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Self-Calibration of Accelerometer Arrays
P. Schopp, H. Graf, W. Burgard, Fellow, IEEE, and Y. Manoli, Senior Member, IEEE

Abstract—A gyroscope-free inertial measurement unit (GF-
IMU) employs solely accelerometers to capture the motion of
a body in the form of its linear and angular acceleration as well
as its angular velocity. For that, multiple transducers are fixed at
distinct locations of the body that together form an accelerometer
array. To accurately estimate the motion, the poses of the
sensors, i.e., their positions and orientations, must be known
precisely. Unfortunately, these parameters are typically hard to
assess. Current state-of-the-art calibration methods are able to
reconstruct the geometrical sensor configuration based on a set
of motion data and corresponding acceleration measurements.
However, to impose a reference motion on the sensor array and
to capture that motion with the necessary accuracy requires
sophisticated laboratory equipment. In this work, we present
a method to estimate the transducer poses using only their own
measurements without depending on reference motion data. It
is based on an iterative graph-optimization that considers both
the sensor poses and the motion as target variables. Initially, this
results in infinitely many solutions. We reduce the solutions to
only one global optimum by explicitly modeling the used triple-
axis accelerometers as sensor triads and furthermore taking the
temporal dependence of the acceleration samples into account.
We compare our method to the conventional calibration using
reference data in terms of its estimation accuracy. Furthermore,
we analyze the convergence properties of our method by eval-
uating its tolerance to initial pose deviations. For both, we use
synthetic and experimental data recorded on a 3-D rotation table.

Index Terms—Gyroscope-free inertial measurement unit, Ac-
celerometer array, Self-calibration, Reference-free, Calibration

I. INTRODUCTION

A conventional inertial measurement unit (IMU) consists of
three accelerometers and three gyroscopes to capture the motion
of the body in the form of its linear acceleration and its angular
velocity [1], [2]. In contrast to this, a gyroscope-free inertial
measurement unit (GF-IMU) comprises only accelerometers
to determine the motion. The approach exploits the fact that
the acceleration field of a body becomes inhomogeneous if an
angular motion is present. By taking samples of the acceleration
field with multiple transducers at distinct locations of the body
the linear as well as the angular motion can be reconstructed.
The positions of the sensors must remain constant relative to
each other. Therefore, a GF-IMU is also referred to as an
accelerometer array.

There are various reasons for employing accelerometer
arrays as a GF-IMU. E.g., the approach allows to measure
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the angular acceleration directly, without the differentiation
of the angular velocity. Thus, the noise-amplification problem
caused by the differentiation can be avoided [3]. In [4], this
advantage was used to construct a surgical tool that detects
the tremor of its user. Furthermore, accelerometer arrays can
be used to implement a GF-IMU that features a lower power
consumption compared to a conventional IMU. To measure
the angular velocity micromechanical gyroscopes sense the
Coriolis force that acts on an oscillating proof mass. Because
of the required mechanical excitation, they are considered
as active devices [5], [6]. In contrast to this, accelerometers
can be constructed as passive devices [7], [8]. As a result,
the power consumption of a gyroscope is ∼20 times higher
compared to an accelerometer. Thus, a GF-IMU is a competitive
alternative to a conventional IMU especially if there is the
demand for a low power consumption. Accelerometer arrays
were successfully employed in various applications, e.g., in
human motion analysis [9], automotive navigation [10], or
robotics [11].

To infer the motion, the positions and the orientations of
the accelerometers, i.e., their poses, must be known precisely.
Even small errors within the assumed poses can cause large
deviations in the estimation of the motion as the measured
accelerations are interpreted falsely [12]. In certain application
scenarios the sensor poses are available in the form of a
construction plan. Still, the poses are only known up to a certain
precision due to unavoidable tolerances of manufacturing
process and an imperfect mounting of the sensors. However,
the transducer poses can be recovered by calibration. This
is valuable especially when building a prototype because the
accelerometers can be attached on the body without defining ex-
act mountings beforehand. State of the art calibration methods
impose a known reference motion on the accelerometer array
while recording the transducer measurements. A numerical
optimization estimates the transducer poses based on the values
of the reference motion and the acceleration measurements.
The main challenge of these methods is to obtain values for the
reference motion. Either, there is a mechanical manipulator that
imposes the motion on the accelerometer array very accurately
such that the predefined motion can serve as a reference or an
additional measurement system records the imposed motion.
E.g., we use a 3-D rotation table to impose a defined motion
on our prototype (Fig. 1). However, such kind of reference
systems are expensive laboratory facilities. Furthermore, they
may not even be applicable if the geometric size of the
accelerometer array becomes large. From an economic point
of view, a calibration run for each produced unit using a
reference measurement system equals additional production
costs. In this context, we consider the necessity to acquire
the imposed motion as the most significant drawback of all
currently known approaches to a calibration of accelerometer
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(a) Rotation table.

(b) GF-IMU prototype.

Fig. 1. Experimental setup. The 3-D rotation table (a) allows to execute a
predefined motion. At the same time it allows to record this motion with high
accuracy by means of its integrated instrumentation. The custom GF-IMU
prototype (b) contains 5 accelerometer triads in total of which 4 are placed
on satellite boards.

arrays. To overcome this shortcoming, this work presents a
self-calibration for accelerometer arrays. The method estimates
the poses of the transducers using only their own measurements
without the need for any external reference.

This paper is organized as follows. In the next section we
recapitulate the fundamentals of the GF-IMU approach. Using
the derived sensor equations we summarize the approaches to
a conventional calibration with reference data in Section III. In
Section IV, we present our approach to a self-calibration. We
analyze its estimation accuracy and precision in Section V and
discuss its convergence properties in Section VI. In Section VII,
we conclude this paper by comparing the properties of the
derived self-calibration to those of a calibration with reference
data before we give an outlook to our future research in
Section VIII.

II. GF-IMU FUNDAMENTALS

There is a large variety of approaches for inferring the
motion from the measurements of an accelerometer array.
However, they are all based on the same mechanical equation
that allows to compute the acceleration measurement of the
used transducers given the motion. In the following, we

state this fundamental equation and recapitulate the control
system formulation for arbitrary accelerometer arrays, which
we derived in our previous work [13].

An accelerometer array can be regarded as a control system
by defining the motion of the body as the internal state of the
system and the accelerometer measurements as its outputs. The
discrete-time state-space formulation of a general nonlinear
control system Σ can be given by

Σ :
xi+1 = f (xi, ui) + wi

zi = h (xi) + vi

(1)

with x ∈ Rn being the state of the system, z ∈ Rm its outputs,
and vector u ∈ Rl a known control input. The process model f
propagates the state x from time-step i to the next time-step i+
1. The output z is given by the observation model h and
depends only on the state x. The random vectors w and v are
error terms representing the uncertainty of the models. Both are
assumed to be drawn from normal distributions with zero-mean
and the covariances wΣ and vΣ. In the following, we derive
all parts of this description for the GF-IMU control system by
means of the equation that calculates the acceleration ra at
position r with respect to the body frame.

Assuming that the body is rigid, i.e., r is constant over time,
ra can be computed as

ra = la + ω̇ × r + ω × (ω × r) , (2)

where the motion of the body is described by its linear acceler-
ation la, its angular velocity ω and its angular acceleration ω̇.
The linear acceleration la covers all accelerations that are
homogeneous throughout the body. E.g., the acceleration caused
by gravity is also part of la.

As required by (1), the state x must include all variables
that cause a change of the outputs z as it is the only input to
the observation model h. As r is constant, we define the state
of the system as

x ≡ bx =
[

laT ωT ω̇T
]T
, (3)

where the superscript b indicates that bx is the motion of the
body.

The sensors sample the acceleration ra at their position
with respect to the sensor frame. Thus, to compute the scalar
acceleration measurement sma of a transducer, ra is first rotated
into the sensor frame to the acceleration sa before a sensor
model maps sa to the scalar transducer measurement sma. As an
efficient, singularity-free representation of the sensor orientation
we use a quaternion q to describe the rotation from the body to
the sensor frame. We encapsulate the steps to rotate a vector v
by a unit-quaternion q by means of the rotation operator Rq(v).
The required mathematical tools for a quaternion rotation can
be found in [14]. As modern accelerometers are designed for
a linear sensor behavior, it is common to use a linear mapping
between sa and sma, which can be given by

sma = s · sa + oa

= s ·Rq(ra) + oa,
(4)

where the scalar multiplication s·sa maps sa onto the sensitivity
axis s of the accelerometer relative to the sensor frame. The
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signal offset oa accounts for the constant measurement error
of the accelerometer. The parameters of (4) can be divided
into the ones that describe the placement of the transducer
and the ones that originate from the sensor characteristics. The
placement of the sensor is defined by its position r and its
orientation given by q. The combination of both is also referred
to as the pose P = {q, r} of the transducer. The parameters of
the linear sensor model are the sensitivity axis s and the signal
offset oa of the transducer. We will denote their combination as
C = {s, oa} and refer to them as the sensor parameters. Here,
we want to mention that q and s are redundant parameters
in (4). We can account for every change in the orientation
with a corresponding rotation of the sensitive axis. It is equally
possible to describe the sensitivity axis s in the body frame
thereby omitting a separate parameter for the orientation of the
sensor. However, we separate the parameters to have a clear
distinction between the geometry dependent pose P and the
transducer dependent parameters C.

To construct the observation model h of the accelerometer
array we introduce the notation smaj = sh(bx, Pj , Cj) to
indicate that the function sh implements the calculations
of (4) to compute the measured acceleration smaj of the jth
single-axis transducer. The function depends on bx and is
parameterized by the pose Pj and the constants Cj of the
jth sensor. For an accelerometer array that employs m single-
axis sensors, observation model h is a combination of m sensor
equations, which leads to

h (x) ≡ sah(bxi, P1:m, C1:m) =


sh(bxi, P1, C1)

...
sh(bxi, Pm, Cm)

 (5)

where the superscript sa stands for sensor array. The observa-
tion z holds the measured accelerations and is defined as

z ≡ sma =
[

sma1 . . . smam
]T

(6)

The error term vi accounts for the noise of the sensors.
Hence, we define its covariance as vΣ ≡ diag([sσ2

1 . . . sσ2
m]),

where sσ2
1:m are the variances of each individual transducer.

As the process model f gives the state at the next time-step
based on the current state it describes how the state variables
affect each other. The inputs u allow to describe the mechanics
of a known external excitation. For the GF-IMU we define f
as

f(xi,ui) ≡ saf(bxi) =

 lai

ωi + ω̇i∆ti
ω̇i

 (7)

where ∆ti is the time between i and i+ 1. In contrast to the
general formulation, the process model saf does not include a
control input u because we do not know the stimulation of the
motion. Instead, the external excitation is solely modeled by the
error term wi. The process model implements the assumption
that the accelerations la and ω̇ remain constant between two
time-steps. This allows us to integrate the angular acceleration
as ω̇i∆ti to compute the angular velocity at i+ 1. However,
the assumption of constant acceleration will not hold true once
there is an external excitation of the motion. Thus, the error
term w accounts for ba and ω̇ not being constant over time

and for the error of the integration term ω̇i∆ti caused by a
non-constant ω̇. We define the covariance wΣ corresponding
to w as

wΣi ≡ ∆t2i

 σ2
a I 0 0
0 σ2

int I 0
0 0 σ2

ω̇ I

 , (8)

where I denotes an identity matrix and 0 a block of zeros
of size 3× 3. The variances σ2

a and σ2
ω̇ model the change of

the accelerations la and ω̇, while σ2
int describes the errors of

the integration term ω̇i∆ti. As we do not want to make an
assumption about how the true course of ω̇ deviates from ω̇i,
we model the error of constant angular acceleration and the
integration error as independent of each other. Therefore, we
set the respective correlation terms in wΣ to zero. Furthermore,
we assume that the described errors grow linearly with ∆t for
reasonable sampling frequencies. Following the law of error
propagation this introduces the term ∆t2 to the calculation
of wΣ. This formulation has the advantage that once we set the
values for variances σ2

a, σ2
ω̇, and σ2

int we can recompute wΣ
for varying sampling frequencies.

The system description given by the formulas (3), (5), and (7)
is valid for a general accelerometer array with m sensors and
an arbitrary placement of the transducers. However, not all
configurations result in a proper GF-IMU. The array must
suffice some requirements regarding the number of sensors
and their arrangement. In [13], we showed that the state of
the system described by (3), (5), and (7) is locally weakly
observable with at least three accelerometer triads, i.e., three
groups of three orthogonally mounted single-axis sensors,
commercially available as triple-axis sensors. Thus, m = 9
or more acceleration sensitive axis are necessary to directly
capture the entire motion, which ensures a drift-free estimation
of the angular velocity. Furthermore, the positions of the triads
must span a surface. If they reside on a line the rotation around
that axis cannot be detected.

III. CONVENTIONAL CALIBRATION

The calibration of an accelerometer used in a conven-
tional IMU estimates the sensor parameters C but does not
consider the pose P of the transducer. Its position is mostly
defined to be the center of the body and its orientation
to be aligned with the frame of the body. Compared to
this, present calibration methods for accelerometer arrays
infer both transducer poses P as well as the parameters
of the sensor model C for each employed sensor. Based
on a set of reference motion data bxR

1:n and corresponding
acceleration measurements sma1:n the methods set-up a least-
squares optimization with the parameter sets P and C as target
variables. The optimization has the form

arg min
P,C

n∑
i=1

(
smai − sh(bxR

i , P, C)
)2

(9)

where n is the number of samples. In (9), the parameters P
and C are optimized such that the sensor model sh best explains
the measurements sma1:n. The optimization is performed
individually for each one of the m sensors. Throughout this
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paper, we refer to methods based on reference data of the
motion as conventional calibration.

Although the published approaches to a conventional cal-
ibration for accelerometer arrays can be summarized by the
formulation given in (9), the actual implementations differ in
their methodology. As the orientation and the sensitive axis of
the transducer are redundant parameters most implementations
describe the sensitive axis in the body frame, which allows to
drop the orientation from the equations. As an alternative, we
present a model for sensor triads in Appendix A, which aligns
the sensitive axes with the sensor frame and thus removes the
redundancy of both parameters. Furthermore, some methods
split the calibration into two parts [15]–[18]. They estimate
the orientation, the sensitive axis, and the offset in a static part
without any rotation. Here, the transducer array is placed into
several known poses. As the rotational state variables ω and ω̇
are zero in (2) the reference acceleration can be calculated
based on the current orientation and the gravity constant.
Subsequently, the position of the accelerometer is estimated
in a dynamic part at a defined rotation. In contrast to this, the
entire parameter set can also be estimated in only one single
step [12], [19]. By rearranging (4), the regression problem
of (9) can be formulated as a simple matrix equation, which
can be solved efficiently using a singular value decomposition.

The formulation of (9) clearly shows that the present cali-
bration methods for accelerometer arrays depend on the exact
knowledge of the reference motion bxR

1:n. Even if available,
errors in bxR

1:n lead to errors in the estimated sensor poses P
and parameters C. As discussed in the introduction, this is
a severe burden for the calibration of accelerometer arrays,
because it requires a highly accurate reference measurement
system. We address this problem by presenting a self-calibration
for accelerometer arrays. Thus, there is no need to know bxR

1:n

to perform the calibration.
In fact, there are already interesting approaches to a reference-

free calibration of the sensor parameters C of single accelerome-
ter triads. Without any additional acceleration driven by motion,
the Euclidean length of the measurement of the accelerometer
triad must be the earth gravitation: 1 g. These assumptions are
used to formulate an error function, which is minimized in an
optimization process. Its target values are the parameters C of
the linear sensor model. The only input to the optimization are
measurements taken at multiple, arbitrary orientations within
the gravitational field. The solutions proposed in literature
differ in the applied sensor model and also in the applied
optimization method. Methods that have been successfully
applied include the Newton-Raphson method [20], maximum
likelihood estimation [21], or Levenberg-Marquardt minimiza-
tion [22], [23]. Recently, we presented an iterative solution
in [24] where we employed an UKF to recursively optimize
the sensor parameters of an accelerometer. Furthermore, there
are a few approaches towards a reference-free calibration of
the accelerometer poses P . E.g., Nilsson et. al. present a
method to align an array of multiple IMUs based on the
gravity vector [25]. However, the method does not consider the
positions of the accelerometers. Kozlov et. al. are concerned
with the simultaneous estimation of the position displacement
of an IMU on a single axis rotation table together with the

calibration parameters of a conventional IMU [26]. However,
the method is tailored for a rotation around a single axis and
hence cannot recover a tree-dimensional sensor position.

In summary, there are already solutions for a reference-free
calibration of C and the orientation of the transducers. However,
none of the existing reference-free calibration methods include
the three-dimensional positions of the sensors. We advance the
state of the art here by presenting calibration method for the
entire geometrical setup of the accelerometer array. Thus, the
sensor poses P consisting of the orientation and the position
are estimated without requiring reference data of the imposed
motion.

IV. GRAPH OPTIMIZATION

A conventional calibration estimates the parameters of a
proposed model based on known system states and corre-
sponding observations. In contrast to this, self-calibration
inherently contains a circular dependency because both the
model parameters and the system states are unknown, i.e., the
system states are required to estimate the model parameters
and in turn, the model parameters are necessary to compute
the system states. Hence, both must be estimated jointly.
Only having an estimate of both allows to compute expected
acceleration measurements using (4) and thus to determine the
sensor poses according to the sensor model. However, if the
optimization only considers the sensor equations as in (9) either
the parameters or the assumed state can always be adjusted to
account for a certain measurement. This results in infinitely
many solutions.

We address this problem by introducing prior knowledge of
the system to the optimization in order to impose constraints on
the possible solutions such that the optimization converges to
the correct geometrical setup and the correct motion. Concretely,
we derive constraints from the following facts: Firstly, the
accelerometers are organized as triads as we only employ
triple-axis accelerometers. We assume that the sensor triads
are calibrated, thus, the parameters C are known for each of
the three sensitive axes. Secondly, the time-intervals between
the acceleration measurements are known because we use a
defined sampling rate.

A. Nonlinear Least-Squares Optimization

A general least squares optimization can be represented by
a factor graph in an intuitive and effective way as the structure
of the graph highlights the relations between the variables [27]–
[29]. A factor graph is a bipartite graph, i.e., there exist exactly
two types of nodes and there can only be a link from a node
of the first type to a node of the second type. Specific to a
least squares optimization, nodes of the first type embody the
unknown variables x, which are the target of the optimization.
Nodes of the second type represent constraints between the
variables that originate from observations z. Each one refers
to a certain error function e being of the form

e(xi,xj , zij) = zij − h(xi,xj) (10)

where h computes the expected observation. Furthermore, each
constraint node corresponds to an information matrix Σ−1ij
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Fig. 2. The factor graph representing the relations of the variables of the
self-calibration of accelerometer arrays. The nodes drawn as circles represent
the variables, which are the target of the optimization, whereas the small filled
nodes embody the constraints between them.

reflecting the uncertainty of the constraint between the nodes xi

and xj . Assuming all observations to be independent and their
errors to be normally distributed a joint objective function F
can be composed, which is the negative log likelihood F of
all observations and is given by

F (X) =
∑
{i,j}∈C

e(xi,xj , zij)
T Σ−1ij e(xi,xj , zij) (11)

where C is the set of pairs of indices {i, j} for which
there is a observation zij relating the variables xi and xj .
Vector X =

[
xT
1 . . . xT

n

]T
holds all target variables.

Finding the minimum of the joint error function F in the form

X∗ = arg min
X

F (X) (12)

leads to the optimal values X∗, i.e., the values that maximize
the likelihood of all observations [30]. After the construction
of the graph the optimization is independent of the problem
setting. It can be solved iteratively using nonlinear least-squares
techniques such as the Gauss-Newton or the Levenberberg-
Marquardt algorithm. Popular examples that can be solved
using a graph-optimization can be found in robotics [31] or in
computer vision [32].

B. Graph Structure and Error Models

The factor graph we derived for the self-calibration of
accelerometer arrays is shown in Fig. 2. In the following
we will discuss its structure and show how it embeds the prior
knowledge of known sensor triads and consecutive samples.

Say we have a set of n acceleration measurements recorded
by m sensor triads. Therefore, the nodes representing the
variables of the optimization consist of n nodes for the motion
vectors bx1:n and another m nodes representing the poses P1:m

of the transducer triads. The triad with pose Pj = {qj , rj} took
an acceleration sample tzij corresponding to the motion bxi.
This implies the following constraint between Pj and bxi.
Given Pj and bxi we can compute the expected measurement
using three times the sensor model given in (4). Up to a certain
error due to sensor noise, the expected observation must match
the recorded observation tzij once Pj and bxi are equal to

the true pose and motion. Thus, we define the error function
for constraints between bxi and Pj as

teij ≡ te
(
bxi, Pj ,

tzij

)
= tzij −

 sh(bxi, Pj , C1)
sh(bxi, Pj , C2)
sh(bxi, Pj , C3)

 , (13)

where the superscript t stand for triad. By describing all three
sensitive axes by only one pose Pj we reduce the possible
solutions in the following way: All orientations and positions
are valid for each axis but there is a fixed relation between
three axes, which is encoded by the sensor parameters C1:3.
To relate the results of te with the noise of the sensors we
define the information matrix tΣ−1ij corresponding to te to be
the inverse of the covariance of the triad measurement tΣij =
diag([sσ2

1
sσ2

2
sσ2

3 ]). The variances sσ2
1:3 are the measurement

variances of each one of the sensitive axes. For the sensors of
our prototype (Fig. 1b) we experimentally determined those to
be 4 · 10−4 (m/s2)2.

As we can adjust the sampling rate we know the time ∆ti
between two consecutive states bxi and bxi+1. For a given ∆ti
the process model saf in (7) describes how the state evolves
to the next time-step. Thus, we use it to define the error
function se for a constraint between two consecutive states as

sei ≡ se
(
bxi,

bxi+1,0
)

= bxi+1 − saf(bxi) =

 lai+1 − lai

ωi+1 − (ωi + ω̇i∆ti)
ω̇i+1 − ω̇i

 ,
(14)

where we treat any difference between bxi+1 and saf(bxi)
as error. To satisfy the form given by (10) we define the
observation between bxi and bxi+1 to be 0 at all time-
steps. As we use the process model saf to construct the error
function se we can use the covariance wΣ of the error term w to
compute the information matrix sΣ−1i by evaluating its inverse
as sΣ−1i = (wΣ)−1. The values for σ2

a, σ2
ω̇ , and σ2

int of wΣ can
be regarded as tuning parameters of the self-calibration that
reflect the dynamics of the motion according to the following
rationals. The error functions (lai+1 − lai) and (ω̇i+1 − ω̇i)
prevent the optimization to generate large jumps in la1:n

and ω1:n. Still, we choose relatively large values for σ2
a and σ2

ω̇

because values that are too small suppress any change of the
motion from one time-step to another. In contrast to this, we
choose σ2

int to be small because we want the optimization
to trust the integration constraint as it represents the link
between ω and its time derivative ω̇. For the evaluations
of our method in this paper we set σ2

a = 103 (m/s2)2,
σ2
ω̇ = 103 (rad/s2)2, and σ2

int = 10−7 (rad/s)2.
All constraints we introduced so far are made between the

variables without comparing to an absolute reference. Thus,
the optimized graph is only consistent relatively. We can alter
the values of the variables without generating an error as long
as we preserve their relation. Therefore, we fix the pose of
one triad, i.e., we set its position and orientation to certain
values and exclude it from the optimization. In the graph of
Fig. 2 this is the triad with pose P1. As a result, the poses of
the free triads are estimated relative to this fixed triad. Thus,
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to fix the pose of a triad equals the definition of the body
frame. At the first glance, this may appear as a drawback
of the self-calibration. However, the conventional calibration
involves the same issue. Independent of the type of reference
system, we have to define the frame of the body as soon as
we compute the reference motion. E.g., the rotation table only
acquires the angles of its axes. To compute the motion of the
accelerometer array we have to define the center of the body
and its orientation in relation to the axes of the table. Thus,
both calibrations with or without reference data generate pose
estimations relative to a defined frame.

We have now completely described the graph we want to
optimize in order to solve the self-calibration problem. Thus,
we can refine F (X) of (11) as

F (X) =

n∑
i=1

m∑
j=1

teTij
tΣ−1ij

teij +

n−1∑
i=1

seTi
sΣ−1i

sei (15)

where n is the number of samples and m is the number of
triads. Vector X is composed as

X =
[

bx1:n Pj∈T
]T

(16)

where T is the set of indices of the triads that are not fixed.

C. Optimization on Manifolds

F (X) employs unit quaternions to represent the orientations
of the transducer triads to circumvent singularities that result
from minimal representations such as Euler angles. They can
be written as a 4-dimensional vector with a unit-constraint,
which is why they can be regarded as a manifold of R4, i.e.,
not all vectors in R4 are valid unit quaternions, only the ones
that suffice the unit-constraint. However, conventional iterative
least-squares optimization algorithms operate in the Euclidean
space, i.e., all values are valid. When applied directly they
ignore the constraints within an over-parameterized orientation
parameterization like quaternions or rotation matrices, which
introduces errors to the solution. An elegant way to overcome
this problem is to exploit that manifolds may not be globally
Euclidean but can be regarded as Euclidean locally [33]. The
idea is that the optimization operates on a minimal, Euclidean
parameterization of the manifold [34], [35]. After each iteration,
the resulting increment ∆b∗ is applied to the current hypothesis
of the manifold b̆. Recent frameworks for graph optimizations
already implement this methodology such that the optimization
of the manifolds is transparent to the user [34], [36], [37]. For
an arbitrary manifold, all the user has to specify is a function
that adds an increment ∆b to the manifold b. This function is
called the box-plus operator � and is a applied as

b∗ = b̆� ∆b∗, (17)

where the ∗ marks the optimized values and ˘ the hypothesis
of the last iteration [31], [34]. A quaternion q =

[
w vT

]T
consists of a scalar part w and a vector part v and, as we are
using only unit-quaternions, has the constraint ||q|| = 1. One
way of implementing the � operator for unit-quaternions is to
treat the increment as the vector part v of a quaternion and
map the increment to the original quaternion representation by

Fig. 3. The poses of the accelerometer triads during the optimization. The
initial and final poses are shown in light and dark red-black-green arrow
triplets. The intermediate positions are visualized as gray lines. The square
area represents the metal plate on which the transducers are mounted.

computing the real part v such that it suffices ||q|| = 1. For
the box-plus operator this results to

q∗ = q̆ � ∆q∗ = q̆ ◦
[ √

1− ||v∗||2
v∗

]
(18)

where first ∆q∗ is converted to a full quaternion before both
rotations are combined by the quaternion multiplication denoted
by the operator ◦. A further option to implement the � operator
is to treat the increment as a axis-angle representation where
the length of the vector encodes the angle of the rotation [34],
[38].

D. Implementation

Our implementation of the graph optimization is based on
the C++ framework g2o [37]. Figure 3 and 4 depict a typical
optimization of both the poses of the triads and the motion.
For this example we recorded acceleration data from a motion
which we imposed on the prototype using the 3-D rotation
table of Fig. 1a. To minimize F (X) we chose the Levenberg-
Marquardt algorithm. We fixed the pose of the triad that is
located at the center of the metal plate. Figure 3 shows how the
sensor triads are pushed apart by the first optimization steps.
At the same time, the amplitude of the motion hypothesis rises
(Fig. 4). This behavior is reasonable because the observations
feature high acceleration amplitudes but the initial hypothesis
of the motion is zero for all dimensions. The overall error can
only be reduced by either increasing the distances between the
triads or by raising the amplitude of the motion. We can also
observe the effect of the constraints that connect consecutive
states. All hypotheses feature a smooth sequence of the angular
velocity and its gradient matches ω̇. A part of the path of the
triads appears to be random. We reason this with the gradient
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Fig. 4. The estimated motion during the optimization process. For clarity, we
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the intermediate hypothesis.

0 5 10 15 20
10

0

10
1

10
2

10
3

Iteration

F
(X

) 
/ 

N
u

m
b

e
r 

o
f 

C
o

n
s
tr

a
in

ts

Fig. 5. The value of F (X) divided by the total number of constraints over
the number of iterations.

that is constructed by the Levenberg-Marquardt algorithm at
every iteration. Partly, the random motion results from a small
overshoot along its direction. Furthermore, it is computed based
on noisy measurement data causing it to be slightly inaccurate.
After a few iterations the algorithm finds an optimum for the
poses of the triads as well the motion. Figure 5 shows how the
value of F (X) rapidly decreases during the first 10 iterations
and then settles to a constant level.

The computationally crucial part of the Levenberg-Marquardt
algorithm is to solve a set of linearized equations at each
iteration, which has a size equal to the number of free

variables. As the self-calibration estimates the triad poses
and the motion jointly the number of free variables increases
proportionally to the number of acceleration samples used for
the self-calibration. The linearized system of equations is solved
using a Cholesky decomposition. Thus, the time complexity
of our method is O((n+m)3) in general. However, modern
software implementations exploit the structure of the problem
and achieve an acceptable run-time even for high-dimensional
problems [37]. The motion of the example has a length of
5.4 s and the accelerations are sampled at 125 Hz. Thus, the
optimization includes 675 states to optimize. As bx is of
dimension 9 this results to 6075 free variables for the motion
only. Despite the high number of variables one optimization step
consumed only 0.15 s, which amounts to 3 s for the complete
self-calibration (desktop computer, Athlon 64, 2 GHz, single-
threaded).

V. CALIBRATION ACCURACY AND PRECISION

In this section, we discuss the accuracy and the precision
of the pose estimations generated by the self-calibration using
both experimental and simulated measurement data. We also
compare the estimated poses to those resulting from the
conventional calibration.

Before we evaluate the experiments we briefly describe
the measurement setup and methodology we used. The GF-
IMU prototype (Fig. 1b) incorporates five accelerometer
triads (Bosch Sensortec, BMA180). The acceleration measure-
ments are read out by a microcontroller which is part of a
mainboard at the center of an aluminum carrier plate. One
of the accelerometer triads is situated at the center of the
mainboard while the other four are placed on satellite boards.
In addition to the acceleration sensors, the prototype contains
a triple-axis gyroscope (InvenSense, ITG-3200).

We determined the reference poses of the accelerometer
triads using a conventional calibration. The method we previ-
ously used to calibrate the transducer array treated all sensitive
axes individually and estimated those with respect to the body
frame [12]. However, we are interested in the pose of the
sensor triad because we want to compare the estimates of
the self-calibration to the ones resulting from the calibration
with reference data. The sensor model, which we derive in
Appendix A, aligns the sensitive axes with the sensor frame. By
that, it eliminates the redundancy of the pose and the sensitive
axes. The model describes a triad by means of its pose P and
the joint parameters of its sensitive axes tC. Employing it for
a conventional calibration allows for a direct comparison of
the accuracy of the estimated poses. Thus, for each triad we
estimate P and tC by means of an iterative optimization in
the form of

arg min
P, tC

n∑
i=1

(
tzi − th(bxR

i , P,
tC)
)2

(19)

where the function th(bxR
i , P,

tC) computes the expected
observation of all three sensitive axes given the reference
motion vector bxR

i . To maximize its accuracy we used a motion
of ∼2 min recorded at 250 Hz. This generated a large data-set,
which effectively suppresses errors due to sensor noise. The
resulting positions of the triads are summarized in Table I.
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TABLE I
REFERENCE POSITIONS OF THE ACCELEROMETER TRIADS.

Positions Triad No.
(cm) 1 2 3 4 5

x 0.07 0.28 11.93 − 0.27 − 11.94
y − 0.24 11.89 − 0.28 − 11.94 0.29
z 3.87 2.47 2.50 2.51 2.51

To compare the estimation errors of the conventional and the
self-calibration we used the same motion as for the example
of the last section as an evaluation data-set, i.e., we performed
both types of calibrations using this evaluation data-set and
later compared it to the poses, which we estimated using
the conventional calibration together with the reference data-
set (Tab. I). The motion for the evaluation has a duration
of 5.4 s and we used a sampling frequency of 125 Hz. Thus,
the evaluation data-set has only 2.25 % of sampling points
compared to the one we used to generate the reference poses.

For the self-calibration at least one triad must be fixed to
define the body frame. Here, we fixed the pose of triad no. 1
located at the center of the metal plate (see Fig. 1b and 3) to
the one we obtained from the reference calibration (Table I).

We compared the accuracy of the pose estimations with
simulated measurements and with experimental data. To
generate the synthetic measurements we used the motion
provided by the rotation table and applied the observation
model together with the poses P and the sensor parameters tC
we obtained by the reference calibration. Subsequently, we
added random numbers to the expected observations drawn
from a normal distribution with zero mean and a standard
deviation equal to the one we experimentally determined for
the sensors. Thus, the simulations resemble the experiment,
i.e., the same sensor setup undergoes the same motion, but
with ideal sensors without any systematic deviation from their
linear model. Furthermore, the simulations allow to analyze the
statistics of the errors. For that, we executed each simulation
trial 100 times with new random numbers as sensor noise at
each simulation run. Assuming the distribution of the errors to
be a Gaussian we computed the mean as well as the standard
deviation as measure of accuracy and precision.

For both the conventional and the self-calibration we evalu-
ated the position error, i.e., the distance of estimated position to
the reference position, and the orientation error, i.e., the angle
between the estimated orientation to the reference orientation.
To express the error of one calibration trial by only two
numbers, we computed the mean error of all triads, however,
without considering the fixed triad. Table II summarizes the
mean errors and the standard deviations the simulations (top)
as well as the errors of the experiments (bottom).

The calibrations based on experimental data result to mean
errors that are by a factor of ∼100 higher compared to the
mean errors resulting from simulated measurements. This large
deviation cannot be justified by the standard deviations of the
respective calibrations. We reason the deviation by an imperfect
description of the sensors. Either the sensor parameters tC may
contain errors or the transducers do not follow a completely
linear behavior. Effects like non-linearity, cross-axes sensitivity,

TABLE II
THE ERROR OF THE ESTIMATED POSITIONS AND ORIENTATIONS OF BOTH

SELF-CALIBRATION AND CONVENTIONAL CALIBRATION. WE ASSUME THE
ERRORS OF THE SIMULATIONS TO BE NORMALLY DISTRIBUTED AND

EVALUATE THEIR MEAN AND THEIR STANDARD DEVIATION BASED ON
100 SIMULATION TRIALS.

Simulation Position Orientation
[10−6m] [10−3◦]

Self-Calibration 5.42 (± 81.84) 1.00 (± 14.93)
Conventional Calibration

Table 1.43 (± 32.43) 0.40 (± 9.20)
Gyro - calibrated 4.17 (± 75.66) 0.80 (± 16.66)
Gyro - uncalibrated 31.40 (± 1827.58) 7.34 (± 487.46)

Experiment Position Orientation
[10−6m] [10−3◦]

Self-Calibration 653.08 338.07
Conventional Calibration

Table 556.96 200.60
Gyro - calibrated 977.58 203.63
Gyro - uncalibrated 2287.93 849.22

or bias stability are not covered by the linear model. However,
besides their magnitude the error values of the experiments
confirm the simulations in terms of their ranking.

To compute the reference data for the conventional calibra-
tion we used either the measurements provided by the rotation
table or the measurements of the center accelerometer triad
together with the gyroscope. The values in Table II indicate
that the calibration with reference data originating from the
table feature the smallest error of both position and orientation
in terms of mean and standard deviation. This makes sense
because the calibration has access to motion values. In contrast
to this, the self-calibration jointly estimates the triads poses and
the motion. Thus, there is less information available and there-
fore sensor noise has a stronger effect on the pose estimates.
In simulation, the standard deviation is approximately 2 times
larger compared to the conventional calibration. In experiment,
we obtain a positioning error of 0.56 mm and 0.65 mm and
an orientation error of 0.20 ◦ and 0.34 ◦ for the conventional
calibration and the self-calibration, respectively.

The conventional calibration treats the reference data as
ground truth. Therefore, errors within the provided reference
motion influence the accuracy of the pose estimates. To
illustrate the effect we used the reference data provided by
the center accelerometer triad and the gyroscope in two ways.
In both cases we applied a calibration step to the data of
the center accelerometer. However, for the first evaluation,
we applied a calibration step on the gyroscope data and for
the second evaluation we used the gyroscope data directly,
without preprocessing. When we calibrate the gyroscope data
we minimize the systematic errors and noise is the dominant
error source. In this case, the conventional calibration and the
self-calibration show approximately the same error within the
pose estimation both in terms of mean and standard deviation.
When we use uncalibrated gyroscope data the reference data
contains systematic errors. This generates a large error within
the pose estimates as we assume a different motion than there
actually was for the acceleration samples.

The analysis presented here does not consider the influence
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of the motion nor the geometrical sensor configuration on
the estimation accuracy. To analyze their impact requires
further elaborate investigations, which will be part of our future
research. However, we can draw the following conclusions. The
self-calibration achieves an estimation accuracy and precision
comparable to the conventional calibration. If there is high
quality reference data of the motion available the conventional
calibration achieves betters results. However, the self-calibration
shows a better performance than a conventional calibration
supplied with motion data that contains systematic errors.

VI. CONVERGENCE

The derived self-calibration consists of a minimization of the
objective function F (X). In contrast to a linear optimization
problem, F (X) contains local minima because of the nonlinear
models we used to construct it. Thus, there are motions and
sensor poses with a minimal value of F (X) compared to other
possible solutions in a certain neighborhood of the search space.
However, in contrast to the global minimum of F (X) they do
not correspond to the true motion and the true sensor poses.
As we discuss in the following, whether the optimization falls
into a local minimum mainly depends on the initial poses of
the triads and on the motion from which the acceleration data
was sampled from. For reasonable initial poses and motions
convergence is not a major issue. Still, we want to give an
insight into the mechanisms of the optimization and derive a
selection scheme for reasonable initial values. First, we explain
the different kinds of local minima before we evaluate the
influences on the convergence of the estimates to the global
optimum.

A. Local Minima

We separate the local minima into two different types. Local
minima, which consist of an only partly erroneous motion
estimate, and local minima corresponding to a completely
diverged estimate. The first one is related to the direction
of the estimated rotation. If the initial poses of the triads
deviate severely from their true poses the optimization may
misinterpret the accelerations and estimate a wrong sign for
the angular velocity at the very first iterations. This can hardly
be corrected by an iterative optimization algorithm because
the quadratic dependency of ω in ω× (ω × r) does not allow
for a change of the sign. Figure 6 shows an example of an
optimization that is trapped in such a local minimum. Such
kinds of estimation errors also affect the estimation of the
triad poses. How strong this effect is depends on how often
there is a sign estimation error compared to the whole motion.
Single errors have a rather small impact. Typically, the resulting
position errors are within a millimeter range. However, if the
relation of sign errors compared to the correct estimation is too
large, the entire estimation may diverge to one of the following
local minima, which we classify as the second type of local
minima. Table III summarizes such minima in terms of the final
positions of the triads and the final angular motion, i.e., the
angular acceleration and velocity. They can be easily detected
after the optimization because the values of the estimates are
not reasonable. This may not be the case for the first type of
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Fig. 6. Example where the motion estimate is partly trapped in a local
minimum. We recorded the acceleration values while we moved the prototype
by hand and used the gyroscope to compute the reference motion (Ref).
The estimate (Est) results from the self-calibration using the acceleration
measurements of all available triads. For clarity, only the y-axis of the angular
velocity is depicted.

TABLE III
LOCAL MINIMA WITH COMPLETELY DIVERGED ESTIMATE.

Type 1 Type 2 Type 3

Triad positions Zero Infinity Zero
Angular motion Zero Zero Infinity

minima featuring partially trapped motion estimates. For this
type, a straight forward solution is to rerun the optimization
with the estimated poses as initial values. As they are close to
the true triad configuration it is very likely that the optimization
now correctly estimates the direction of the rotation.

B. Initial Values

The initial values have a strong impact on whether the
optimization converges to the global optimum. The linear
acceleration of the body can be initialized almost arbitrarily.
Because at least one triad has a fixed pose there is a unique
relation from its measurements to the linear acceleration. In our
experiments, we set the initial estimate of la1:n to zero. The
estimate quickly converges to the correct linear acceleration
within a few iterations (cf. Fig. 4). For the angular motion there
is only one reasonable choice for the initial values. If we do
not have any previous knowledge about the motion both ω1:n

and ω̇1:n must be set to zero to avoid to predetermine the
sign of the angular velocity. Otherwise, this could result in
the optimization to partially converge to the local minimum
of the first type or to diverge. Whereas we have clear rules
for the initial values of the motion, there is no certain set
of poses that safely serves as initial set for all motions and
triad configurations. In general, the best choice for the initial
poses is to set them as close possible to the real poses of the
triads. However, the exact poses are not available. Still, most
applications allow to make a reasonable guess of the poses,
e.g., based on the construction plan. For the following analysis,
we evaluate how much initial deviation from the true poses
the optimization tolerates, i.e., how good the initial guess has
to be, before it diverges.

For the evaluations we collected measurements imposing
4 different motions. The first one was a synthetic motion for
which we generated segments of sinusoidal angular velocity
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Fig. 7. Comparison of different motions regarding how the self-calibration
tolerates deviations of the initial poses from the true poses. The success
rate is evaluated for increasing position errors (a) and increasing angular
deviations (b).

separately on each axis. “Table 1” is the same motion we
used for the error evaluation of Section V, while “Table 2” is
another motion we recorded using the rotation table, where
again all three axes are used. At last, we captured a motion
we generated by hand, i.e., we waved the prototype around
trying to capture many different motions. All motions were
5.4 s long (675 samples) with the exception of “Table 2”, which
had a length of 20 s (2500 samples).

While the initial values of the motion were set to zero we
varied the initial error of the poses of all free triads at every
evaluation. On either the position or the orientation we added a
certain error level while the other one was set to its true value.
Concretely, we drew a random error vector from a uniform
distribution, scaled this vector to a certain length, and added
it to the true position of the triad. To generate an orientation
error we drew a random axis through the origin of the triad and
rotated the triad around this axis by an angle of a certain value.
We applied a new random error with the respective magnitude
for each one of the free triads. For each error level, we executed
the self-calibration 100 times with new initial values for every
trial and computed how often the self-calibration successfully
converged. Figure 7 shows the evaluated results. The relation
of successfully converged trails in relation to the total number
of trials is referred to as the success rate at a certain error
level.

The results of Fig. 7 must be considered in relation to the
geometry of the used accelerometer array (Tab. I). E.g., the
distance between two triads on satellite boards is only 16.91 cm.
Thus, starting at an error of 8.45 cm a triad can have an initial
position that is closer to the true position of another triad than

TABLE IV
COMPARISON BETWEEN CONVENTIONAL CALIBRATION AND

SELF-CALIBRATION.

Conventional
calibration

Self-calibration

Estimated parameters /
variables

Poses P
Sensor parameters C

Poses P
Motion bx

Required data /
parameters

Acceleration
measurements z
Motion bx

Acceleration
measurements z
Sensor parameters C

Assumes sensor triads No Yes

Requires consecutive
samples

No Yes

Body frame
defined by

Frame of reference
system

Pose of fixed triad

Convergence depends
on initial values

No Yes

Accuracy depends on
the accuracy of the
reference data

Yes No

to its own true position. However, the success rates shown in
Fig. 7 illustrate a general relation between the initial pose error
and the convergence of the self-calibration: The self-calibration
converges safely as long as the initial error of the poses is not
excessively large. The higher the initial deviation of the poses
the more likely it is that the optimization drops into the local
minima 2 or 3 of Tab. III.

Clearly, the tolerance of the self-calibration to initial pose er-
rors clearly depends on the motion from which the acceleration
data was sampled. Until now, we can only show, that the self-
calibration works with different motions, even with arbitrary
hand motion. However, the minimum requirement to a suitable
motion is an open issue. The conventional calibration treats
the state variables as independent. Therefore, it is straight
forward to derive the minimum requirement for a suitable
motion: The motion must contain samples from all dimensions
of the motion space, which in this case is spanned by the
linear and angular acceleration and the quadratic terms of the
angular velocity [12]. In contrast to this, the state variables are
no longer independent within the graph optimization of the
self-calibration as they are connected by the process model.
This may lead to relaxed minimum requirements. Our future
research will be dedicated to investigate these requirements
that guarantee for the convergence of the self-calibration.

VII. CONCLUSION

In this work, we are concerned with the calibration of
accelerometer arrays. Specifically, we want to reconstruct the
poses of the transducers, i.e., their positions and orientations.
Conventional calibration methods rely on reference data of the
imposed motion and corresponding acceleration measurements.
In contrast to this, we present a method to estimate the
accelerometer poses using only the measurements of the sensors
themselves. No reference data of the motion is required, which
is why we refer to it as self-calibration.

We achieve this by formulating the problem as a graph-
optimization that estimates the sensor poses and the motion
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jointly. To reduce the possible solutions to only one global
optimum we introduce constraints between the free variables.
Those are represented by error functions, which we derive from
the process and the observation model of the control system
formulation of accelerometer arrays. Furthermore, we reduce
the number of free parameters as we model the used triple-axis
sensors as sensor triads with known sensor parameters.

To summarize the properties of the derived method we
compare it to the conventional calibration. In addition, the most
important properties are collected in Table IV. The proposed
self-calibration estimates the sensor poses and the imposed
motion. In contrast to this, the conventional calibration does not
infer the motion but is able to determine the sensor parameters.
It is furthermore applicable to all types of accelerometer
arrays as the transducers are modeled as single-axis sensors
while the self-calibration relies on sensor triads. The self-
calibration requires a set of consecutive samples whereas the
ordering is not relevant for the conventional calibration. Both
approaches determine the poses relative to a defined frame.
The frame of the reference system defines the body frame for
the conventional calibration. The pose of the fixed triad defines
the body frame for the self-calibration. The convergence of
the self-calibration depends on the initial error of the sensor
poses as its nonlinear error function contains local minima. The
conventional calibration converges for all initial values. The
accuracy of the motion data has an influence on the estimation
quality of the conventional calibration. This is not the case for
the self-calibration as motion data is not required. Thus, our
method is especially valuable if there is no accurate reference
system available to capture the motion.

VIII. OUTLOOK

The convergence of the self-calibration depends on the
motion the accelerations were sampled from. In our future
research we want to identify the minimum requirement for
a motion to allow for a successful self-calibration. For a
conventional calibration, the motion can be analyzed for its
suitability as reference motion data is available. For self-
calibration, the goal is to achieve autonomy from any kind
of reference system that captures the imposed motion. As
such, it is not possible to directly verify the suitability of
the motion. The acceleration measurements themselves must
be analyzed. Thus, a further goal of our future research is
to derive a mathematical criterion that detects whether the
acceleration measurements originate from a suitable motion
and rates its quality. This would enable us to continuously
measure the accelerations of an arbitrary motion and start the
self-calibration once we detect a suitable acceleration set.
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APPENDIX A
LINEAR MODEL

In this section, we derive a sensor model for accelerometer
triads, i.e., a function that maps the acceleration in the sensor
frame to the accelerations observed by the transducer triad. We
want the sensitive axes to align with the frame of the sensor
thereby eliminating the redundancy of the orientation and the
sensitive axis. One common way to achieve this is to define
the sensors to be located at the same position, the sensitive
axes to be orthogonal with respect to each other and to be
aligned with the major axes of triad frame. If we join the three
sensitive axes to one sensitivity matrix S this results to

S =
[
s1 s2 s3

]
=

 s1x 0 0
0 s2y 0
0 0 s3z

 (20)

where the scalars s1x, s2y, and s3z are the sensitivities of
the accelerometers of the triad. However, with this approach
it is not possible to model the misalignment of the sensitive
axes as S is zero besides the diagonal. The model we propose
overcomes this limitation. To align with the sensor frame it
implements the following constraints on the sensitive axes.

1) The first sensitive axis s1 of the sensor triad aligns with
the x-axis of the triad frame.

2) The second axis s2 lies in the xy-plane of the triad frame.
With these constraints the orientation and the sensitive axes
are no longer redundant, however, without requiring them to
be orthogonal. Imposing the constraints on the structure of
sensitivity matrix S results to

S =
[
s1 s2 s3

]
=

 s1x s2x s3x
0 s2y s3y
0 0 s3z

 . (21)

As s1 is aligned with the x-axis of the triad, it has only
one degree of freedom, which is its length. Thus, the first
constraint is integrated in the same way as in (20) by defining
s1 = [ s1x 0 0 ]T . As the second sensitive axis s2 lies
in the xy-plane of the sensor frame it is not sensitive in the
z-direction of the triad. Hence, we describe it by means of a
minimal parameter set as s2 = [ s2x s2y 0 ]T . The third
sensitive axis s3 does not have a constraint on its orientation
within the triad. Therefore, we use a three dimensional vector
without defining certain entries to be zero.

To calculate the observed accelerations we first have to
compute the acceleration in the sensor frame sa. As we assume
the same position r for all three axes and furthermore describe
them in the same sensor frame, sa is the same for all three
axes. Hence, we can join the three scalar multiplications given
in (4) to one matrix multiplication, which results to

tz = th(bx, P, tC) =
[
s1 s2 s3

]T sa + oa, (22)

where tz holds the observed accelerations and oa the mea-
surement offsets of each sensitive axis. For the calculation
of tz we define the function th, which is dependent on the
motion bx, the pose P of the triad, and the collected sensor
parameters tC = {s1x, s2x, s2y, s3, oa}.

The model covers every possible configuration of the axes
as long as their positions are the same. However, if there is the
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demand, the model can be easily extended to support multiple
positions, e.g., by two vectors that describe the displacement of
the y- and z-axis from the position of the x-axis. However, this
results in sa being different for each axis. Thus, sa must be
computed individually, which raises the computational effort.
The packages of modern accelerometer triads are only a few
millimeters wide. E.g., the Bosch BMA180 sensor, which we
use, features a sensor housing with an outline of only 3x3x1 mm.
Of course, the sensitive axes of the triad are located at different
position within the housing. However, due to our experience,
we expect the error generated by one common position of the
axes to be small in comparison to the errors that arise from
other non-ideal effects that the model does not cover, e.g.,
non-linearity or temperature dependence.
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