used in two feedback planners to compute reactive manipulation plans.

The first feedback planner models manipulation as a kinodynamic motion planning

problem. By using the controllers as local planners, we reformulated the Expansive Space

Tree planner [6] for manipulation planning problems. Instead of computing a trajectory,

this planner computes a sequence of motion controllers. During execution, these controllers

react in real-time to estimates of the environment. We validated this approach in real-world

experiments. In these experiments, a dual-arm robot correctly reacted to measurements of

object poses and avoided obstacles that were detected online.

For the second planner, we reformulated the planning problem as a reinforcement

learning problem. In this setting, a reinforcement learning agent switches between motion

controllers to reach a set of goal states. This agent is trained in simulation and provides a

global mapping of states to active controllers. With a global mapping this approach can

also react to unanticipated mode changes. An example is an object that is accidentally

dropped by the robot. In experiments our learning-based approach showed the correct

reaction of grasping the object again and continuing with the task. We validated this

approach on three distinct robots and tasks.

The main advantage of the methods in this chapter is that they provide a semantically rich

4.7. Relation to Previous Publications by the Author 87

interface to the “stakeholders” of robotic manipulation. This includes human programmers

of manipulation tasks, manipulation planning algorithms, and motion controllers. Modeling

manipulation tasks with the dynamic constraint graph is surprisingly intuitive and allows

to compose tasks in a modular way. This is especially simplified by using the expression

graph formalism of the eTaSL/eTC framework [43]. By deriving controllers from this

model and using them as local planners we obtain reactive plans that encode both a

sequence of actions and the original constraints of the underlying model. This means

that the reactive execution is aligned with the constraints that the programmer of a task

intended. In contrast, a planned trajectory “forgets” this original model. Furthermore, the

constraint functions that define the controllers can be used for a variety of control schemes.

We described an acceleration resolved scheme in this chapter. In unreported experiments

we have also used these constraints for a jerk resolved control scheme that implements

a third-order differential equation for the constraint functions. Optimal control schemes,

such as model predictive control (MPC), are promising candidates for future research

and can also operate on the same model. Potentially, constraint-based state estimation as

presented in the iTaSC framework [41] could be integrated with the proposed methods.

A limitation of the methods in this chapter is that it is not possible to guarantee com-

pleteness or optimality. The cause for this lies in the linear dynamics of the controllers

that are derived from the domain model. Due to the linear dynamics it is not possible to

explore the full state space, i. e., positions, velocities, and time. This could be overcome

with a different strategy for controller synthesis and is a promising area for future research.

One possible approach is to derive controllers using model predictive control. MPC could

enable to explore the full state space on optimal trajectories and thus enable guarantees on

completeness and optimality.

4.7 Relation to Previous Publications by the Author

The results of this chapter have been previously published within conference proceedings:

• Planning Reactive Manipulation in Dynamic Environments

P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G.v. Wichert, W. Burgard

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

© IEEE 2019

• Modeling and Planning Manipulation in Dynamic Environments

P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G.v. Wichert, W. Burgard

2019 IEEE International Conference on Robotics and Automation

© IEEE 2019

88 Chapter 4. Planning and Controlling Manipulation in Dynamic Environments

The author of this thesis is the main contributing author of these previous publications

and their contents were developed in pursuit of this thesis. For this reason, large parts of

this chapter are identical to the previous publications. To improve readability we omitted

citations of these publications throughout this thesis. The content has been modified and

extended within this thesis.

Changes Relative to the Conference Proceedings Besides changes in wording and

formatting much of this chapter is identical to the previous publications. Larger changes

are listed in the following.

• Merged sections: Several sections that serve a similar purpose in the previous

publications have been merged in this chapter. This includes the introduction, the

problem statement defined by the dynamic constraint graph, the automatic controller

synthesis, related work, and the discussion.

• Discussion of the controller synthesis: In Section 4.2.3 a detailed discussion of the

synthesized controllers was added.

• Change of notation: To achieve a consistent notation across this thesis, we modified

the problem statement, the automatic controller synthesis, and the descriptions of

the algorithms to follow the notation of this thesis.

• Related work: The contents of Section 4.5 were not only merged from the previous

publications but also modified to follow the citation style of this thesis. Additional

references were added.

Contributions of Coauthors The previous publications were written together with

Florian Wirnshofer, Kai Wurm, Georg v. Wichert, and Wolfram Burgard.

• Florian Wirnshofer supported the transfer of the methods to the real, dual-arm robot

and the execution of the real world experiments. He provided consulting with respect

to the reinforcement learning aspects of this chapter.

• Kai Wurm revised the papers and gave guidance on scientific writing.

• Georg v. Wichert and Wolfram Burgard provided valuable advice.

Chapter 5

Planning Manipulation for Assembly in

a Skill-Framework

In the previous chapters we modeled manipulation as a sequence of motions of a robot and

objects. Between motions the robot makes or breaks contact with the objects. While this

model covers a wide range of manipulation tasks, there are other actions or process steps

that cannot be addressed in this way.

Let us consider the example in Figure 5.1, which depicts a partial assembly of a switching

cabinet. A dual-arm robot uses its cameras to locate two parts, an electrical component

1 2 3

4 5 6

Figure 5.1: A task and motion planning problem: The task of the robot is to assemble the component

on the left onto the top hat rail in the center. The component and the top hat rail must be localized

using a camera (marked red). Then the component is grasped sideways, handed over to the right

arm, and finally mounted onto the rail.

90 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

and a top hat rail. Then the component is grasped and assembled on the rail. This example

illustrates two interesting properties of assembly tasks.

The first property is the same sequential interdependence of motions and other actions

that we covered in the previous chapters. On an abstract level, the component must first

be localized before it can be grasped, which again is necessary to assemble the part onto

the previously localized top hat rail. On a more detailed, geometric level, the part must

be reoriented by a handover to be assembled on the rail, as the gripper would otherwise

collide with the rail. Also, kinematics and geometry constrain which of the two cameras

can be used to localize the parts.

The second property is that not all constraints of this task and not all actions of the robot

lie within motions or changes of contact states. To localize an object the camera is placed

in a view pose above the object and a vision algorithm is triggered. The resulting increased

accuracy of the object’s pose estimate is a prerequisite to the following manipulation steps.

To assemble the component onto the rail the robot employs a force controlled assembly

strategy. Technically this is a motion of the robot and the objects and might be computed

by a physics-based manipulation planner. It may however be more convenient to compute

this strategy externally and provide a planner with a suitable and more abstract model of

this process.

To address problems like the assembly in Figure 5.1 we need models and planners

that address constraints and actions that do not lie within motions of robots and objects.

The resulting planning problem extends manipulation planning to what is called task and

motion planning. Models for this kind of task do not only need to describe the constraints

of sequential motions and actions but also how they can be executed on a real robot. This

poses several challenges for modeling and planning:

• High-dimensional, hybrid configuration spaces: Motions for industrial manipula-

tors require planning in high-dimensional configuration spaces with differential

constraints imposed by the robot dynamics. These motions occur in a hybrid dis-

crete/continuous space. Typically the discrete component occurs due to the robot

making or breaking contact with its environment.

• Optimality: In order to reach or outperform human efficiency, robots must compute

high quality or even optimal solutions. Cycle times are one key performance indicator

for most tasks. Therefore, the dynamic limits of the robot and their effect on

execution times must be considered during planning.

• Diverse interactions with objects: Real world tasks for robots come with a large

variety of interactions between the robot and objects in its environment. It is therefore

important that a diverse set of manipulation actions and their constraints on robot

motions can be handled by a planner.

5.1. Skills for Autonomous Assembly 91

The contributions of this chapter are a model for task and motion planning problems and

corresponding planners that address these challenges. In a first step, we propose a model

of robotic skills that encapsulates both the constraints for planning and the controlled

execution on a real robot. These skills are designed to be used in a kinodynamic task and

motion planner.

In a second step, we show how a planning problem that is based on our skill model

can be reformulated as a multi-modal planning problem. For this multi-modal planning

problem we propose an asymptotically optimal task and motion planner. Under a novel

set of conditions we prove probabilistic completeness and asymptotic optimality of our

approach.

We have implemented our skill model and the proposed planners for a multi-robot

assembly scenario. In extensive simulated experiments our approach computes plans with

significantly shorter execution times than an existing planner. In real world experiments our

approach forms the high-level control loop for a robotic assembly cell. These real world

experiments show that our skill model enables planning with a diverse set of manipulation

actions and that the proposed planners scale to problems of practical relevance.

5.1 Skills for Autonomous Assembly

In this section we introduce our model of robotic skills. This model has two purposes: The

first purpose is to enable the flexible modeling of task and motion planning problems. The

second purpose is to create a mapping between solutions of these planning problems to a

controlled execution on a real robot.

In its broadest definition, a skill is a parameterizable controller that

• can be reused on a variety of different kinematic structures,

• includes a model of itself in the form of a detailed simulator,

• is able to provide suitable parameterizations of itself,

• and, ideally, can be reused across a variety of tasks.

The last point in this list is a strong requirement. While some recurring components

can be identified, e. g., picking or placing, we assume that it is not viable to enforce this

ideal state for all automation tasks. For this reason, our proposed model is designed to be

modular and extensible even if single purpose behaviors of a robot must be designed.

In Section 5.1.1 we introduce the representation of a system state. We propose our

model for robotic skills in Section 5.1.2. Section 5.1.3 presents examples of skills that we

implemented for an assembly use case.

92 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

5.1.1 System State

We assume that the state of a system can be encoded with two kinds of variables: a contin-

uous configuration q and a discrete mode σ. The continuous configuration q ∈ R
n encodes

the positions of all robot axes and the poses of all objects. Its velocity or time-derivate is

written as q̇. A configuration q⊤ = [q⊤
r , q⊤

o] is composed of a robot configuration qr ∈ R
nr

and an object configuration qo ∈ R
no . In the example of Figure 5.1 the dual-arm robot has

a total of nr = 14 axes. The example includes three objects for which the poses can be

encoded in a vector quaternion representation. This results in no = 21 values to encode the

object configuration qo.

The mode σ ∈ Σ encodes the discrete, high-level state of the system. It includes the

information of the contact state of the previous chapters, i. e., which object is rigidly

attached to which component of the robot or the environment. The mode σ also includes

other process-related information about the system state. In the example of Figure 5.1 it

encodes whether the pose of an object is currently estimated with sufficient accuracy. A

mode σ is an element of a finite set of modes Σ. The literature on task planning provides

a variety of possible representations of this state, e. g., the Planning Domain Definition

Language (PDDL) [32].

A full state x = (q, q̇,σ) ∈ X comprises the continuous configuration, its velocity, and

the discrete mode. Here, X denotes the full state space. We omit the dynamics of q at this

point as well as the mechanism for mode switches. These aspects will be discussed in the

following section.

We assume that objects are at all times rigidly attached to components of the robot or to

the environment. The contact parameter π ∈ Π encodes both the mode σ as well as the

relative transforms between the objects and the links of the system they are attached to.

Thus, we can compute the object configuration qo via forward kinematics qo = fk(qr, π).

For this reason and with slight abuse of notation, we will treat a tuple (qr, q̇r, π) equivalently

to a full state x.

The mode σ, the contact parameter π, and the robot configuration qr form a hierarchical

representation of a state that is useful for task and motion planning. The discrete mode σ

encodes which series of high-level actions may potentially transform the system state into

a desired state. An example is a sequence of pick and place operations that can be derived

from this mode. Some of these series may be infeasible or suboptimal due to constraints that

arise on the level of geometry and dynamics. As objects are assumed to be rigidly attached,

the motion of a configuration q is constrained onto a manifold defined by the contact

parameter π. The contact parameter is therefore a suitable intermediate representation that

encodes the effects of the crossed foliation issue [9] that arises in manipulation. Given

a contact parameter π, the robot configuration qr describes all positions of robots and

objects. Also, if we assume that all robot axes are actuated and the robot contains no closed

kinematic chains, the system is holonomic in qr. This results in a suitable representation

5.1. Skills for Autonomous Assembly 93

for motion planning.

The proposed model of robotic skills is built around this three-layer abstraction of the

system state. This allows us to define skills that both partially define task and motion

planning problems and are part of a planner that solves them.

5.1.2 Skill Model

The proposed model of robotic skills consists of three main components and is visualized

in Figure 5.2:

1. Skill Parameterization

Symbolic Action Parametrization

Contact Parametrization

Motion Parametrization

2. Simulated Execution and Validity Check

3. Execution on the Real Robot

In the following we introduce these components in detail.

Skill Parametrization The first component of a skill is its parametrization. Let us

consider a skill for picking up an object. In order to execute such a high-level action

several decisions must be made by the robot. On an abstract, symbolic level the robot must

decide which object should be picked with which gripper. On a geometric level, the robot

must select a grasp pose that determines the relative pose of gripper and object. Finally,

grasping requires a controlled interaction with the object. This may include parameters

for force-controlled Cartesian motions and commands to a gripper. A key aspect of our

skill model is that each skill is equipped with its own sampling mechanisms to propose

these parameters. This sampling is separated into three steps that mirror the three layers of

abstraction of the system state.

The input to the symbolic action parametrization is the current state x ∈ X and it

produces a set of target modes as output: {σnew,1,σnew,2, . . .}. In the example of a pick skill,

the parameter sampling considers all grippers of the robot that are currently empty and all

objects that are currently placed and localized with sufficient accuracy. For each pair of

empty gripper and placed object one mode, where the object is grasped, is added to the set

of target modes.

The input to the contact parametrization is the current state x ∈ X and a target

mode σnew. As output it computes a set of target contact parameters {πnew,1, πnew,2, . . .}.

In the case of a pick skill this returns a set of grasp poses that determine the relative

transformation of gripper and object after the grasp. The contact parametrization step may

94 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

symbolic

param.

contact

param.
motion

param.

skill simulation

skill execution

x x x

σnew σnew

πnew

{σnew} {πnew} qr,init

x

x

xnew

xnew

success/failure(σnew,πnew, qr,init) = ρ

(σnew,πnew, qr,init) = ρ

computational

primitives
inverse

kinematics

trajectory

generator
collision

check

grasp

planner

control

primitives

trajectory

following
force

control

gripper

commands

computer

vision

Figure 5.2: Skill model: The upper half of the image shows the components of a robotic skill.

Three blocks on the top visualize different stages of skill parameterization. These parameters may

then be used to simulate the outcome of a skill during planning or for execution.

We aim for robotic skill that can be re-used across different robots and tasks. For this reason the

parametrization, the simulation, and the execution should be based on primitive operations that

can be re-used across robots and tasks. The lower half of the image shows examples for both

computational primitives and control primitives that we used for the implementation of skills.

5.1. Skills for Autonomous Assembly 95

be exhaustive for the case of a limited number of possible contacts. For continuous sets of

possible contacts, e. g., for grasp poses, a set of random samples is returned.

Finally, the motion parametrization determines a configuration of the robot from

which it can interact with its environment in order to reach a target mode σnew and contact

parameter πnew. We denote this robot configuration from which the skill may be executed

as qr,init. In the example of the pick skill this step solves the inverse kinematics problem

of positioning the gripper in a pre-grasp pose. For redundant robots we sample a random

robot configuration that solves this problem.

In the following we denote a full skill parametrization as ρ = (σnew, πnew, qr,init). This

includes the target mode σnew, the target contact parameter πnew, and the robot configura-

tion qr,init from which the skill can be executed.

Simulated Execution and Validity Check The second component of a skill is its sim-

ulation and a validity check, both used for planning. As input this component takes a

system state x and a skill parameterization ρ. The purpose of this component is to compute

the state xnew that results from executing the parametrized skill and to decide whether

the actions of the robot are valid, i. e., at least collision free. This component may be as

simple as a collision check for a robot motion. However, it may also involve the forward

integration of a control strategy.

In the example of the pick skill, the robot approaches the object and retracts from

the surface the object initially rests on with linear Cartesian motions. These motions,

beginning in the robot configuration qr,init, are checked for collisions during the simulated

execution. The collision checks between gripper and object and between object and the

surface are disabled. Disabling these collision checks is helpful due to numerical issues in

the collision check as the object and the surface are exactly touching. Due to the linear,

Cartesian motions we know that these collision checks may be disabled safely, i. e., the

simulation component allows to encode knowledge about the manipulation task.

Execution on the Real Robot Finally, the skill execution takes a parametrized skill and

executes it on the physical robot. The result is an estimate of the current state x. In the

case of a pick skill, the robot follows the Cartesian motions and closes the gripper to grasp

the object. It is also possible to implement fault detection strategies. If the robot closes its

gripper and does not detect an object our implemented pick skill opens the gripper again

and retracts. In this failure case the current state x is updated with an uncertain location of

the object.

Discussion of the Skill Model The purpose of the presented skills is twofold. First,

we use them to model the action space of a planning domain and at the same time guide

the search of a planner. Second, they are used to define a mapping between a plan, as a

96 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

sequence of skills, and the execution on the real robot. The key aspect of our model is that

it encapsulates aspects of manipulation planning that are inevitably coupled: modeling of

planning domains, action selection, validity checks, and execution on the real system.

To explain this in more detail let us revisit the Cartesian motions to approach an object

within the pick skill. Using Cartesian motions to approach an object during grasping is

useful for multiple reasons. During execution these motions reduce the risk of colliding

with the object or scratching the surface with the object once it is grasped. Furthermore,

they simplify the implementation of force controlled interaction and failure detection.

During planning these motions allow us to use safety margins within our collision checks

as we only need to plan towards the approach configuration. This speeds up motion

planning and avoids numerical issues of collision checking close to contact.

The difficulty with this integration of domain specific knowledge is that it affects

the modeling of the planning domain, the behavior of the planner, and the mapping of

the resulting plans to an execution on the real system. In our model of robotic skills

these aspects are encapsulated within the skill model and are not visible during the

implementation of another skill. At the same time, the abstractions used for the state

representation allow the re-use of components such as trajectory generation, collision

detection, or inverse kinematics for the definition of multiple skills.

5.1.3 Detailed Example: Mount Skill

The purpose of the MOUNT skill is to robustly assemble one part onto another. As we

follow a model based approach, this skill derives its assembly motions from CAD data as

shown in Figure 5.3.

Figure 5.3: CAD-based specification of assembly tasks: The mount skill operates on CAD data

that specifies the object geometries and their desired relative poses. Image taken from [80] and

modified. © IEEE 2018

5.1. Skills for Autonomous Assembly 97

1 2 3

Figure 5.4: Assembly sequence computed by the MOUNT skill. Image taken from [80] and

modified. © IEEE 2018

Symbolic Action Parametrization: The prerequisite for this skill is a part that is held

in a gripper and may be assembled to a second part, which is resting on a surface. Both

parts are localized with sufficient accuracy. For each such pair this step returns a mode

where the parts are assembled and the uncertainty of their pose is increased.

Contact Parametrization: This step returns the contact state of the two objects after

the assembly. In case the objects can be assembled in multiple configurations, such as on

the rail in Figure 5.4, multiple contact states are returned.

Motion Parametrization: A robust Cartesian trajectory for assembly is computed

using the B-EST planner presented by Wirnshofer et al. [80]. For efficiency reasons

this trajectory is computed offline and stored for later use. A random inverse kinematics

solution is sampled for the beginning of the Cartesian path to obtain the configuration qr,init.

Simulation: Beginning from the configuration qr,init the Cartesian path is checked for

kinematic feasibility. If this succeeds the Cartesian motions are checked for collisions.

The collision check between the two objects is disabled as their contact is desired. If this

succeeds, the resulting state assumes the robot axes at the end of the Cartesian motions and

the parts to be assembled. The belief of the resulting assembly encodes a large variance

for the poses of the involved objects as the assembly process may have shifted them.

Execution: Beginning in the robot configuration qr,init the robot follows the Cartesian

assembly motion. This motion is tracked with a Cartesian impedance controller [81] to

allow a compliant interaction. The parameters of this controller are chosen identically to

those used for planning the assembly motions with the B-EST planner [80]. Once the parts

are assembled the grippers are opened and the current state is updated.

Several aspects of this skill are worth discussing. All subcomponents that are used

for parametrization, simulation, and execution are model-based and, given the models,

arguably independent of the involved robots and objects. Collision checking, randomized

inverse kinematics, and force-controlled motions are applicable to many robots of practical

relevance. The computation of the assembly motions is also based on CAD data only.

98 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

Furthermore, the skill does not include any global motion planning or manipulation

planning. This aspect is addressed by the planner in the following section.

5.2 Task and Motion Planning with Skills

This section introduces the problem domain for planning with parameterizable skills and

presents a sampling-based algorithm for that domain. With this planner it is possible to

define a task-level controller.

The purpose of this section is to provide an intuition of how the proposed skill model

can be used for planning. For this reason we provide an informal introduction of the

planning problem and the corresponding planner. This means that we do not specify

the planning problem in terms of robot motions and constraints on them but in terms of

primitive computational operations. A more formal description and proofs for probabilistic

completeness follow in the next section.

5.2.1 Primitive Operations and Informal Problem Setting

Let us recall that a state x = (qr, q̇r, π) of the system can be encoded as the positions and

velocities of the robot axes and a contact parameter π. We denote a continuous robot

trajectory as τr : [0, tend]→ R
nr . We use the following shorthand to abbreviate the end of a

trajectory τ for a given contact parameter:

xend = ((τ (tend), τ̇ (tend), π) = end(τ , π).

Given a state x1 = (qr,1, q̇r,1, π) and a robot configuration qr,2 we can compute a tra-

jectory τ towards this configuration with the operation τ = localPlanner(x1, qr,2). The

operation isValid(τ , π) returns whether such a trajectory is valid, i. e., at least collision

free. With the operation τ = randomMotion(x) we receive a random motion that begins

in x.

We denote the set of available skills as S . Let us recall, that a skill is parameterized with

a parameter ρ = (σnew, πnew, qr,init). Given a skill s ∈ S, the operation {ρ1, ρ2, . . .} = sam-

pleParams(s, x) returns a set of such parameters that might be applicable in state x. This set

may be empty for some skills in some states. The operation xnew = simulateSkill(x, s, ρ)

returns a prediction of the system state after applying a skill s with a given parameter ρ.

We assume that the system is at an initial state xstart and should reach a set of goal

states Xgoal. The (informal) planning problem is now to find an alternating sequence of

robot trajectories τ and parametrized skills (s, ρ) that leads from the initial state to the goal

region. Naturally, this sequence must be continuous and contain only valid, collision-free

trajectory segments as shown in Figure 5.5.

5.2. Task and Motion Planning with Skills 99

xstart

π1: object placed

π2: left

gripper

π3: right

gripper

π4: rail-mounted

Xgoal

π5: object placed π6: left gripper

PICK PICK

MOUNT PLACE HANDOVER

Figure 5.5: Planning problem for manipulation with skills: The boxes visualize different contact

states of a component that should be mounted on the top-hat rail. Thin lines visualize free space

motions. Obstacles are drawn as gray areas. Skills, such as PICK, HANDOVER, or MOUNT, that

affect the object’s contact state are drawn as dashed lines. The trajectory segments that lead to

the start configuration of a skill qr,init are drawn as thick lines. These start configurations qr,init are

drawn as thick, blue dots.

The trajectory segments corresponding to thin lines of this visualization are created in line 5 of

Skill-EST. Thick lines are created in line 11. The transitions to a new contact state, drawn as

dashed lines, are created in line 13.

100 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

5.2.2 Planning Algorithm

1 Procedure: Skill-EST(xstart,S ,Xgoal) infinite version

2 N ← {xstart}, E ← {}

3 while true do

4 x← (qr, q̇r, π)← sampleWeighted(N)

5 τ ← randomMotion(x)

6 if isValid(τ , π) then

7 xnew ← end(τ , π)

8 N .add(xnew), E .add((x, τ , xnew))

9 for (s, ρ) ∈ sampleActions(x) do

10 (σnew, πnew, qr,init)← ρ

11 τ ← localPlanner(x, qr,init)

12 xtrans ← end(τ , π)

13 xnew ← simulateSkill(xtrans, s, ρ)

14 if isValid(τ , π) and xnew 6= failure then

15 N .add(xnew), E .add((x, τ , s, ρ, xnew))

As a skill is user-defined, a planner using it must treat the simulation and parameter-

sampling of this skill as a black box. This creates a planning problem that is similar

to kinodynamic motion planning problems. In these problem instances a planner may

sample control inputs and simulate the system’s behavior by integrating the dynamical

evolution of its state given the control input. The sequencing of parameterized skills has

similar constraints: For a given (simulated) state the planner may choose a skill, sample a

skill-parameterization, and simulate the outcome of executing the skill using the state and

parameters.

The proposed planner is an extension of the Expansive Space Tree (EST) planner [6, 82],

a kinodynamic motion planner. Pseudo-code of our algorithm is given in procedure Skill-

EST. To simplify notation this pseudo-code is written as an infinite construction of a search

tree without termination. In practice we terminate after a state within Xgoal is found or after

a time budget is depleted.

The planner proceeds to build a tree with nodes N and edges E rooted in the initial

state xstart. Edges in this tree contain a robot trajectory and optionally a skill together with

its parameterization. At each iteration a random node of the tree is selected using the

procedure sampleWeighted. This sampling is designed to approximate an even coverage

of the state space. A standard method to approximate an ideal weighted sampling is to

segment the state space into buckets and sample evenly over buckets. For each skill we

sample random parameterizations within procedure sampleActions. For each pair of skill

5.2. Task and Motion Planning with Skills 101

1 Procedure: sampleActions(x)

2 A ← {}

3 for s ∈ S do

4 for ρ ∈ sampleParams(x, s) do

5 A.add((s, ρ))

6 return A

and corresponding parametrization we compute a trajectory to the start configuration of

the skill qr,init and simulate the outcome of execution. If the simulation is successful the

resulting state and action leading to it are added to the tree. This cycle is repeated until a

state within Xgoal is found or a time budget depleted. Figure 5.5 visualizes the construction

of the search tree of Skill-EST.

5.2.3 Controlled Execution

A successful query to our planner returns a sequence of trajectory segments and parameter-

ized skills that can be executed on the physical robot. As each skill is responsible to update

the current state of the system a task-level control loop can be implemented. This control

loop trivially alternates planning in simulation and physical execution. Pseudo-code for

this controller can be found in procedure Task-Level-Controller.

The task-level control loop runs at a low frequency leaving dynamic reactions to the

currently active skill. In our implementation this loop is typically closed every ten seconds.

While each skill is only responsible to be locally robust, the task-level controller is

responsible for complex recovery strategies. An example for this would be a failed

grasping attempt after which re-localization and manipulation planning are necessary. This

example will be discussed in more detail in the next sections.

1 Procedure: Task-Level-Controller(xstart,S ,Xgoal)

2 xcurrent ← xstart

3 while xcurrent /∈ Xgoal do

4 plan← Skill-EST(xcurrent,S ,Xgoal)

5 if plan == failure then

6 return failure

7 xcurrent ← plan.executeFirstAction()

8 return success

102 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

(a) Initial state (b) Goal state

Figure 5.6: Experimental setup: The left image shows the initial state, where two electrical

components are placed on a surface. Their pose is known only approximately to the robot. The task

for the robot is to mount the components onto the rail as shown in the right image. To do so, the

robot must determine an accurate pose estimate by moving the cameras above the objects. After

picking and mounting the components on the rail the robot needs to push the components together

in order to connect them.

5.2.4 Implementation Details and Experimental Setup

To validate our approach, we conducted a series of experiments both on a real robot

and in simulation. In this section we describe the experiments that explore the practical

applicability of the proposed skill model and planner.

These experiments are designed to answer three questions: (1) Is the proposed model

of a skill capable of modeling industrial manipulation tasks? (2) Can new skills be added

with an acceptable amount of engineering and without adding dependencies to previously

written skills? (3) And finally, does planning at the center of our task-level control loop

provide an acceptable runtime? At this point we focus mainly on architectural questions.

A comparison with existing task and motion planners regarding runtime and quality of

solutions is postponed to the next section.

For our experiments, we used the dual-arm setup that is shown in Figure 5.6. Each

arm is equipped with a parallel gripper and a wrist-mounted camera to localize parts. The

task of the robot is to assemble two components onto a top-hat rail in the center of the

setup. To complete the task the following steps are necessary. First, all parts must be

localized using the cameras. Then both components must be mounted onto the rail. As the

left component is placed sideways, it is necessary to grasp it with the left gripper and to

perform a handover to the right robot to change the orientation of the grasp. Finally, the

two components must pushed together on the rail to be connected.

This task is a challenging planning problem on multiple levels. About 45% of the robot’s

configuration space is in collision. To pick and assemble parts, the gripper must move

into close proximity of the objects, which forms tunnels in the collision-free configuration

5.2. Task and Motion Planning with Skills 103

space. The necessity for a handover is not specified symbolically but only in the form of

the collision constraints. This requires manipulation planning. Finally, the order in which

parts are localized or grasped is up to the planner and a component that is assembled in

the wrong position on the rail leads to a dead end. On the symbolic level our planning

problem is more complex than typical manipulation planning problems but less complex

than typical task planning problems.

For this setup we implemented a set of skills visualized in Figure 5.7. These can be

divided into skills that require only one arm and those, that are multi-arm skills. During

planning and execution, the skills for a single arm can be used in parallel in arbitrary

combinations. The single-arm skills include: MOUNT, PERCEIVE, and PICK. As multi-

arm skills we implemented: HANDOVER and PUSH. In the last skill two robots push the

components on the rail to connect them. This is an example of a robotic skill that we do

not expect to be reusable in another application but was required for the task at hand. It

therefore challenges the modularity of our approach.

The task was given to our system with three different planning horizons. With the

shortest planning horizon our system received a sequence of four goal states: (1) All

objects are located. (2) The first component is mounted on the rail. (3) Both components

are mounted on the rail. (4) The components are pushed together. For the intermediate

planning horizon only goals (2) and (4) were given. The longest planning horizon consisted

only of the final goal (4) with no intermediate goals.

Two changes were made to the high-level control loop to speed up planning and execution

times. The re-planning was not triggered after every skill, but only when deviations

with respect to the expected system state occur. Furthermore, we concatenated multiple

sequential random motions, that are not interrupted by a skill, and optimize the results with

the algorithm presented by Hauser and Ng-Thow-Hing [83].

This experiment was run 60 times for the three specifications of the task in simulation

with different random seeds for the planner. The simulator used the same limits on

acceleration and velocity as the real robot. Therefore, the execution times measured in our

experiments match those of a real execution except for image processing and the opening

and closing of the grippers. Our planner was implemented to make use of multiple threads

and the experiments were run on a quad-core Intel i7-6820HQ CPU.

5.2.5 Results

Qualitative Results - Modeling With the exception of the PUSH skill, the assembly task

was implemented with skills that arguably are reusable across typical kinematic structures

and a variety of manipulation tasks. The implementation of the PUSH skill, which is

entirely application specific, was done without modification of other skills. On the physical

robot our approach can reliably control the assembly of the benchmark task for different

initial configurations of the parts and with disturbances during execution.

104 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

(a) PICK and PLACE (b) HANDOVER

(c) MOUNT (d) PUSH

(e) PERCEIVE

Figure 5.7: Implemented Skills: PICK, PLACE, and HANDOVER enable the actions typically

needed for manipulation planning. The MOUNT skill is used to assemble components onto a rail.

With the PUSH skill two components that are mounted on a rail can be connected. The PERCEIVE

skill does not involve any motion of the robot but changes the belief state regarding the objects.

5.2. Task and Motion Planning with Skills 105

Prior to the experiments we implemented the SkiROS [84] skill architecture for a

different assembly scenario. In comparison to SkiROS two observations can be made. On

one hand, the modeling of skills is easier than within the SkiROS architecture. This is due

to the fact, that our skill model requires local behavior only. To implement a skill it is not

necessary to model the use of a motion planner and the control flow can be mostly linear.

Recovery from failure is handled by the planner. On the other hand, the specification of

tasks by the user is more complex, as it is less intuitive to specify the goal state than to

write down a sequence of skills parameterized with task-level variables.

Qualitative Results - Behavior The separation between local skills and task and motion

planner resulted in complex behaviors of the robot both during nominal execution and

during automatically planned recovery. An example is the recovery strategy after a failed

grasping attempt. During execution the planner decided to grasp and mount the component

on the right in Figure 5.1. This component was accidentally pushed over and the grasping

failed. The reaction of the pick skill was simply to change the belief state to have an

uncertain pose of the object. In this state the planner decided to re-localize and pick the

object before mounting it. After the perception determined that the object was pushed over,

the planner automatically computed a manipulation sequence that included a handover to

change the orientation of the object.

Quantitative Results Figure 5.8 shows the average cumulative planning and execution

times of the task. For the task specification with short or intermediate horizon our system

spent 11.9% or 13.7% of the total time to execute a task on planning. For the task

specification with long planning horizon 52% was spent on planning.

Table 5.1 shows the average, minimum, and maximum times for planning and executing

the entire task as well as for one iteration of our control loop. On average re-planning is

triggered every 8.5 to 9.5 seconds. For the short and intermediate horizon, re-planning

takes 1.1 and 1.3 seconds on average. For the long time horizon re-planning takes 10.4

seconds on average. These results indicate, that our system is well suited to execute a

sequence of complex manipulation tasks but does not yet scale to tasks with long time

horizons.

106 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

3 1 0
intermediate steps

0

20

40

60

80

100

ti
m

e
[s

]

Execution time

Planning time

Figure 5.8: Average cumulative planning and execution times for different specifications of the

task: The task of the robot is given to the planner with different time horizons, i. e., with a different

number of intermediate goals.

Table 5.1: Planning and Execution times

Intermediate steps

3 1 0

Execution Time per task [s]

min 46.9 47.3 48.3

mean 50.9 50.6 51.8

max 54.8 55.3 57.5

Planning Time per task [s]

min 6.0 5.9 24.6

mean 6.9 8.0 56.4

max 8.5 12.1 120.6

Execution Time per cycle [s]

min 1.3 1.4 1.6

mean 8.5 8.5 9.5

max 22.0 24.1 24.3

Planning Time per cycle [s]

min 1.0 1.0 1.0

mean 1.1 1.3 10.4

max 3.3 5.9 52.5

5.3. Optimal Planning with Skills 107

5.3 Optimal Planning with Skills

The previous section focused on architectural questions related to task and motion planning.

We omitted a formal model of the planning problem and an analysis of the proposed planner.

Furthermore, the planner of the previous section, Skill-EST, is not able to compute optimal

plans.

These issues are addressed in this section. To this end, we reformulate the plan-

ning problem as a multi-modal motion planning problem as presented by Hauser and

Latombe [11, 28] in Section 5.3.1. We discuss the relation to the proposed model of

robotic skills and reformulate the Skill-EST planner into its multi-modal counterpart:

Multi-Modal-EST (MM-EST).

Based on the multi-modal formulation of the problem it is now possible to utilize the

AO-x meta algorithm proposed by Hauser and Zhou [27] to repeatedly plan in a cost-

augmented state space. This results in an asymptotically optimal planner that is presented

in Section 5.3.2.

We present an informed search strategy in Section 5.3.3 and analyze probabilistic com-

pleteness and asymptotic optimality in Section 5.3.4. In extensive simulative experiments

we compare the proposed planners to an approach from the literature. The setup and the

results of these experiments are presented in Section 5.3.5 and Section 5.3.6 respectively.

5.3.1 Reformulation as Multi-Modal Planning Problem

In this section we formulate task and motion planning as a multi-modal motion planning

problem similar to Hauser and Latombe [11, 28] and present a planner for this problem.

We show how such a planning problem can be modeled using the skills presented in the

previous section.

Multi-Modal Problem Statement We consider the multi-modal planning problem,

where the state x ∈ X of a robot and its environment is represented by x = (qr, q̇r, π). The

robot configuration qr denotes the positions of the robot axes and q̇r their velocities. All

axis positions and velocities are assumed to be upper- and lower-bounded:

qr,min ≤ qr ≤ qr,max, –q̇r,max ≤ q̇r ≤ q̇r,max. (5.1)

We assume that the acceleration of the robot configuration q̈r is directly controllable and

upper and lower bounded:

–q̈r,max ≤ q̈r ≤ q̈r,max. (5.2)

The contact parameter π ∈ Π denotes the discrete component of the state space. This

contact parameter encodes both the symbolic state of the world (e.g., which object is

grasped) as well as its continuous parameterization (e.g., the transform from gripper to

108 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

object). The set Π of modes contains a finite but potentially very large number of modes π.

Assuming a finite set of contact states is a restriction that limits the methods of this section

to a resolution completeness within the contact parameters.

The contact parameter π remains constant, unless the robot configuration qr,1 reaches

a transition region qr,1 ∈ Qπ1,π2 , where a change from contact π1 to π2 is allowed. An

example for such a transition region would be the set of solutions for the inverse kinematics

problem of grasping an object with a given gripper-to-object transform. We assume

that the axis velocities must be zero at the transition. Within such a transition region a

state x1 = (qr,1, 0, π1) can change to a new state x2 = (Tπ1,π2(qr,1), 0, π2). Here, Tπ1,π2(qr,1)

denotes the robot configuration after the transition. An example of this would be a state after

retracting from a grasp. Typically the transition regions Qπ1,π2 form lower-dimensional

manifolds of the robot configuration space Qr and are empty for most pairs of π1, π2 ∈ Π.

The set of neighbor contacts Neighbors(π) of a contact π contains all contacts π′ for

which Qπ,π′ is not empty. At all times the robot must stay within the valid, i. e., at least

collision-free, portion of the configuration space Qfree,π ⊂ Qr.

Let τ : [0, t]→ Qr be a continuous path segment in the robot configuration space for

which the contact remains constant. A path {(τi, πi)}i≤k with i, k ∈ N>0 is a sequence of k

path segments and contact parameters. We define valid paths as paths that (1) respect the

limits on axis positions, velocities, and accelerations, (2) are collision-free, and (3) contain

correct mode transitions.

Definition 8 (Valid Path) A path is valid iff

1. τi(t) respects Eq. (5.1) and Eq. (5.2) for t ∈ [0, ti], i ∈ 1...k,

2. τi(t) ∈ Qfree,πi
for t ∈ [0, ti], i ∈ 1...k,

3. τi(ti) ∈ Qπi,πi+1 ,

τ̇i(ti) = τ̇i+1(0) = 0, and

τi+1(0) = Tπi,πi+1(τi(ti)) for i ∈ 1...k – 1.

Feasible paths are valid paths, that start in a given initial state xstart ∈ X and end in a

goal region Xgoal ⊂ X .

Definition 9 (Feasible Path) A path is feasible iff

1. it is valid,

2. (τ1(0), τ̇1(0), π1) = xstart, and

3. (τk(tk), τ̇k(tk), πk) ∈ Xgoal.

5.3. Optimal Planning with Skills 109

To define the objective for optimization, we introduce the cost-function C as follows:

C({(τi, πi)}i≤k) =
k∑

i=1

Cp(τi) +
k–1∑

i=1

Ct(πi, πi+1) (5.3)

Cp(τ) =

∫ t

0

L(τ (v))dv, (5.4)

where Cp assigns non-negative costs to path segments, with Lmax > L(·) > Lmin > 0 as

incremental costs and Ct > Ct,min > 0 assigns lower bounded positive cost to transitions.

Let Ξf be the set of feasible paths. The optimal cost c∗ is defined as:

Definition 10 (Optimal Cost) c∗ = inf
ξ∈Ξf

C(ξ).

Primitive Operations We assume that a set of primitive operations is available to our

planner. The procedure randomMotion(x) returns a random trajectory τ : [0, tend]→ Qr

of robot configurations. This trajectory is twice differentiable and its initial positions and

velocities match that of the state x. A possible implementation is to integrate random accel-

erations q̈r. As the transition regions Qπ1,π2 are lower-dimensional manifolds of the robot

configuration spaceQr there is zero probability of randomly moving into such a region. To

enable mode transitions with positive probability the procedure randomTransition(x, π′)

computes a robot trajectory that steers the robot from the state x = (qr, q̇r, π) into the

transition region Qπ,π′ . Finally, isValid(x, τ) determines whether a trajectory moves the

robot on a valid trajectory within Qfree,π.

Relation to the Skill Model An implementation of the multi-modal planning problem

and the corresponding primitive operations requires functions that can be separated into

two categories:

The first category relates to functions typically required for collision-free motion plan-

ning. This includes procedures like randomMotion that generate and integrate random

accelerations and a collision detection in the procedure isValid. Implementations of these

functions are available, e. g., in the MoveIt! framework [19].

The second category relates to changes of contact state. It includes the set of contacts Π,

the transition regions Qπ1,π2 , the set of neighboring contacts Neighbors(π), the transition

function Tπ1,π2(·), and the procedure randomTransition.

This second category is challenging to implement as an explicit model, especially in

a context that requires the inclusion of domain knowledge as in the assembly scenario.

For this reason we use an implicit approach. Instead of actually representing sets like the

transition regions Qπ1,π2 we draw samples from this set using the motion parametrization

of a skill as presented in the previous section. The procedure randomTransition can then

be implemented with such a sampling and a local planner. In the same spirit the set of

110 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

Qπstart,π1

Tπstart,π1(·)

qstart

πstart

π1 π2

π3

Xgoal

π4

Xgoal

π5

Figure 5.9: Multi-modal planning problem and tree construction of MM-EST: The boxes visu-

alize the robot configuration space Qr for different contact states π. White areas show the free

space Qfree,π. Thin black lines visualize motions computed using randomMotion, thick black

lines those computed using randomTransition. Transition areas Qπ1,π2 are drawn as blue lines.

neighboring contacts Neighbors(π) is not represented explicitly but one can draw samples

from it using the symbolic parametrization of a skill. The transition function Tπ1,π2(·) is

implemented via the simulation of a skill.

This indirect approach is in line with the inner workings of sampling-based motion

planners. Formally, motion planning is based on a notion of a configuration space and valid

regions within this space. These two concepts are however not implemented in typical

motion planners. Instead, procedures to sample and to reject samples are used during

planning. In the same spirit we construct an implicit, multi-modal planning problem using

a set of skills.

5.3. Optimal Planning with Skills 111

Multi-Modal Planner Based on the multi-modal problem we can reformulate the plan-

ner from the previous section. As we extend the Expansive Space Tree (EST) planner to

multi-modal domains we call it Multi-Modal-EST (MM-EST). The algorithm is described

in procedure MM-EST.

1 Procedure: MM-EST(xstart,Xgoal)

2 N ← {xstart}

3 E ← {}

4 while withinTimeBudget() do

5 x← sampleWeighted(N)

6 for τ in sampleActions(x) do

7 xnew ← integrate(x, τ)

8 if isValid(x, τ) then

9 N .append(xnew)

10 E .append((x, τ , xnew))

11 if xnew ∈ Xgoal then

12 plan← path to xnew

13 return plan

14 return failure

Our algorithm proceeds to build a tree of nodes N and edges E rooted in the initial

state xstart until the goal-region Xgoal is reached or the time budget is depleted. In each

iteration the planner samples a random node within the currently built tree using the

procedure sampleWeighted. This weighted sampling puts larger weight on nodes that lie

in sparsely populated areas of the state-space. For this node a set of robot trajectories is

sampled at random using the procedure sampleActions. For each random trajectory τ , the

procedure integrate computes the resulting state xnew. This may include a transition to a

new contact parameter. If such a state and the trajectory leading to it pass validity checks it

is added to the tree.

The difference to the EST algorithm lies within the procedure sampleActions. Instead

of only choosing random control inputs, the procedure additionally steers towards all

neighboring contact parameters using randomTransition. This is similar to a goal bias of

50% for each neighboring contact parameter. Figure 5.9 illustrates the tree construction of

MM-EST. As more time is spent on building the tree, the planner will attempt to explore

the configuration space of already reached contact parameters using randomMotion.

This increases the chance of finding a collision-free control input to explore new contact

parameters with randomTransition.

It is important to note that MM-EST does not rely on collision-free, sampling-based mo-

tion planners to reach new contacts. The exploring and the changing of contact parameters

are treated as equal actions within the tree construction. This is a key difference to the

112 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

PTR [11], HBF [35], and Random-MMP [29] planners and can be leveraged for optimal

planning as shown in the next section.

1 Procedure: sampleActions(x)

2 (qr, π)← x

3 actions← {randomMotion()}

4 for π′ in Neighbors(π) do

5 actions.append(randomTransition(x, π′))

6 return actions

5.3.2 Optimal Planner

As we have introduced a kinodynamic task and motion planner we can use the meta-

algorithm Asymptotically-Optimal-x (AO-x) introduced by Hauser and Zhou [27] to create

a new, optimal planner: AO-MM-EST. This planner is called after an initial plan has been

found with MM-EST. The lowest cost of any plan that was computed is stored as cbest.

1 Procedure: AO-MM-EST(xstart,Xgoal, plan)

2 cbest ← plan.getCost()

3 N ← {(xstart, 0)}

4 E ← {}

5 while withinTimeBudget() do

6 (x, cx)← sampleWeighted(N)

7 for τ in sampleActions(x) do

8 xnew ← integrate(x, τ)

9 cnew ← cx + cost(x, τ)

10 if cnew < cbest and isValid(x, τ) then

11 N .append((xnew, cnew))

12 E .append(((x, cx), τ , (xnew, cnew)))

13 if xnew ∈ Xgoal then

14 cbest ← cnew

15 plan← path to xnew

16 N , E ← prune(N , E , cbest)

17 return plan

The AO-x meta algorithm requires a kinodynamic planner and a state space. In our

case the planner is MM-EST and X the state space. The state-space is augmented with an

additional dimension for cost: X × [0, cbest). AO-x then uses the kinodynamic planner to

5.3. Optimal Planning with Skills 113

plan in the cost-augmented space with the restriction that all reached state-cost pairs (x, c)

with c ≥ cbest are considered invalid. Once a new state in the goal region is found, a better

plan must have been found. With this new plan the cost cbest is updated and the process

repeated.

It is important to note that AO-x does not simply call a planner repeatedly to keep track

of the best solution. Instead, the cost-augmented state space is densely explored. Hauser

and Zhou [27] show that this highly generic approach is surprisingly effective and that it

outperforms a variety of state-of-the-art optimizing motion planners.

In procedure AO-MM-EST this combination of MM-EST and AO-x is shown. As can

be seen, this algorithm is identical to MM-EST except for three changes: (1) The planner

operates in a state-cost space. (2) Additionally to checking whether trajectories are valid

the planner checks if the cost of the current best solution is exceeded (Line 10). (3) After a

new solution is found the current search tree is pruned (Line 16). This operation removes

all nodes and edges from the tree where the new cbest is exceeded.

5.3.3 Informed, Optimal Planner

By default the AO-x meta algorithm causes a kinodynamic motion planner to densely

explore the entire state-cost space. This means that, in the limit, it finds optimal paths to all

reachable states, not just to states in the goal area. Even more so, it not only finds optimal

paths for all reachable states, but also solutions with cost up to cbest.

As this is highly inefficient Hauser and Zhou [27] propose an informed search strategy.

Let c∗(x) be the optimal cost-to-go from a state x to the goal region if it is reachable

and +∞ otherwise. If a conservative cost-to-go estimate 0 ≤ h(x) ≤ c∗(x) is available, it

is immediately clear that any state-cost pair (x, cx) with cx + h(x) ≥ cbest cannot lead to a

solution that improves over cbest. Instead of discarding all states with cx ≥ cbest we can now

safely discard all states with cx + h(x) ≥ cbest. This cost-to-go estimate may also be used to

remove larger fractions of the search tree in the prune procedure. Also, during the initial

feasible planning with MM-EST states with h(x) = +∞ can be safely discarded as dead

ends.

For many relevant motion planning problems a suitable cost-to-go estimate is available,

e. g., the euclidean distance to a goal. The question is now: How can we construct a

suitable cost-to-go estimate for a multi-modal planning problem?

Our reasoning to construct such a cost-to-go estimate for multi-modal planning problems

is to only consider the symbolic aspects of a planning problem. If we assume a simplified

planning problem in which no collisions can occur and motions that do not change the

contact state are free of cost, the optimal cost-to-go ĉ∗(x) of this planning problem is

an admissible cost-to-go estimate of our original planning problem. This leads to a

discrete planning problem where the state-space is the set of contact parameters Π and

the start state πstart is the contact parameter of the current state. The set of goals is the

114 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

1 Procedure: MM-EST*(xstart,Xgoal, plan)

2 cbest ← plan.getCost()

3 N ← {(xstart, 0)}

4 E ← {}

5 while withinTimeBudget() do

6 (x, cx)← sampleWeighted(N)

7 for τ in sampleActions(x) do

8 xnew ← integrate(x, τ)

9 cnew ← cx + cost(x, τ)

10 if cnew+h(xnew) < cbest and isValid(x, τ) then

11 N .append((xnew, cnew))

12 E .append(((x, cx), τ , (xnew, cnew)))

13 if xnew ∈ Xgoal then

14 cbest ← cnew

15 plan← path to xnew

16 N , E ← prune(N , E , cbest)

17 return plan

set of all contacts that intersect with the goal region. The actions available in a state are

determined by the set of neighboring contacts Neighbors(π) and lead to the corresponding

costs Ct(π, π′). Dijkstra’s algorithm can efficiently compute this cost-to-go estimate for

each reachable contact and the estimate can be stored for later use. Pseudocode for the

informed variant of our planner is shown in procedure MM-EST*. The only change

relative to AO-MM-EST is the use of the cost-to-go estimate in line 10.

5.3.4 Completeness and Optimality

For the analysis of MM-EST and MM-EST* we assume three properties about our multi-

modal planning domain: (1) α, β-expansiveness, (2) ideal sampling, and (3) the existence

of a γ, δ-transition tunnel.

1. The definition of α, β-expansiveness as proposed by Hsu et al.can be found in [6]

and we assume, that this property holds for every contact parameter of the planning

problem. We do not require it to hold across transitions.

2. Our definition of ideal sampling extends that of Hsu et al. [6] to multi-modal

domains. It refers to both the procedure sampleWeighted and randomMotion. An

ideal sampler selects nodes in such a way, that all currently reached modes are

sampled with equal probability and each tree node will be selected infinitely often

in the limit of iterations. Furthermore, the currently reachable subset of a mode is

5.3. Optimal Planning with Skills 115

sampled uniformly by the combination of sampleWeighted and randomMotion.

In section Section 5.3.5 we discuss how to approximate ideal sampling.

3. Intuitively, a γ, δ-transition tunnel implies, that there exists a sequence of contacts

from start state to goal region that allows a sampling-based motion planner and

sampling-based transitioning to go through a sequence of transition manifolds. For

one contact πi in the sequence we start in a set Xentry,i from which the states Xreach,i

are locally reachable. From these states the set Xexit,i is reachable without transitions.

A transition from Xexit,i leads to Xentry,i+1 with probability of at least δ. Let µ(S)

denote the volume of a subset S ⊂ X of the state space. Rl(x) denotes the locally

reachable set of points of state x with one call to randomMotion (no transitions).

Definition 11 (γ, δ-transition tunnel) A sequence {πi,Xentry,i,Xreach,i,Xexit,i}1≤i≤k is a γ, δ-

transition tunnel iff:

• Xentry,1 = {xstart}

• Xexit,k ⊂ Xgoal

• Xentry,i,Xreach,i,Xexit,i ⊂ {x = (qr, q̇r, π) ∈ X | π = πi}

• µ(Xreach,i) ≥ γ, µ(Xexit,i) ≥ γ

• Every point of Xexit,i is reachable from every point within Xreach,i without transitions.

• For x ∈ Xexit,i randomTransition(x, πi+1) leads to Xentry,i+1 with probability of at

least δ for i ≤ k – 1.

• Xreach,i ⊂
⋂

x∈Xentry,i

Rl(x)

The definition of the γ, δ-transition tunnel relies on properties of the sampling distribu-

tion of the procedure sampleTransition. It is therefore dependent on the implementation

of this procedure. In section Section 5.3.5 we will show an implementation of sample-

Transition that ensures the existence of a γ, δ-transition tunnel.

Theorem 3 (probabilistic completeness of MM-EST) If the configuration space in every

contact state is α, β-expansive, a γ, δ-transition tunnel exists, and an ideal sampler is used

then MM-EST is probabilistically complete.

Proof. Without loss of generality we assume, that the volume of the state-space for only

one contact parameter has been scaled to have unit volume. The number of contact

parameters is denoted as N = |Π|. The idea of the proof is to show that MM-EST proceeds

along the transition tunnel with probability one in the limit of iterations.

116 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

By definition of the transition tunnel, xstart lies within Xentry,1. Let us assume we have

sampled a state within Xentry,i. Then the ideal sampler will proceed to sample random

motions with at least probability γ/N in the connected component of the state space that

leads from Xentry,i over Xreach,i to Xexit,i. This is due to the fact, that µ(Xreach,i) ≥ γ. Each

such sample is equivalent to planning with the EST planner towards Xexit,i. As we assume

α, β-expansiveness of each contact state and µ(Xexit,i) ≥ γ the proof of [6] tells us that

the probability of reaching Xexit,i converges towards one. Once we have reached Xexit,i

there is a δ probability of transitioning towards Xentry,i+1 if i < k when selecting a node in

this region. As all nodes are selected infinitely often by the ideal sampler in the limit, the

probability of reaching contact i + 1 and thus contact k converges towards one. Once we

sample a state within Xexit,k, which we know happens with probability converging towards

one, we reach a goal state. Thus, MM-EST reaches the goal with probability one in the

limit of iterations and is probabilistically complete. �

Let cn be the cost returned by MM-EST* after n iterations.

Theorem 4 (Optimality of MM-EST*) If for every ǫ > 0 every contact in the state-

cost space X × [0, c∗ + ǫ] is α, β-expansive, a γ, δ-transition tunnel exists towards the

goal Xgoal × [0, c∗ + ǫ], and an ideal sampler is used then cn converges in probability

towards c∗.

lim
n→∞

P(cn – c∗ > ǫ) = 0

Proof. MM-EST* is started after a solution has been found by MM-EST and plans in a

cost augmented state space X × [0, cbest] where cbest is the cost of the previously found

solution. Let us assume for a moment that we do not reduce cbest once a better solution is

found and that h(x) = 0.

Let 0 < ǫ < cbest – c∗. From the existence of a γ, δ-transition tunnel towards a goal

region Xgoal × [0, c∗ + ǫ] and the proof of probabilistic completeness above we know that

the probability of sampling a state with cost of less than c∗ + ǫ converges towards one.

This does not change if cbest is reduced or an admissible cost-to-go estimate h(x) is used.

Both a reduction of cbest or the use of h(x) can only affect the γ, δ-transition tunnel if cbest

is reduced below c∗ + ǫ. This only happens after a solution with cost of less than c∗ + ǫ is

found. From this follows that for every ǫ > 0 the probability of finding a solution with cost

of less than c∗ + ǫ converges towards one in the limit of iterations. This is equivalent to the

convergence in probability towards c∗.

�

5.3.5 Implementation Details and Experimental Setup

To validate our theoretical results we conducted a set of experiments. For these experiments

we used the same robot as in the previous section. Figure 5.10 shows the setup and the

5.3. Optimal Planning with Skills 117

Figure 5.10: Experimental setup: Two cabinet components can be mounted onto a rail. Initially,

the poses of all objects are not known precisely. To pick a component it must be fine-localized with

a camera. Before a component can be mounted onto the rail, the rail must be fine-localized as well.

The left component is placed sideways and can only be mounted after a handover.

Table 5.2: Benchmark Problems

Goal

1 Right part assembled on left side of rail

2 Left part assembled on left side of rail (one handover)

3 Both parts assembled on rail in correct positions (one handover)

approximation of the robot geometry that we use for collision checking.

Within the reach of each arm lies an electrical component that can be mounted on a top

hat rail in the center of the setup. Before a part can be picked or mounted onto the rail, part

and rail must be fine-localized using the flange-mounted cameras. The left part is placed

sideways. To mount it on the rail it is necessary to grasp the left part with the left arm and

hand it over to the right arm in order to change the grasp transform. Initially both robots

are in a upright position with all axis positions and velocities at zero.

For this setup we implemented AO-MM-EST, our planner MM-EST wrapped with

the AO-x meta algorithm, as well as our informed planner MM-EST*. Furthermore we

implemented the Probabilistic Tree of Roadmaps (PTR) [11] as a baseline. This planner

is a highly general task and motion planner that can be adapted to new problems without

state-space factorizations. As the PTR is a hierarchical planner it is not suitable to be used

in the AO-x algorithm. We attempted to implemented RMR*, the optimal planner we

present in Chapter 3, for the experiments as well. This attempt did not succeed due to the

118 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

0 5 10 15 20 25 30 35
planning time [s]

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

goal 1

goal 2

goal 3

Figure 5.11: Success rates of MM-EST*: Each line visualizes the success rate of 50 planning

queries for one of the benchmark tasks.

factorization of the state space, that is necessary for RMR*. The factorization is highly

difficult to map on manipulation with diverse actions and also excludes the asymptotically

optimal FOBT planner [38] from the experiments.

The procedure sampleWeighted is implemented via a grid-based approximation of the

sample-density. To determine the grid cells we use the mode of a state, 256 grid cells for

robot configurations, and if cost is used 20 grid cells in the cost dimension from 0 to cbest.

We created a set of three benchmark problems shown in Table 5.2. The experiments are

designed to be increasingly difficult both with respect to the motion component as well as

the symbolic task component of the problem. Approximately 45% of the configuration

space is in collision and to manipulate objects the gripper must be brought close to the

objects. This forms narrow tunnels in the configuration space of the robot. To manipulate

the object that is placed sideways, a series of mode transitions is required, that is not

specified symbolically. Finally, the order in which objects are localized or grasped can be

chosen by the planner and components that are mounted in the wrong position on the rail

lead to dead ends. On a symbolic level our planning problem is therefore less complex

than typical task planning problems and more complex than typical manipulation planning

problems.

As cost function we use the execution duration of the solutions. Transitions are assumed

to be executed in three seconds which approximately matches the real execution times of

the interactions. We ran all benchmarks 50 times with each planner. AO-MM-EST and

MM-EST* receive a time limit of 900 seconds. As the PTR is not an optimizing planner,

we use it repeatedly for 900 seconds and store the best solution. Both the PTR and our

planners were implemented efficiently in C++ and are optimized to use multiple threads.

Transition sampling and weighted sampling is implemented identically for all planners.

All experiments were run on a ten-core Intel Xeon E5-2650v3.

5.3.6 Results

The average success rates of MM-EST* on all benchmarks can be seen in Figure 5.11.

After less than 35 seconds of planning time, all 50 planning queries return success on all

5.3. Optimal Planning with Skills 119

0 100 200 300 400 500 600
planning time [s]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

no
rm

al
iz

ed
av

er
ag

e
co

st

MM-EST* goal 1

MM-EST* goal 2

MM-EST* goal 3

PTR goal 1

PTR goal 2

PTR goal 3

Figure 5.12: Average solution costs of MM-EST* and PTR: The lines visualize the mean cost

returned by the planners in 50 runs. All curves are normalized to the minimum cost returned by any

planning query at 900 seconds planning time.

of the benchmark tasks. Figure 5.12 visualizes the average cost returned by MM-EST*

and PTR. Due to the different lengths of the tasks, cost is normalized to the best result at

900 seconds planning time returned by any planner.

For all benchmarks the average and the variance of cost is reduced over time. However,

it can be seen that even at 600 seconds of planning time, costs have not yet converged. This

is not surprising as in order to reach convergence the 14-dimensional robot configuration

space must be densely sampled.

A comparison of the results of PTR, AO-MM-EST, and MM-EST* is depicted in

Table 5.3. For each benchmark the bold numbers represent the average planning time

for finding a first solution or cost (execution time) at 600 seconds of planning time. The

numbers in brackets show the standard error of the mean. Across all benchmarks MM-

EST* achieves an average cost reduction between 27.3% to 34.2% over PTR and 4.5%

to 7.4% over AO-MM-EST. Furthermore, AO-MM-EST achieves an improvement of 23.8%

to 28.9% over PTR.

Under the assumption of normal distributions with unequal variance for costs we ana-

lyzed the results using Welch’s unequal variance t-test We test against the null hypothesis

of equal average cost. This analysis shows that both AO-MM-EST and MM-EST* signif-

icantly (p-value below 1%) outperform the PTR planner. Also, MM-EST* significantly

(p-value below 1%) outperforms AO-MM-EST.

Finally, Figure 5.13 visualizes the distribution of costs of all three planners as box plots.

It can be seen, that AO-MM-EST and MM-EST* achieve not only lower average cost, but

also much lower variance.

120 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

Table 5.3: Planning and Execution Times

all values in seconds Benchmark

[standard error of the mean] 1 2 3

PTR planning time (fist solution) 3.87 64.62 14.79

[0.40] [6.46] [1.27]

execution time (600 s planning) 17.98 27.01 40.17

[0.05] [0.23] [0.21]

AO-MM-EST planning time (fist solution) 1.97 13.40 15.33

[0.21] [1.18] [0.85]

execution time (600 s planning) 13.49 19.20 30.59

[0.06] [0.12] [0.19]

MM-EST* planning time (fist solution) 0.75 2.76 15.37

[0.03] [0.18] [0.93]

execution time (600 s planning) 12.49 17.78 29.20

[0.02] [0.04] [0.16]

P
T

R

A
O

-M
M

-E
S

T

M
M

-E
S

T
*

1.0

1.2

1.4

1.6

1.8

2.0

no
rm

al
iz

ed
co

st

goal 1

P
T

R

A
O

-M
M

-E
S

T

M
M

-E
S

T
*

goal 2

P
T

R

A
O

-M
M

-E
S

T

M
M

-E
S

T
*

goal 3

Figure 5.13: Comparison of PTR, AO-MM-EST, and MM-EST*: Each box plot depicts the

distribution of normalized cost for a different benchmark after 600 seconds of planning time. Costs

are normalized to the minimum cost returned by any planner after 900 seconds. The red line depicts

the median. The first and third quartile are represented by the box, minimum and maximum by the

whiskers.

5.4. Related Work 121

5.4 Related Work

The work in this chapter integrates and extends three strands of research: skill-based

architectures, manipulation planning, and optimal, kinodynamic motion planning. We view

manipulation planning problems from the perspective of a kinodynamic motion planner.

This motion planner explores a hybrid state space and has access to an additional set of

high-level actions, such as for picking and placing objects. These high-level actions are

implemented as re-usable skills. The core idea is to model these skills with a built-in

simulator and parameter samplers which renders them as black boxes to the planner.

Skill-Based Frameworks for Robotics Encapsulating robotic control software is a long

standing goal in the research community. Examples are recurring control strategies for

assembly or high-level actions for picking an object with a known pose. We refer to such a

re-usable component as a skill.

Several questions arise in the context of robotic skills: How are re-usable motions of

robots defined and controlled? How are multiple motions of the robot composed to create

reactive behaviors and how is their execution scheduled both in parallel and sequentially?

What is a suitable set of skills? What are the programming interfaces to users of such

robotic skills?

Early work on specifying motions that are independent from the kinematics of a robot

and are re-usable across similar tasks resulted in the Task Frame Formalism [85]. In

this formalism separate control strategies are assigned to different Cartesian degrees of

freedom of a robotic tool relative to a reference frame. This work has been generalized

by constraint-based task specification frameworks, such as iTaSC [41, 86], the stack of

tasks [45], or eTaSL [43].

These frameworks allow to specify and control multiple, parallel robot motions inde-

pendently of the robot kinematics. However, manipulation requires a series of motions.

To this end finite state machines [87] and statecharts [88] have been used extensively. An

example in the context of assembly are manipulation primitive networks [89] that switch

between different control strategies. To simplify the programming and use of robotic skills

several domain specific languages have been developed [90, 91, 92].

The methods discussed so far involve the design of low-level control strategies. For a

shop floor worker it may be more convenient to instruct the robot in an object-centered way

that is closer to natural language descriptions, e. g., “Place object A on surface B.” To this

end Kresse and Beetz [93] model the outcomes of high-level actions using the constraint

functions that define constraint-based controllers for the robot motions. This method was

extended to use high-level geometric features of objects such as edges or planes for the

definition of actions [94] and integrated with the KnowRob [95] knowledge base [96]. This

allows the definition of tasks and reasoning about them on an object-centric level. Scioni

et al. [66] propose a real-time scheduler that composes these actions both sequentially and

122 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

in parallel.

An alternative approach to object-centered skills is the SkiROS architecture proposed

by Rovida et al. [84, 97]. In this architecture, object-centered skills are composed of

primitives, such as motion planning or compliant controllers. With these skills abstract

commands are realized, such as picking an object with a given ID. Suitable skills can be

identified by analyzing standard operating procedures [98, 99]. The SkiROS model of

skills can be translated into a task planning problem specified in PDDL [32]. Skills are

then sequenced by a standard symbolic planner [100].

A key aspect that has not been addressed in the literature on robotic skills is how to

resolve the geometric and kinematic interdependencies that arise in manipulation. The

assembly scenario used throughout this chapter demonstrates these interdependencies:

It may be necessary to grasp and re-grasp an object multiple times before it can be

assembled. The first contribution of this chapter is a model of robotic skills that is suitable

for manipulation planning. We follow an object centered view on robotic skills similar

to the SkiROS [84] architecture but extend it by a parameter sampling and simulation

mechanism that is used by a task and motion planner.

Optimal, Kinodynamic Motion Planning Motions of industrial manipulators typically

occur in high-dimensional configuration spaces. In these configuration spaces sampling-

based planners such as the Probabilistic RoadMap [4], Rapidly exploring Random Tree [5],

or the Expansive Space Tree [101] have proven to be highly efficient.

When systems are non-holonomic, time-variant, or when dynamics need to be considered

the planning problem is called a kinodynamic planning problem. The RRT algorithm was

extended to kinodynamic planning by Lavalle et al. [102]. Kindel et al. [82] propose a

version of the EST planner, that is able to plan with kinodynamic constraints and time-

varying environments.

Manipulation planning is similar to kinodynamic motion planning as the motion of the

system is non-holonomic. For example, if an object is not in contact with the robot its pose

cannot be controlled. For this reason we model manipulation planning as kinodynamic

planning with additional high-level actions.

Most sampling-based planners return highly suboptimal solutions that are typically

improved via a post-processing step to simplify the solution [17] and to address the

dynamic constraints of the robot [83]. Karaman and Frazzoli [13] present a proof for the

non-optimality of RRT and PRM as well as asymptotically optimal extensions: RRT* and

PRM*. The RRT* algorithm is then extended to optimal, kinodynamic planning [25, 103].

To speed up convergence an informed sampling strategy is introduced by Gammel et

al. [23]

Li et al.propose the kinodynamic planner Stable Sparse RRT (SST) and an asymptotically

optimal variant SST* [104]. Hauser and Zhou [27] introduce the AO-x meta-algorithm.

This algorithm uses a probabilistically complete planner repeatedly to plan optimally in

5.4. Related Work 123

the limit. The optimal planner proposed in this chapter makes use of the AO-x algorithm,

originally intended for motion planning, to achieve global, asymptotic optimality for

manipulation planning problems. We conjecture, that the SST* planner could potentially

be used in combination with the MM-EST planner proposed in this chapter to obtain

optimal plans as well. However, this idea needs further investigation.

Manipulation Planning and Integrated Task and Motion Planning The related fields

of manipulation planning and integrated task and motion planning deal with hybrid state

spaces of continuous and discrete variables. Both the motion of a system and a sequence

of discrete actions must be computed. Discrete variables mostly occur due to the robot

making or breaking contact with objects in its environment. This manipulation planning

problem was addressed by Alami et al. [8] for the case of a fixed set of grasp and placement

poses of the object and by Simeon et al. [10] for continuous sets of grasps and placements.

Cambon et al. [30] introduce a hybrid planner for task and motion planning to address

a wider class of problems. Dornhege et al. [31] introduce semantic attachments as an

extension for the Planning Domain Definition Language (PDDL) [32] to allow task and

motion planning with classical symbolic planners. Srivastava et al. [105] propose an

interface layer between task planners and motion planners. The skills proposed in this

chapter can be viewed as a bottom up variant of the semantic attachments by Dornhege

et al. [31]. With semantic attachments, a task planner may query other algorithms, such

as motion planners, to determine whether the preconditions of an action hold and what

the effects of an action are. In contrast, the skills we propose allow a motion planner to

perform actions that result in a change of task-level variables.

A key issue in combining motion and task planners is that efficient, sampling-based

planners are only probabilistically complete. Thus, guarantees on completeness and

optimality are lost if a sampling-based motion planner is simply used as a black box

component in a hierarchical planner. Hauser and Latombe [28] introduce a probabilistically

complete, multi-modal planner by extending the PRM algorithm to task and motion

planning in a way that the motion planner also plans the task component. The key idea of

using one holistic planner instead of a hierarchy of planners is a basis for the approach

proposed in this chapter. Hauser and Ng-Thow-Hing present two similar, probabilistically

complete planners for multi-modal problems [11, 29]. To speed up planning, the use

of hierarchy [106], heuristic guidance [33, 35], and learning from previous planning

queries [107] has been proposed.

Closest to our work are the PTR planner by Hauser [11], the SMAP planner by Plaku

and Hager [108], and the DARRT planner by Barry et al. [109]. The PTR planner treats

the change of a mode similar to kinodynamic motion planning and hierarchically calls a

motion planner for each potential mode transition. The key difference of our approach

to the PTR planner is that we treat the exploration of the state space via motions and

mode transitions equally without hierarchy. The SMAP planner interleaves high-level

124 Chapter 5. Planning Manipulation for Assembly in a Skill-Framework

symbolic planning with kinodynamic motion planning similar to our approach. However,

it is not clear how this planner maps onto the foliated structure that arises in manipulation

planning. The DARRT planner extends a kinodynamic version of the RRT by manipulation

actions but presents no interface to a symbolic level of abstraction. It is worth to mention

the motion planner proposed by Zickler and Veloso [110]. This planner uses a variety

of motion controllers as local planners for kinodynamic motion planning in a physics

simulator.

So far, the discussed approaches aim at feasible but not optimal planning. Harada et

al. [36] propose a post processing step to shorten solutions for manipulation planning

problems. Zhang and Shah [37] introduce an iterative method that repeats symbolic

planning and motion planning to receive better solutions. Both methods are not proven to

be locally or globally optimal. For planning problems with piece-wise analytic constraints

Vega-Brown and Roy [38] propose the asymptotically optimal FOBT planner. In our

previous work [40] (discussed in Chapter 3) we present the RMR* algorithm, which is an

asymptotically optimal planner for manipulation problems including those with redundant

manipulators, but limited to geometric planning with one object. Both FOBT [38] and

RMR* [40] require a factorization of the state space, which makes modeling diverse

sets of actions difficult. We have attempted to implement the assembly use case of this

chapter with a factored model for manipulation planning. This attempt failed due to the

complexity of maintaining and extending the resulting models. A possible explanation is

that some constraints of a task can be modeled more efficiently as constraints resulting

from a system state, e. g., constraints due to contact. Other constraints are more easily

modeled as constraints resulting from actions, e. g., the assembly process in this chapter.

Modeling the constraints of actions as constraints of states becomes prohibitively complex

when one considers a diverse set of actions.

Another approach to optimal manipulation planning is the logic geometric program-

ming by Toussaint [39]. However, this approach requires to model tasks exclusively via

differentiable constraints. This type of model is incompatible with the black box model of

collisions and other constraints employed in most of the literature and within this chapter.

5.5 Discussion

This chapter introduced an innovative model for robotic skills that enables manipula-

tion planning for complex, industrial assembly tasks. For this model we proposed an

asymptotically optimal, sampling-based manipulation planner. To speed up planning and

convergence we developed a generic, informed search strategy.

The skill model we proposed includes methods to sample random parameters for skill

execution and to simulate the outcome of this execution. These methods are then used by a

kinodynamic planner to put skills in a sequence and to perform the intermediate motion

5.5. Discussion 125

planning. We showed how the resulting planning problem can be reformulated as a multi-

modal planning problem. Based on this multi-modal formulation we proved probabilistic

completeness and global, asymptotic optimality under a novel set of robustness conditions.

We implemented our approach for a realistic assembly scenario involving two robot arms.

This assembly scenario extends classical manipulation planning by a diverse set of actions

that includes force controlled assembly and localizing parts with a movable camera. This

experiment showed that our approach scales to problems of practical relevance and that

the planner is efficient enough to allow repeated, online re-planning. Extensive simulated

experiments showed that our approach computes plans with significantly lower cost than

an existing planner.

The main advantage of our skill model is that it couples the necessary models for

planning with the control strategies for execution. These two aspects of manipulation

planning are inevitably coupled and a change in one requires a change in the other.

Within our model these two components are part of the same skill resulting in a modular

composition of planning domains.

A limitation of this chapter is that a systematic treatment of uncertainties is missing.

Furthermore, no connection to a reactive motion control was made. This is a promising

area for future research. Potentially, the methods of this chapter could be integrated

with a constraint-based model for belief space planning as proposed by Phiquepal and

Toussaint [70] and the methods for feedback planning of Chapter 4. This would allow us

to compute feedback plans that are simultaneously reactive on the level of motions and on

the level of symbolic actions.

Chapter 6

Conclusions

In this thesis we presented innovative models and algorithms that enable robots to ef-

fectively and efficiently manipulate objects. Manipulation consists of an interdependent

sequence of robot motions and interactions with objects. As a consequence, an autonomous

robot must reason about the entire sequence of motions in order to compute a reliable and

cost effective solution to an automation task. To this end we introduced asymptotically

optimal manipulation planners. When the environments of robots change dynamically,

e. g., when humans are present, motions must be adapted in real-time. For this purpose we

proposed feedback planners for manipulation that enable a reactive execution of plans. Fi-

nally, we presented extensible models that are used to specify the underlying manipulation

problems for our planners.

Manipulation typically involves a relatively large number of degrees of freedom, which

results in high-dimensional state spaces during planning. To address this, all proposed

approaches are built on the idea of sampling-based planning to efficiently explore the

combined state space of robots and objects.

All presented approaches have been implemented and evaluated in extensive simulations

and on real robots. Our experiments demonstrate that the presented methods enable

autonomous manipulation in a variety of tasks and that they scale to the complexity of real

world applications.

With these results we now revisit and answer the research questions we posed in

Chapter 1. We believe that these answers, together with the methods proposed in this

thesis, are a valuable contribution towards autonomous manipulation robots that will assist

us in the future.

Research Question 1: How can a robot compute optimal sequences of motions and

interactions with objects?

Answer: Manipulation planning can be modeled as motion planning with a multi-modal

structure. By making this structure explicit, it is possible to reformulate optimal, sampling-

based motion planners for manipulation planning. In this thesis we proposed two such

planners.

128 Chapter 6. Conclusions

The first planner, RMR*, extends the PRM* algorithm to manipulation planning with a

single object and was presented in Chapter 3. It extends the PRM* by using a factored

sampling strategy. Sampling distinguishes between robot configurations, contact parame-

ters for the object, and explicit transition configurations to change between contacts. This

approach enables to retain useful features of roadmap-based, optimal motion planners,

such as the preprocessing of planning problems and lazy collision checking.

The second optimal planner, MM-EST*, was presented in Chapter 5. It is based on

the kinodynamic motion planner EST. We extended the EST to multi-modal planning

problems and integrated it with the AO-x meta algorithm for optimal planning. This

approach enables to model, plan, and execute complex manipulation tasks, which we

demonstrated with a dual-arm robot in an assembly task.

Research Question 2: How can a robot reason about sequences of dynamic motions

and interactions with objects in real-time?

Answer: Manipulation planning is a challenging problem that requires substantial com-

putational resources. Sampling-based approaches result in random planning times. For

these two reasons it is not feasible to continuously re-plan in real-time. We therefore ap-

proach reactive manipulation hierarchically with a separation between deliberate planning

and controlled execution.

An important requirement for such an approach is that the controlled execution must

adhere to the constraints that constitute the original planning problem. We achieved this

with a constraint-based model that is built on the robot dynamics. This model, presented

in Chapter 4, forms a common basis for manipulation planning and motion control. We

automatically derived constraint-based motion controllers from the model and used them

in simulation as local planners within manipulation planners. During execution the same

motion controllers can be used to react in real-time to disturbances. As the controllers are

derived from the planning domain, the reactive execution adheres both to the decisions of

the planner and to the constraints of the planning problem.

Research Question 3: What models are suitable to describe, plan, and control manipu-

lation?

Answer: Models for sequential manipulation tasks must include the constraints on

motions of robots and objects as well as the constraints between sequential actions in a

task, e. g., between perception and assembly processes. Furthermore, models must be

suitable for different “stakeholders” in manipulation. A human task programmer must be

able to easily modify and extend models to program new tasks. These models must then

be suitable for manipulation planners and finally encode how to control the physical robot.

6.1. Future Work 129

In Chapter 4 we presented a model for the constraints on motions of robots and objects,

the dynamic constraint graph. This model describes each mode of a multi-modal planning

problem as a set of constraint functions that are grounded in the robot dynamics. To

model a task, a user simply composes constraint functions. This is surprisingly intuitive

and computationally efficient as the modeling is done using an expression graph. A key

feature of this model is that the constraint functions have meaning to all “stakeholders” in

manipulation. They can be interpreted by human task programmers and are suitable for

the computations of manipulation planners and motion controllers. As they are grounded

in robot dynamics they result in control inputs that are executable on the real robot.

To model the sequential motions and actions in a manipulation task, Chapter 5 proposed

a new model for robotic skills. This model is designed to enable task and motion planning

based on a set of skills. A set of skills implicitly defines the multi-modal structure of the

planning problem and can be used in optimal task and motion planners. To extend planning

problems a user can add new robotic skills in a modular way. As we use a kinodynamic

formulation of a planning problem the simulation of skills and their execution can be

coupled within the skill model. This enables to model, plan, and execute complex assembly

processes with a multi-robot system.

6.1 Future Work

The presented work results in several directions for future research. These include optimal

feedback planning for manipulation as well as the integration of our methods with physical

and probabilistic reasoning.

Combining optimal planning with optimal control: In Chapter 4 we presented meth-

ods that enable reactive manipulation based on a constraint-based problem specification.

The feedback planners that we presented are based on a linear, second-order dynamic

for the constraint functions. This linear dynamic under-utilizes the dynamic limits of the

robot and as a result produces trajectories that are smooth but suboptimal with respect

to execution time. A promising avenue for future research is to integrate the models of

Chapter 4 and planners of Chapter 5 with model predictive control [65]. This could enable

a robot to plan time-optimal trajectories and to execute them with real-time reactions to

disturbances.

Combining feedback planning with physical reasoning: Throughout this thesis we

focus on prehensile manipulation, where a robot rigidly grasps objects. Prehensile ma-

nipulation covers a wide array of applications, especially in industrial contexts. However,

non-prehensile actions, such as pushing or throwing, are useful for efficient motions in

cluttered environments.

130 Chapter 6. Conclusions

This can be enabled by planning manipulation within a physics simulator. Toussaint

et al. [111] present a variation of Logic-Geometric-Programming [39] that incorporates

contact dynamics. Todorov [112] shows how one can tightly integrate goal directed

motions and physics simulation with contact. A promising area for future research is to

combine these two approaches with the feedback planners in Chapter 4. This could enable

integrated planning and controlled, non-prehensile interaction in manipulation tasks.

Combining planning and control with physical, probabilistic reasoning: The meth-

ods in this thesis assume that the state of a system is known and evolves deterministically.

In unpredictable domains with occlusions, e. g., super markets, the resulting uncertainties

must be addressed.

Planning manipulation in a belief space has already been addressed, e. g., by Kaelbling

and Lozano-Pérez [113]. However, this approach relies on probabilistic models that make

strong assumptions on the structure of the manipulation problem. General, probabilistic

models for manipulation, i. e., motion with contacts, are difficult to obtain. The work of

Wirnshofer et al. [2, 80] shows that probabilistic methods for manipulation benefit from

incorporating contact dynamics and the low-level torque controllers of the robot into the

probabilistic models.

For this reason, we belief that in order to systematically address uncertainty in manipula-

tion planning one must consider contact dynamics and motion control as well. A potential

avenue for future research is to create probabilistic models that build on the dynamic

constraint graph presented in this thesis. The reason for this is that the dynamic constraint

graph is a combined model for planning and motion control and is potentially suited for

constraint-based state estimation as shown in [41].

List of Figures

1.1 An exemplary manipulation problem 2

1.2 Reactive manipulation in a dynamic environment 3

1.3 Constrained manipulation task . 4

1.4 Manipulation with additional process steps 5

2.1 Exemplary setup of a robot and a manipulated object 13

2.2 Configuration space for the dual-robot setup of Figure 2.1 14

2.3 Different systems and tasks with different constraints on configurations . 17

2.4 Motion planning with PRM and RRT 20

2.5 Constrained motion with a delta robot 22

2.6 Techniques for sampling based planning with equality constraints 23

2.7 A sequential manipulation task . 24

2.8 Model for a pick and place task . 25

3.1 Planned manipulation sequence . 28

3.2 Robot configuration and contact parameter 29

3.3 Roadmap construction of RMR* . 34

3.4 Sample contact parameters . 36

3.5 Build one roadmap per contact . 37

3.6 Connect roadmaps . 38

3.7 Query . 39

3.8 Build docking roadmap . 40

3.9 Connect docking roadmap . 41

3.10 Graph search . 42

3.11 Convergence to the optimum of RMR* 43

3.12 Experimental Setup . 47

3.13 Success rates . 48

3.14 Path costs without post-processing . 49

3.15 Distribution of path costs without post-processing 49

3.16 Average query and roadmap times without post-processing 50

3.17 Comparison of PTR and RMR* . 52

4.1 Constrained manipulation task . 58

4.2 Manipulation in a dynamic environment 58

132 List of Figures

4.3 Model of a pick and place task . 61

4.4 Exemplary dynamic constraint graph 61

4.5 Phase diagrams for mode change controllers 63

4.6 Phase diagram of a joint target controller 65

4.7 Exploration of the configuration space by CR-EST 69

4.8 Phase-portrait of a controller sequence for a pick and place task 70

4.9 Online collision avoidance . 72

4.10 Success rates of CR-EST . 74

4.11 Control flow of the hierarchical controller 77

4.12 Phase portrait of the low-level controllers and the complete controller . . 78

4.13 Tasks in the experiments . 80

5.1 A task and motion planning problem . 89

5.2 Skill model . 94

5.3 CAD-based specification of assembly tasks 96

5.4 Assembly sequence computed by the MOUNT skill 97

5.5 Planning problem for manipulation with skills 99

5.6 Experimental setup . 102

5.7 Implemented Skills . 104

5.8 Average cumulative planning and execution times for different specifica-

tions of the task . 106

5.9 Multi-modal planning problem and tree construction of MM-EST 110

5.10 Experimental setup for optimal planning 117

5.11 Success rates of MM-EST* . 118

5.12 Average solution costs of MM-EST* and PTR 119

5.13 Comparison of PTR, AO-MM-EST, and MM-EST* 120

List of Tables

3.1 Benchmark Problems . 47

3.2 Average cost and standard error of the mean 51

4.1 Planning and Execution Times . 74

4.2 Success Rates - Disturbed Execution . 81

4.3 Average Execution Time in Seconds . 82

5.1 Planning and Execution times . 106

5.2 Benchmark Problems . 117

5.3 Planning and Execution Times . 120

Bibliography

[1] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[2] Florian Wirnshofer, Philipp S Schmitt, Philine Meister, Georg v Wichert, and

Wolfram Burgard. State estimation in contact-rich manipulation. In Int. Conf. on

Robotics and Automation. IEEE, 2019.

[3] David Hsu, Jean-Claude Latombe, and Hanna Kurniawati. On the probabilistic foun-

dations of probabilistic roadmap planning. The Int. Journal of Robotics Research,

25(7):627–643, 2006.

[4] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. Transactions

on Robotics and Automation, 12(4):566–580, 1996.

[5] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.

Technical report, Computer Science Department, Iowa State University, 1998.

[6] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Randomized

kinodynamic motion planning with moving obstacles. The Int. Journal of Robotics

Research, 21(3):233–255, 2002.

[7] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Sampling-based methods

for motion planning with constraints. Annual Review of Control, Robotics, and

Autonomous Systems, 1:159–185, 2018.

[8] Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. A geometrical approach

to planning manipulation tasks. the case of discrete placements and grasps. In The

fifth Int. Symposium on Robotics Research, pages 453–463. MIT Press, 1990.

[9] Joseph Mirabel and Florent Lamiraux. Manipulation planning: addressing the

crossed foliation issue. In Int. Conf. on Robotics and Automation, pages 4032–4037.

IEEE, 2017.

[10] Thierry Simeon, Juan Cortes, Anis Sahbani, and Jean-Paul Laumond. A manipula-

tion planner for pick and place operations under continuous grasps and placements.

In Int. Conf. on Robotics and Automation, volume 2, pages 2022–2027. IEEE, 2002.

136 Bibliography

[11] Kris Hauser. Task planning with continuous actions and nondeterministic motion

planning queries. In AAAI Workshop on Bridging the Gap between Task and Motion

Planning, 2010.

[12] Shuai D Han, Nicholas M Stiffler, Athanasios Krontiris, Kostas E Bekris, and Jingjin

Yu. Complexity results and fast methods for optimal tabletop rearrangement with

overhand grasps. The Int. Journal of Robotics Research, pages 1775–1795, 2018.

[13] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The Int. Journal of Robotics Research, 30(7):846–894, 2011.

[14] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[15] Robert Bohlin and Lydia E Kavraki. Path planning using lazy prm. In Int. Conf. on

Robotics and Automation, volume 1, pages 521–528. IEEE, 2000.

[16] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures: The basic

toolbox. Springer Science & Business Media, 2008.

[17] Roland Geraerts and Mark H Overmars. Creating high-quality paths for motion

planning. The Int. Journal of Robotics Research, 26(8):845–863, 2007.

[18] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for

collision and proximity queries. In Int. Conf. on Robotics and Automation, pages

3859–3866. IEEE, 2012.

[19] Ioan A. Sucan and Sachin Chitta. Moveit! URL ❤tt♣✿✴✴♠♦✈❡✐t✳r♦s✳♦r❣.

[20] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descrip-

tor matching. In Conf. on Computer Vision and Pattern Recognition, 2008, pages

1–8. IEEE, 2008.

[21] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high

dimensional data. Transactions on Pattern Analysis and Machine Intelligence, 36

(11):2227–2240, 2014.

[22] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-

memory programming. Computational Science and Engineering, 5(1):46–55, 1998.

[23] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed

rrt*: Optimal sampling-based path planning focused via direct sampling of an

admissible ellipsoidal heuristic. In Int. Conf. on Intelligent Robots and Systems,

pages 2997–3004. IEEE, 2014.

http://moveit.ros.org

Bibliography 137

[24] Kris Hauser. Lazy collision checking in asymptotically-optimal motion planning.

In Int. Conf. on Robotics and Automation, pages 2951–2957. IEEE, 2015.

[25] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning using

incremental sampling-based methods. In Conf. on Decision and Control, pages

7681–7687. IEEE, 2010.

[26] Léonard Jaillet and Josep M Porta. Asymptotically-optimal path planning on

manifolds. Robotics: Science and Systems VIII, page 145, 2013.

[27] Kris Hauser and Yilun Zhou. Asymptotically optimal planning by feasible kinody-

namic planning in a state–cost space. Transactions on Robotics, 32(6):1431–1443,

2016.

[28] Kris Hauser and Jean-Claude Latombe. Multi-modal motion planning in non-

expansive spaces. The Int. Journal of Robotics Research, 2009.

[29] Kris Hauser and Victor Ng-Thow-Hing. Randomized multi-modal motion planning

for a humanoid robot manipulation task. The Int. Journal of Robotics Research, 30

(6):678–698, 2011.

[30] Stéphane Cambon, Fabien Gravot, and Rachid Alami. Overview of asymov: In-

tegrating motion, manipulation and task planning. In Int. Conf. on Automated

Planning and Scheduling Doctoral Consortium, 2003.

[31] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg, Michael

Brenner, and Bernhard Nebel. Semantic attachments for domain-independent

planning systems. In Towards service robots for everyday environments, pages

99–115. Springer, 2012.

[32] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain

definition language. Technical report, Yale Center for Computational Vision and

Control, 1998.

[33] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. FFRob:

An efficient heuristic for task and motion planning. In Algorithmic Foundations of

Robotics XI, pages 179–195. Springer, 2015.

[34] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22(3):57,

2001.

[35] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Backward-

forward search for manipulation planning. In Int. Conf. on Intelligent Robots and

Systems, pages 6366–6373. IEEE, 2015.

138 Bibliography

[36] Kensuke Harada, Tokuo Tsuji, and Jean-Paul Laumond. A manipulation motion

planner for dual-arm industrial manipulators. In Int. Conf. on Robotics and Automa-

tion, pages 928–934. IEEE, 2014.

[37] Chongjie Zhang and Julie A Shah. Co-optimizing task and motion planning. In Int.

Conf. on Intelligent Robots and Systems, pages 4750–4756. IEEE, 2016.

[38] William Vega-Brown and Nicholas Roy. Asymptotically optimal planning under

piecewise-analytic constraints. The 12th Int. Workshop on the Algorithmic Founda-

tions of Robotics, 2016.

[39] Marc Toussaint. Logic-geometric programming: An optimization-based approach to

combined task and motion planning. In Twenty-Fourth Int. Joint Conf. on Artificial

Intelligence, 2015.

[40] Philipp S Schmitt, Werner Neubauer, Wendelin Feiten, Kai M Wurm, Georg v

Wichert, and Wolfram Burgard. Optimal, sampling-based manipulation planning.

In Int. Conf. on Robotics and Automation, pages 3426–3432. IEEE, 2017.

[41] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben Smits,

Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx. Constraint-based task

specification and estimation for sensor-based robot systems in the presence of

geometric uncertainty. The Int. Journal of Robotics Research, 26(5):433–455, 2007.

[42] Joseph Mirabel and Florent Lamiraux. Handling implicit and explicit constraints in

manipulation planning. In Robotics: Science and Systems, 2018.

[43] Erwin Aertbeliën and Joris De Schutter. eTaSL/eTC: A constraint-based task

specification language and robot controller using expression graphs. In Int. Conf.

on Intelligent Robots and Systems, pages 1540–1546. IEEE, 2014.

[44] Tinne De Laet and Joris De Schutter. Constraint-based control of sensor-based

robot systems with uncertain geometry. Technical report, Department of Mechanical

Engineering, KU Leuven, 2007.

[45] Nicolas Mansard, Olivier Stasse, Paul Evrard, and Abderrahmane Kheddar. A

versatile generalized inverted kinematics implementation for collaborative working

humanoid robots: The stack of tasks. In Int. Conf. on Advanced Robotics, pages

1–6. IEEE, 2009.

[46] Ki Suh and J Hollerbach. Local versus global torque optimization of redundant

manipulators. In Int. Conf. on Robotics and Automation, volume 4, pages 619–624.

IEEE, 1987.

Bibliography 139

[47] Ruben Smits. KDL: Kinematics and Dynamics Library. ❤tt♣✿✴✴✇✇✇✳♦r♦❝♦s✳

♦r❣✴❦❞❧.

[48] Hans J Ferreau, Hans G Bock, and Moritz Diehl. An online active set strategy to

overcome the limitations of explicit mpc. Int. Journal of Robust and Nonlinear

Control, 18(8):816–830, 2008.

[49] Hans J Ferreau, Christian Kirches, Andreas Potschka, Hans G Bock, and Moritz

Diehl. qpOASES: A parametric active-set algorithm for quadratic programming.

Mathematical Programming Computation, 6(4):327–363, 2014.

[50] Torsten Kröger and Friedrich M Wahl. Online trajectory generation: Basic concepts

for instantaneous reactions to unforeseen events. Transactions on Robotics, 26(1):

94–111, 2010.

[51] Torsten Kröger. Opening the door to new sensor-based robot applications: The

reflexxes motion libraries. In Int. Conf. on Robotics and Automation, pages 1–4.

IEEE, 2011.

[52] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529, 2015.

[53] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,

volume 135. MIT press Cambridge, 1998.

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Int. Conf. on Computer Vision and Pattern Recognition,

pages 770–778. IEEE, 2016.

[56] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate

deep network learning by exponential linear units (elus). In Int. Conf. on Learning

Representations, 2016.

[57] Hado Van Hasselt. Double q-learning. In Advances in Neural Information Process-

ing Systems, pages 2613–2621, 2010.

[58] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In Thirtieth AAAI Conf. on Artificial Intelligence, 2016.

http://www.orocos.org/kdl
http://www.orocos.org/kdl

140 Bibliography

[59] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando

Freitas. Dueling network architectures for deep reinforcement learning. In Int. Conf.

on Machine Learning, pages 1995–2003, 2016.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In Int. Conf. on Learning Representations, 2015.

[61] François Chollet et al. Keras. ❤tt♣s✿✴✴❦❡r❛s✳✐♦, 2015.

[62] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

❤tt♣✿✴✴t❡♥s♦r❢❧♦✇✳♦r❣✴. Software available from tensorflow.org.

[63] Bruno Siciliano and Jean-Jaques E Slotine. A general framework for managing

multiple tasks in highly redundant robotic systems. In Int. Conf. on Advanced

Robotics, volume 2, pages 1211–1216, 1991.

[64] Wilm Decré, Ruben Smits, Herman Bruyninckx, and Joris De Schutter. Extending

iTaSC to support inequality constraints and non-instantaneous task specification. In

Int. Conf. on Robotics and Automation, pages 964–971. IEEE, 2009.

[65] Wilm Decré, Herman Bruyninckx, and Joris De Schutter. Extending the itasc

constraint-based robot task specification framework to time-independent trajectories

and user-configurable task horizons. In Int. Conf. on Robotics and Automation,

pages 1941–1948. IEEE, 2013.

[66] Enea Scioni, Gianni Borghesan, Herman Bruyninckx, and Marcello Bonfè. Bridging

the gap between discrete symbolic planning and optimization-based robot control.

In Int. Conf. on Robotics and Automation, pages 5075–5081. IEEE, 2015.

[67] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. Manipulation

planning with probabilistic roadmaps. The Int. Journal of Robotics Research, 23

(7-8):729–746, 2004.

[68] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J Kuffner.

Manipulation planning on constraint manifolds. In Int. Conf. on Robotics and

Automation, pages 625–632. IEEE, 2009.

https://keras.io
http://tensorflow.org/

Bibliography 141

[69] Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina Seppälä, Mylene

Campana, Nicolas Mansard, and Florent Lamiraux. HPP: A new software for

constrained motion planning. In Int. Conf. on Intelligent Robots and Systems, 2016.

[70] Camille Phiquepal and Marc Toussaint. Combined task and motion planning under

partial observability: An optimization-based approach. In Int. Conf. on Robotics

and Automation. IEEE, 2019.

[71] Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential com-

position of dynamically dexterous robot behaviors. The Int. Journal of Robotics

Research, 18(6):534–555, 1999.

[72] H Işil Bozma and Daniel E Koditschek. Assembly as a noncooperative game of its

pieces: analysis of 1d sphere assemblies. Robotica, 19(1):93–108, 2001.

[73] Cem Serkan Karagoz, H Isil Bozma, and Daniel E Koditschek. Feedback-based

event-driven parts moving. Transactions on Robotics, 20(6):1012–1018, 2004.

[74] Vasileios Vasilopoulos, T Turner Topping, William Vega-Brown, Nicholas Roy, and

Daniel E Koditschek. Sensor-based reactive execution of symbolic rearrangement

plans by a legged mobile manipulator. In Int. Conf. on Intelligent Robots and

Systems., 2018.

[75] J Zachary Woodruff and Kevin M Lynch. Planning and control for dynamic, nonpre-

hensile, and hybrid manipulation tasks. In Int. Conf. on Robotics and Automation,

pages 4066–4073. IEEE, 2017.

[76] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.

Hindsight experience replay. In Advances in Neural Information Processing Systems,

pages 5048–5058, 2017.

[77] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-

Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,

et al. Learning dexterous in-hand manipulation. arXiv preprint arXiv:1808.00177,

2018.

[78] Philipp S Schmitt, Florian Wirnshofer, Kai M Wurm, Georg v Wichert, and Wolfram

Burgard. Modeling and planning manipulation in dynamic environments. In Int.

Conf. on Robotics and Automation. IEEE, 2019.

[79] Philipp S Schmitt, Florian Wirnshofer, Kai M Wurm, Georg v Wichert, and Wolfram

Burgard. Planning reactive manipulation in dynamic environments. In Int. Conf. on

Intelligent Robots and Systems. IEEE, 2019.

142 Bibliography

[80] Florian Wirnshofer, Philipp S Schmitt, Wendelin Feiten, Georg v Wichert, and

Wolfram Burgard. Robust, compliant assembly via optimal belief space planning.

In Int. Conf. on Robotics and Automation, pages 1–5. IEEE, 2018.

[81] Fabrizio Caccavale, Pasquale Chiacchio, Alessandro Marino, and Luigi Villani.

Six-dof impedance control of dual-arm cooperative manipulators. Transactions On

Mechatronics, 13(5):576–586, 2008.

[82] Robert Kindel, David Hsu, J-C Latombe, and Stephen Rock. Kinodynamic motion

planning amidst moving obstacles. In Int. Conf. on Robotics and Automation,

volume 1, pages 537–543. IEEE, 2000.

[83] Kris Hauser and Victor Ng-Thow-Hing. Fast smoothing of manipulator trajecto-

ries using optimal bounded-acceleration shortcuts. In Int. Conf. on Robotics and

Automation, pages 2493–2498. IEEE, 2010.

[84] Francesco Rovida and Volker Krüger. Design and development of a software

architecture for autonomous mobile manipulators in industrial environments. In Int.

Conf. on Industrial Technology, pages 3288–3295. IEEE, 2015.

[85] Herman Bruyninckx and Joris De Schutter. Specification of force-controlled actions

in the" task frame formalism"-a synthesis. Transactions on Robotics and Automation,

12(4):581–589, 1996.

[86] Ruben Smits, Tinne De Laet, Kasper Claes, Herman Bruyninckx, and Joris De Schut-

ter. itasc: a tool for multi-sensor integration in robot manipulation. In Int. Conf. on

Multisensor Fusion and Integration for Intelligent Systems, pages 426–433. IEEE,

2008.

[87] Jonathan Bohren and Steve Cousins. The smach high-level executive [ros news].

IEEE Robotics & Automation Magazine, 17(4):18–20, 2010.

[88] Markus Klotzbücher and Herman Bruyninckx. Coordinating robotic tasks and

systems with rfsm statecharts. Journal of Software Engineering for Robotics, 3(1):

28–56, 2012.

[89] Bernd Finkemeyer, Torsten Kröger, and Friedrich M Wahl. Executing assembly

tasks specified by manipulation primitive nets. Advanced Robotics, 19(5):591–611,

2005.

[90] Dominick Vanthienen, Markus Klotzbu, Joris De Schutter, Tinne De Laet, Herman

Bruyninckx, et al. Rapid application development of constrained-based task mod-

elling and execution using domain specific languages. In Int. Conf. on Intelligent

Robots and Systems, pages 1860–1866. IEEE, 2013.

Bibliography 143

[91] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas

Wortmann. A new skill based robot programming language using uml/p statecharts.

In Int. Conf. on Robotics and Automation, pages 461–466. IEEE, 2013.

[92] Frank Nägele, Lorenz Halt, Philipp Tenbrock, and Andreas Pott. A prototype-based

skill model for specifying robotic assembly tasks. In Int. Conf. on Robotics and

Automation, pages 558–565. IEEE, 2018.

[93] Ingo Kresse and Michael Beetz. Movement-aware action control - integrating

symbolic and control-theoretic action execution. In Int. Conf. on Robotics and

Automation, pages 3245–3251. IEEE, 2012.

[94] Georg Bartels, Ingo Kresse, and Michael Beetz. Constraint-based movement repre-

sentation grounded in geometric features. In Int. Conf. on Humanoid Robots, pages

547–554. IEEE, 2013.

[95] Moritz Tenorth and Michael Beetz. Knowrob - knowledge processing for au-

tonomous personal robots. In Int. Conf. on Intelligent Robots and Systems, pages

4261–4266. IEEE, 2009.

[96] Moritz Tenorth, Georg Bartels, and Michael Beetz. Knowledge-based specification

of robot motions. In European Conf. on Artificial Intelligence, 2014.

[97] Francesco Rovida, Matthew Crosby, Dirk Holz, Athanasios S Polydoros, Bjarne

Großmann, Ronald PA Petrick, and Volker Krüger. Skiros - a skill-based robot

control platform on top of ros. In Robot Operating System (ROS), pages 121–160.

Springer, 2017.

[98] Simon Bøgh, Mads Hvilshøj, Morten Kristiansen, and Ole Madsen. Identifying and

evaluating suitable tasks for autonomous industrial mobile manipulators (aimm).

The Int. Journal of Advanced Manufacturing Technology, 61(5-8):713–726, 2012.

[99] Simon Bøgh, Oluf Skov Nielsen, Mikkel Rath Pedersen, Volker Krüger, and Ole

Madsen. Does your robot have skills? In Int. Symposium on Robotics, page 6.

Verlag, 2012.

[100] Matthew Crosby, Ronald P A Petrick, Francesco Rovida, and Volker Krueger.

Integrating mission and task planning in an industrial robotics framework. In Int.

Conf. on Automated Planning and Scheduling. AAAI, 2017.

[101] David Hsu, J-C Latombe, and Rajeev Motwani. Path planning in expansive con-

figuration spaces. In Int. Conf. on Robotics and Automation, volume 3, pages

2719–2726. IEEE, 1997.

144 Bibliography

[102] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The

Int. Journal of Robotics Research, 20(5):378–400, 2001.

[103] Sertac Karaman and Emilio Frazzoli. Sampling-based optimal motion planning

for non-holonomic dynamical systems. In Int. Conf. on Robotics and Automation,

pages 5041–5047. IEEE, 2013.

[104] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Asymptotically optimal sampling-

based kinodynamic planning. The Int. Journal of Robotics Research, 35(5):528–564,

2016.

[105] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell,

and Pieter Abbeel. Combined task and motion planning through an extensible

planner-independent interface layer. In Int. Conf. on Robotics and Automation,

pages 639–646. IEEE, 2014.

[106] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion

planning in the now. In Int. Conf. on Robotics and Automation, pages 1470–1477.

IEEE, 2011.

[107] Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to

guide task and motion planning using score-space representation. In Int. Conf. on

Robotics and Automation, pages 2810–2817. IEEE, 2017.

[108] Erion Plaku and Gregory D Hager. Sampling-based motion and symbolic action

planning with geometric and differential constraints. In Int. Conf. on Robotics and

Automation, pages 5002–5008. IEEE, 2010.

[109] Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.

Manipulation with multiple action types. In Experimental Robotics, pages 531–545.

Springer, 2013.

[110] Stefan Zickler and Manuela Veloso. Efficient physics-based planning: sampling

search via non-deterministic tactics and skills. In Int. Conf. on Autonomous Agents

and Multiagent Systems, pages 27–33. Int. Foundation for Autonomous Agents and

Multiagent Systems, 2009.

[111] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B Tenenbaum. Differen-

tiable physics and stable modes for tool-use and manipulation planning. In Robotics:

Science and Systems, 2018.

[112] Emanuel Todorov. Goal directed dynamics. In Int. Conf. on Robotics and Automa-

tion, pages 2994–3000. IEEE, 2018.

Bibliography 145

[113] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion plan-

ning in belief space. The Int. Journal of Robotics Research, 32(9-10):1194–1227,

2013.

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	Contents
	Introduction
	Research Questions
	Key Contributions
	Outline
	Publications
	Notation, Recurring Symbols, and Abbreviations

	Basics
	Configurations and Kinematics
	Dynamics
	Constraints on Configurations
	Sampling-Based Motion Planning
	Sampling-Based Planning with Equality Constraints
	Manipulation Planning

	Optimal, Sampling-Based Manipulation Planning
	Problem Statement
	Planning Problem
	Primitive Operations

	Optimal Manipulation Planner
	Algorithm
	Roadmap Re-Use and Lazy Collision Checking
	Detailed Illustration of RMR*

	Analysis
	Computational Complexity
	Completeness and Optimality

	Implementation and Experiments
	Implementation Details and Experimental Setup
	Results

	Related Work
	Optimal, Sampling-Based Motion Planning
	Manipulation Planning

	Discussion
	Relation to a Previous Publication by the Author

	Planning and Controlling Manipulation in Dynamic Environments
	The Dynamic Constraint Graph
	Automatic Controller Synthesis
	Mode Change Controller
	Joint Target Controller
	Discussion of the Controllers

	Kinodynamic Feedback-Planning for Manipulation
	Planning Algorithm
	Controlled Execution
	Implementation Details
	Experimental Setup
	Results

	Feedback Planning for Manipulation via Q-Learning
	Learning Algorithm
	Implementation Details
	Experimental Setup
	Results

	Related Work
	Discussion
	Relation to Previous Publications by the Author

	Planning Manipulation for Assembly in a Skill-Framework
	Skills for Autonomous Assembly
	System State
	Skill Model
	Detailed Example: Mount Skill

	Task and Motion Planning with Skills
	Primitive Operations and Informal Problem Setting
	Planning Algorithm
	Controlled Execution
	Implementation Details and Experimental Setup
	Results

	Optimal Planning with Skills
	Reformulation as Multi-Modal Planning Problem
	Optimal Planner
	Informed, Optimal Planner
	Completeness and Optimality
	Implementation Details and Experimental Setup
	Results

	Related Work
	Discussion

	Conclusions
	Future Work

	Bibliography

