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Abstract— Semantic scene segmentation from a bird’s-eye-
view (BEV) perspective plays a crucial role in facilitating
planning and decision-making for mobile robots. Although recent
vision-only methods have demonstrated notable advancements
in performance, they often struggle under adverse illumination
conditions such as rain or nighttime. While active sensors offer a
solution to this challenge, the prohibitively high cost of LiDARs
remains a limiting factor. Fusing camera data with automotive
radars poses a more inexpensive alternative but has received less
attention in prior research. In this work, we aim to advance this
promising avenue by introducing BEVCar, a novel approach
for joint BEV object and map segmentation. The core novelty
of our approach lies in first learning a point-based encoding of
raw radar data, which is then leveraged to efficiently initialize
the lifting of image features into the BEV space. We perform
extensive experiments on the nuScenes dataset and demonstrate
that BEVCar outperforms the current state of the art. Moreover,
we show that incorporating radar information significantly
enhances robustness in challenging environmental conditions and
improves segmentation performance for distant objects. To foster
future research, we provide the weather split of the nuScenes
dataset used in our experiments, along with our code and trained
models at http://bevcar.cs.uni-freiburg.de.

I. INTRODUCTION

Mobile robots such as autonomous vehicles heavily rely

on accurate and robust perception of their environment.

Therefore, robotic platforms are typically equipped with a

variety of sensors [1]–[3], each providing complementary

information. For instance, surround-view cameras offer dense

RGB images, while LiDAR or radar systems provide sparse

depth measurements. However, fusing data from these differ-

ent modalities poses a significant challenge due to inherently

different data structures. A common approach to address this

challenge is to employ a bird’s-eye-view (BEV) representation

as a shared reference frame [4]–[9].

While both LiDAR and radar data can be directly trans-

formed into BEV space, camera-based information requires

conversion from the image plane to a top-down view. Con-

sequently, various lifting strategies have been proposed [4],

[10], [11] resulting in tremendous performance improvements

of vision-only approaches, some of which have been extended

to incorporate LiDAR data [5], [7]. Despite the ability of

LiDARs to yield highly accurate 3D point clouds, their

suitability for large-scale deployment remains controversial
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Fig. 1. We propose a novel method for BEV Camera-radar fusion (BEVCar)
for map and object segmentation. We demonstrate that BEVCar yields more
accurate predictions under adverse weather conditions than camera-only
baselines while outperforming prior camera-radar works [6].

due to their substantially higher costs compared to automotive

radars. Nonetheless, camera-radar fusion has received consid-

erably less attention from the research community, often only

explored in addition to LiDAR input [8], [12]. In contrast,

radar has been criticized as being too sparse to be effectively

utilized in isolation [12].

In this work, we underscore the pivotal role of radar in

advancing robust robotic perception. Specifically, we focus

on BEV object and map segmentation, highlighting the

distinct advantage of radar in vision-impaired environmental

conditions. While previous research has explored camera-

radar fusion for BEV segmentation, some approaches neces-

sitate additional LiDAR supervision during training [9] or

rely on specific radar metadata [6], [8], which may not be

accessible across models from different manufacturers. To

address these limitations, we propose a novel method that

operates independently of such constraints. Our proposed

BEVCar architecture comprises two sensor-specific encoders

and two attention-based modules for image lifting and BEV

camera-radar fusion, respectively. Subsequently, we feed the

fused features through a multi-task head to generate both map

and object segmentation maps. We extensively evaluate our

approach on the nuScenes [2] dataset and demonstrate that it

achieves state-of-the-art performance for camera-radar fusion

while being robust in challenging illumination conditions.

The main contributions are as follows:

1) We introduce the novel BEVCar for BEV map and object

segmentation from camera and radar data.

2) We propose a new attention-based image lifting scheme

that exploits sparse radar points for query initialization.

http://bevcar.cs.uni-freiburg.de


3) We show that learning-based radar encoding outperforms

the usage of raw metadata.

4) We extensively compare BEVCar with previous baselines

under challenging environmental conditions and demon-

strate the advantage of utilizing radar measurements.

5) We make the used day/night/rain splits on nuScenes [2]

publicly available and release our code and trained mod-

els at http://bevcar.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we present an overview of vision-only

methods operating in the bird’s-eye-view (BEV) and review

previous approaches for radar-based perception.

Camera-Based BEV Perception: Current research in the field

of camera-based BEV perception aims to handle the view

discrepancy between the image space and the BEV space.

Existing approaches typically employ an encoder-decoder

architecture, incorporating a distinctive view transformation

module to address spatial variations between the image and

BEV planes. Early works leverage variational autoencoders

to decode features directly into a 2D top-view Cartesian

coordinate system [13]. In contrast, VPN [14] utilizes a

multilayer perceptron (MLP) to model dependencies across

spatial locations in the image and BEV feature maps, ensuring

global coverage in the view transformation. Roddick et al. [15]

improve upon these works by introducing a more explicit

geometry modeling. In particular, they propose a pyramid

occupancy network with a per-scale dense transformer module

to learn the mapping between a column in the image view

and a ray in the BEV map. PoBEV [16] extends this

concept by processing flat and vertical features separately with

distinct transformer modules resulting in further performance

improvement.

Recent methods can be categorized into lifting-based

and attention-based mechanisms. Lifting-based approaches

incorporate either an implicit depth distribution module [10]

to project features to a latent space or an explicit depth

estimation module to generate an intermediate 3D output, e.g.,

for the tasks of object detection [17] or scene completion [18].

Attention-based approaches formulate view transformation as

a sequence-to-sequence translation from the image space to

BEV. TIIM [19] applies inter-plane attention between a polar

ray in the BEV space and a vertical column in the image

combined with self-attention across each respective polar ray

with significant performance improvement with respect to

depth-based approaches such as LSS [10].

Recent advancements include full-surround view BEV

perception approaches, such as CVT [20] that uses a cross-

view transformer with learned positional embeddings to avoid

explicit geometric modeling and exploiting this BEV repre-

sentation for policy learning [21]. In contrast, BEVFormer [4]

and BEVSegFormer [22] model geometry explicitly using

camera calibration parameters and propose a deformable

attention-based [23] spatial cross-attention module for view

unprojection. BEVFormer [4] additionally employs a temporal

attention module for aggregating BEV maps over time using

vehicle ego-motion, which represents the state of the art in

3D object detection. Temporal aggregation is also employed

in BEVerse [11], which extends existing approaches with a

motion prediction head and demonstrates that the proposed

multi-task network outperforms single-task networks indicat-

ing a positive transfer among the tasks. The aforementioned

approaches are often combined with novel data augmentation

techniques [24], which address the view discrepancy between

the image and BEV by maintaining spatial consistency across

each intermediate embedding. Finally, SkyEye [25] proposes a

less-constrained method that learns semantic BEV maps from

labeled frontal view images by reconstructing semantic images

over time. Our work leverages recent progress in monocular

BEV perception and takes advantage of the radar modality

for a more geometrically feasible view projection. This is

achieved through a novel attention-based image lifting scheme

using radar queries. Additionally, we propose to exploit

existing image backbones that are pre-trained with contrastive

learning to further regularize the modality-specific branches.

Radar-Based Perception: Radars measure the distance to

a target based on the time difference between emitting a

radio wave and receiving its reflection. Published datasets

for robotic applications include different types of radars

such as spinning radars [1], automotive radars [2], or 4D

imaging radars [3]. In this work, we focus on automotive

radars. As radar poses a comparably inexpensive technology

to measure distance directly, it has been leveraged to improve

vision-based 3D object detection. While ClusterFusion [28]

merges radar and camera data only in the image space,

SparseFusion3D [29] performs sensor fusion both in the

image and BEV space.

In segmentation, initial works investigated semantic seg-

mentation of radar point clouds [30] without complementary

vision input. More recently, research towards multi-modal

BEV map and object segmentation has received growing atten-

tion. The authors of the pioneering work FISHING Net [12]

propose an MLP-based lifting strategy for camera features.

To combine these features with radar data, which are encoded

by a UNet-like network, FISHING Net performs class-based

priority pooling. In contrast, Simple-BEV [6] processes the

raw radar data in a rasterized BEV format and concatenates

these with image features that are lifted via bilinear sam-

pling. Although Simple-BEV targets object-agnostic vehicle

segmentation, the training relies on additional instance

information for object center and pixel offset prediction. Since

purely concatenation-based fusion might suffer from spatial

misalignment, CRN [9] employs deformable attention [23] to

aggregate image and radar features. However, the method uses

LSS [10] for lifting the image features and requires LiDAR

during training to supervise the depth distribution network.

Finally, BEVGuide [8] does not exploit further knowledge

other than available during deployment. Using homography-

based projection, features from the EfficientNet [31] image

backbone are transformed into a scale-ambiguous top-down

representation. The radar data is converted to BEV space and

then encoded by two convolutional layers. In contrast to prior

works, BEVGuide proposes a bottom-up lifting approach by

http://bevcar.cs.uni-freiburg.de
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Fig. 2. Overview of our proposed BEVCar approach for camera-radar fusion for BEV map and object segmentation. We utilize a frozen DINOv2 [26] with a
learnable adapter to encode the surround-view images. Inspired by LiDAR-based perception [27], we employ a learnable radar encoding instead of processing
the raw metadata. We then lift the image features to the BEV space via deformable attention including the novel radar-driven query initialization scheme.
Finally, we fuse the lifted image representation with the learned radar features in an attention-based manner and perform multi-class BEV segmentation for
both vehicles and the map categories.

querying the sensor features from a unified BEV space to

obtain sensor-specific embeddings that are then concatenated.

In this work, we further advance these ideas and utilize

a more refined radar encoder that is inspired by LiDAR

processing [27]. Moreover, we propose a novel lifting scheme

that explicitly leverages radar points as a strong prior.

III. TECHNICAL APPROACH

In this section, we present our proposed BEVCar approach

for BEV object and map segmentation from surround-view

cameras and automotive radar. As illustrated in Fig. 2,

BEVCar comprises two sensor-specific encoders for image

and radar data, respectively. We lift the image features to the

BEV space via deformable attention, where we utilize radar

data to initialize the queries. Following an intermediate fusion

strategy, we then combine the lifted image representation with

the learned radar features using a cross-attention module.

Finally, we reduce the spatial resolution in a bottleneck

operation and perform BEV segmentation for both vehicles

and the map with a single multi-class head. We provide

further details of each step in the following subsections.

A. Sensor Data Encoding

As depicted in Fig. 2, we process the raw data of both

modalities in two separate encoders.

Camera: For encoding the camera data, we employ a frozen

DINOv2 ViT-B/14 [26], whose image representation captures

more semantic information than ResNet-based backbones [32].

Following the common approach [33], [34], we utilize

a ViT adapter [35] with learnable weights. To cover the

surround-view vision, we concatenate the images from N

cameras at each timestamp resulting in an input dimension of

N × H × W , where H and W denote the image height

and width, respectively. For downstream processing, the

ViT adapter outputs multi-scale feature maps with F channels

that correspond to scales 1⁄4, 1⁄8, 1⁄16, and 1⁄32 of the image size.

Radar: The radar data is represented by a point cloud

with various features available for each point. Unlike prior

works [6], [8], we emphasize that relying on the built-in

post-processing from a specific radar model makes a method

less versatile. Hence, similar to SparseFusion3D [29], we

utilize only D basic characteristics of a radar point: the 3D

position (x, y, z), uncompensated velocities (vx, vy), and the

radar cross-section RCS, which captures the detectability of

a surface. Instead of utilizing the raw data [6], we propose

to learn a radar representation inspired by encoding LiDAR

point clouds [27]. First, we group the radar points based

on their spatial position in a voxel grid of size X × Y × Z

that corresponds to the resolution of the BEV space and

a discretization in height. To restrict memory requirements

and alleviate bias towards high-density voxels, we employ

random sampling in those voxels that contain more than P

radar points. Each point including its metadata is then fed

through the point feature encoding as illustrated in Fig. 3,

where FCN refers to fully connected layers. Note that the

point feature encoding does not accumulate information from

multiple voxels. Subsequently, we employ max pooling for

each voxel to obtain a single feature vector of size F . Finally,

we feed the voxel features through a CNN-based voxel space

encoder to compress the features along the height dimension,

resulting in the overall radar BEV encoding frad .

B. Image Feature Lifting

We follow a learning-based approach to lift the encoded

vision features from the 2D image plane to the BEV

space. Inspired by BEVFormer [4], we utilize deformable

attention [23] but propose a novel query initialization scheme

that exploits sparse radar points.

Query Initialization: The core motivation of our proposed

query initialization scheme is to leverage 3D information

from radar measurements for an initial lifting step of the 2D

image features to the BEV space. As visualized in Fig. 4,

we first create a voxel space of size X × Y × Z that is
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Fig. 4. Our data-driven query initialization scheme leverages 3D radar
information to guide lifting the 2D image features to the BEV space. While
the image BEV features are only obtained from uniform assignment along
camera rays, the final QL

img considers depth from radar via deformable

attention.

defined by the BEV resolution X × Y , an additional height

discretization Z, and centered at the forward-facing camera.

Second, we assign each voxel to one or two cameras based on

their fields of view. Third, we push the vision features from

the 2D image plane to the 3D voxel space via ray projection,

i.e., each voxel within a frustum along a ray contains the same

image features. In particular, we utilize the image features

from scale 1⁄8. If the fields of view of two cameras overlap,

we average the features in the affected voxels. Subsequently,

we employ a 1× 1 convolutional layer to remove the height

component resulting in an X × Y voxel grid with F feature

channels. Note that at this stage, the image features are still

uniformly distributed without a notion of depth. Therefore,

we use deformable attention [23] guided by the sparse radar

point cloud to filter the feature map resulting in the initialized

query QL
img of size F ×X × Y .

Lifting: In the next step, we combine our data-driven

initial queries QL
img with a learnable position embed-

ding QL
pos to achieve permutation invariance and learnable

BEV queries QL
bev [4], [6]:

QL = QL
img +QL

pos +QL
bev (1)

Employing deformable attention [23] again, we construct a

3D voxel space of size X×Y ×Z to pull the vision encoding

from the images. In contrast to the query initialization, we

now sample offsets on the image planes instead of the BEV

space. After six cascaded transformer blocks, we obtain the

final feature map fimg,bev that has the same dimension as

the encoded radar data, i.e., F ×X × Y .

C. Sensor Fusion

For fusing the lifted image features with the encoded

radar data, we follow a scheme comparable to the lifting

step. Inspired by TransFusion [7], which fuses camera and

LiDAR for 3D object detection, we query image features in

the surroundings of the radar points and extract the values

via deformable attention [23]. Similar to Eq. (1), we form

the initial query by summing the encoded radar data frad ,

a learnable position encoding QF
pos , and learnable BEV

queries QF
bev :

QF = frad +QF
pos +QF

bev (2)

Importantly, the lifted image features only serve as keys and

values during the cross-attention step. In total, we utilize

a cascade of six transformer blocks. Finally, to encode the

features of both modalities in a joint manner, we feed the

output of the last block through a ResNet-18 [32] bottleneck,

referred to as BEV encoder in Fig. 2.

D. Segmentation Head

We employ a single head for multi-class BEV semantic

segmentation. In detail, we utilize two convolutional layers

with ReLU activations followed by a final 1×1 convolutional

layer to output one object class and M map classes. Given

the BEV space resolution, the segmentation head produces

an output of size (M + 1)×X × Y . Thus, a pixel can not

only capture both a vehicle and a map class prediction but

can also be assigned to multiple map categories.

Object Segmentation: For segmenting objects, we consider

all vehicle-like entities, e.g., passenger cars and trucks.

Unlike prior works [6], we emphasize that object-agnostic

segmentation should not rely on instance-aware information

during training time as this renders the application of a method

less flexible due to requiring additional annotations. Therefore,

we supervise the object channel of the segmentation head

solely via the binary cross-entropy loss:

LBCE =
−1

N

N
∑

i=1

log(pi,t) , (3)

where pi,t is defined per pixel i ∈ [1, N ] as:

pi,t =

{

pi if yi = 1

1− pi otherwise.
(4)

The binary ground truth label yi ∈ {0, 1} specifies whether

the pixel i belongs to the vehicle class. The corresponding

predicted probability for yi = 1 is denoted by pi.

Map Segmentation: While most previous methods [4], [8], [9]

predict only the road and occasionally also lane dividers, we

include further map classes such as pedestrian crossings and

walkways. For an exhaustive list, please refer to Sec. IV-A. To

supervise the map channels of the segmentation head during

training, we employ a multi-class variant of the α-balanced

focal loss [36]:

LFOC =

C
∑

c=1

−1

N

N
∑

i=1

αi,t (1− pi,t)
γ
log(pi,t) , (5)



TABLE I

BASELINE COMPARISON ON THE NUSCENES DATASET

Method Modalities Image Backbone Vehicle Driv. Area Lane Map mIoU

CVT [20] C EfficientNet 36.0 74.3 – – 55.2
BEVFormer-S [4] C ResNet-101 43.2 80.7 21.3 – 62.0
Simple-BEV [6] C ResNet-101 47.4 – – – –

Simple-BEV [6] C+R ResNet-101 55.7 – – – –
Simple-BEV++ C+R ResNet-101 52.7 77.7 35.8 46.1 65.2
Simple-BEV++ C+R ViT-B/14 54.5 81.2 40.4 50.4 67.9
BEVGuide [8] C+R EfficientNet 59.2 76.7 44.2 – 68.0
CRN [9] C+R (+L) ResNet-50 58.8 82.1 – – 70.5

BEVCar (camera) C ViT-B/14 48.8 81.1 40.6 50.5 65.0
BEVCar (ResNet) C+R ResNet-101 57.3 81.8 43.8 53.0 69.6
BEVCar (ours) C+R ViT-B/14 58.4 83.3 45.3 54.3 70.9

We compare BEVCar with both camera-only (C) and camera-radar (C+R) BEV segmentation methods on the nuScenes [2] validation split.
Simple-BEV++ is a customized Simple-BEV [6] without instance-aware training but with the same radar metadata and map segmentation
head as our method. Note that CRN [9] uses LiDAR during training. The “map” metric averages the IoU of all nuScenes map classes.
Previous works report predictions for fewer classes, indicated by “–”. To compare BEVCar with these methods, we provide the mean of
“vehicle” and “drivable area” classes as “mIoU”. Bold and underlined values denote the best and second-best metrics per column, respectively.

where c ∈ [1, C] refers to the semantic classes and γ

is a focusing parameter to differentiate between easy/hard

examples. Additionally, αi,t is defined analogously to Eq. (4):

αi,t =

{

α if yi = 1

1− α otherwise,
(6)

with tunable parameter α to address the foreground-

background imbalance.

IV. EXPERIMENTAL EVALUATION

In this section, we outline the experimental setup and

compare our BEVCar approach to various baselines. We

further analyze the impact of the components of our method

and demonstrate the advantage of radar measurements over

vision-only methods under adverse conditions.

A. Experimental Settings

We introduce the utilized dataset and metrics for evaluation

and provide further implementation details.

Dataset and Metrics: We evaluate our BEVCar approach

on the nuScenes dataset [2] for automated urban driving in

Singapore and Boston, MA, being the only publicly available

dataset that provides the required sensor data and ground truth

map annotations. The nuScenes dataset comprises surround-

view vision from six RGB cameras and five automotive

radars and provides BEV map information. For training

and evaluation, we use the official training/validation split,

containing 28,130 and 6,019 samples, respectively. We further

categorize the validation scenes into day (4,449 samples), rain

(968 samples), and night (602 samples) scenes and include

this split in our code release. For object segmentation, we

combine all subclasses of the “vehicle” category. For map

segmentation, we consider all available classes, i.e., “drivable

area”, “carpark area”, “pedestrian crossing”, “walkway”, “stop

line”, “road divider”, and “lane divider”. We report individual

intersection over union (IoU) metrics [37] for those classes

that have been addressed by prior works and refer to the

mean IoU of all map classes by “map”. To compare BEVCar

with previous baselines that predict fewer classes, we report

the average of “vehicle” and “drivable area” as “mIoU”.

Implementation Details: Similar to related work [6], [8], [9],

our BEV grid covers an area of 100m×100m centered at

the ego vehicle and is discretized at a resolution of 200 ×
200 cells. We further construct an up/down span from the

ground to 10m in height and discretize it into eight bins. The

resulting 3D tensor is oriented with respect to the forward-

facing camera serving as the reference coordinate system.

For both training and inference, we resize the images of the

six cameras to 448 × 896 pixels adapting the results of an

analysis from Harley et al. [6] to the requirements of the

employed ViT adapter. In accordance with the released code

of the same study, we aggregate five radar sweeps as input.

During training, we set the parameters of the focal loss (see

Eq. (5)) to α = 0.25 and γ = 3.

B. Quantitative Results

We compare BEVCar to various baseline works in Tab. I,

including the camera-radar fusion methods Simple-BEV [6],

BEVGuide [8], and CRN [9], which leverages depth from

LiDAR during training. At the time of submission, only the

authors of Simple-BEV released their code. We utilize this

for an extended version Simple-BEV++ by adding the BEV

map segmentation task, removing additional radar metadata

(see Sec. III-A), and disregarding the instance-aware losses

(see Sec. III-D). To demonstrate the advantage of radar

measurements, we further compare BEVCar to the vision-

only baselines CVT [20], BEVFormer [4], and variations of

both Simple-BEV [6] and our proposed BEVCar.

Concerning the latter, our camera-only version of

BEVCar yields a small increase of performance over the

Simple-BEV (C) baseline for the “vehicle” class (+1.4 IoU)

and over the static version of BEVFormer for the “driv-

able area” class (+0.4 IoU). We primarily attribute the

improvement within the vision-only regime to the semantically

rich image representation of the DINOv2 [26] backbone.

Integrating radar data via our proposed methodology results

in substantially enhanced vehicle predictions (+9.6 IoU) and



TABLE II

COMPONENTS ANALYSIS

Method Vehicle Map

Radar encoding

No radar encoding [6] 57.8 53.4
BEVCar (ours) 58.4 54.3

(+0.6) (+0.9)

Lifting and fusion

Parameter-free [6] 56.6 50.1
BEVCar (ours) 58.4 54.3

(+1.8) (+4.2)

We demonstrate the efficacy of our employed radar
encoding and our attention-based lifting and fusion
scheme compared to simpler approaches. The “map”
metric denotes the mean IoU of all map classes.

noteworthy improvements in map segmentation (+3.8 mIoU).

We thus infer that utilizing radar for robotic perception

promises significantly better performance and further analyze

this claim in Sec. IV-C under various aspects.

For the vehicle segmentation task, BEVCar outperforms

Simple-BEV (+2.7 IoU) and achieves comparable perfor-

mance to BEVGuide (−0.8 IoU) and CRN (−0.4 IoU).

Concerning CRN, it is important to consider that this

method relies on LiDAR during the training phase to learn

metric depth. For map segmentation, BEVCar improves

upon all baselines while providing information for more

semantic classes. With respect to the combined evaluation

for both tasks, BEVCar achieves the highest performance

across the board with +2.9 mIoU versus BEVGuide and

+0.4 mIoU versus CRN. We further compare BEVCar to the

aforementioned Simple-BEV++. To eliminate the impact of

different backbones, we integrate both ResNet-101 [32] and

DINOv2 ViT-B/14 [26] in either method. Note that the multi-

task training of Simple-BEV++ leads to reduced performance

for vehicle segmentation over the Simple-BEV baseline.

Although we observe that the DINOv2 backbone also im-

proves the results of Simple-BEV++, our BEVCar approach

still outperforms Simple-BEV++ with both image back-

bones ResNet-101 (+4.4 mIoU) and ViT-B/14 (+3.0 mIoU),

demonstrating the novelty of our method.

In Fig. 5, we underline this observation by visualizing

the improvements and errors of BEVCar compared to

Simple-BEV++. We further show the ground truth BEV object

and map segmentation and provide visual predictions from

the camera-only baseline, Simple-BEV++, and our BEVCar

approach. For a detailed analysis of the different weather and

illumination conditions, please refer to the next section.

C. Ablations and Analysis

To further analyze our proposed BEVCar approach, we pro-

vide ablations for its components and evaluate its performance

under challenging conditions.

Components Analysis: We evaluate the impact of two key

components of BEVCar, i.e., the proposed radar point

encoding and the new radar-driven image feature lifting,

and report the improvements over baselines inspired by

Simple-BEV [6] in Tab. II. First, compared to utilizing the raw

TABLE III

VEHICLE PERCEPTION RANGE

Range Intervals
Method Modalities 0-50m 0-20m 20-35m 35-50m

BEVCar (camera) C 48.8 68.7 45.8 29.1
Simple-BEV [6] C+R 55.5 70.1 53.6 39.1
Simple-BEV++ C+R 54.5 71.4 52.4 36.6
BEVCar (ours) C+R 58.4 74.0 56.5 41.0

The modalities denote camera (C) and radar (R) input. Simple-BEV++
and BEVCar use a ViT-B/14 image backbone. For Simple-BEV, we utilize
the model trained by the authors.

TABLE IV

WEATHER AND ILLUMINATION ANALYSIS

Day Rain Night
Method Vehicle Map Vehicle Map Vehicle Map

BEVCar (camera) 48.7 53.3 49.9 45.1 42.1 39.2
Simple-BEV [6] 55.5 – 55.8 – 54.0 –
Simple-BEV++ 54.4 53.1 54.8 45.6 52.4 37.8
BEVCar (ours) 58.3 57.3 59.1 48.8 57.4 42.4

“Map” denotes the mean IoU of all map classes. Simple-BEV++ and BEVCar
use a ViT-B/14 image backbone. For Simple-BEV, we utilize the model
trained by the authors, which does not perform map segmentation.

radar data without a learning-based encoding, our approach

yields +0.6 IoU and +0.9 mIoU for the vehicle and map

segmentation tasks, respectively. Second, while the baseline

uses a parameter-free lifting of the image features to the BEV

space, our attention-based scheme leverages radar information

already during the lifting stage. In comparison, this results

in an increase of +1.8 IoU for vehicle segmentation and

+4.2 mIoU for map segmentation.

Distance-Based Object Segmentation: In Tab. III, we analyze

the vehicle segmentation quality of BEVCar, its camera-

only variant, Simple-BEV [6], and Simple-BEV++ for three

different range intervals including 0-20m, 20-35m, and

35-50m. Note that the overall performance of Simple-BEV

is slightly lower than reported in Tab. I due to rerunning the

authors’ code to enable the range-based evaluation. Generally,

we observe that the results of the camera-only baseline

significantly differ between the evaluation criteria. While the

IoU in the 0-20m range is comparable to Simple-BEV, for the

35-50m range it achieves only half of the initial performance.

Although the general trend is similar among all camera-

radar methods, the effect is the least severe for BEVCar.

Our experiment demonstrates the advantage of utilizing radar

measurements to maintain object segmentation performance

also at larger distances.

Robustness to Weather and Illumination: Besides providing

complementary information, i.e., dense RGB data versus

sparse distance and velocity measurements, a core difference

between cameras and radars is the source of energy utilized by

the respective sensor. While passive sensors such as cameras

rely on an external source like the sun, active sensors such as

radars provide their own energy. Therefore, passive sensors

suffer from challenging illumination conditions, e.g., faced

during rain or at night. We thus emphasize that evaluating

automotive perception systems specifically in these situations

is imperative to understand their performance fully.
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Fig. 5. Qualitative results of our proposed BEVCar, the camera-only baseline, and Simple-BEV++ (ViT-B/14), for which we also show the improvement/error
map. Pixels misclassified by Simple-BEV++ and correctly predicted by BEVCar are shown in green, pixels misclassified by BEVCar and correctly predicted
by Simple-BEV++ in blue, and pixels misclassified by both models in red.

TABLE V

RUNTIME ANALYSIS

Image Deformable Runtime
Method Backbone Attention ms FPS

Simple-BEV [6] ResNet-101 18 54.9
BEVCar ResNet-101 ✓ 137 7.3

BEVCar (camera) ViT-B/14 ✓ 352 2.8
Simple-BEV++ ViT-B/14 ✓ 277 3.6
BEVCar (ours) ViT-B/14 ✓ 382 2.6

Runtime of a forward pass measured on an Nvidia A100 GPU.

In Tab. IV, Fig. 1, and Fig. 5, we separate the previously

reported metrics for BEVCar and the same baselines as in

the study on the perception range into day, rain, and night.

We observe that the vehicle segmentation IoU of the camera-

only baseline is subject to substantial degradation during the

night. In contrast, all camera-radar methods can maintain

their performance, whereas BEVCar achieves the highest

performance. On the other hand, the map segmentation mIoU

decreases during rain and even further at night, which holds

for all investigated methods. The results indicate that radar

is most beneficial for object detection and less relevant for

BEV mapping, which is expected as depth information is less

important for learning a mapping of the planar map classes

from the 2D image space to the BEV space than mapping

objects with defined height, width, and depth parameters.

Runtime Analysis: In Tab. V, we report the runtime of our

proposed BEVCar and multiple baseline methods, measured

on an Nvidia A100 GPU and averaged over the validation

split. In contrast to Harley et al. [6], we only consider the

forward pass without data loading and loss calculation. Most

notable is the slow-down caused by deformable attention [23]

employed in our proposed lifting module as well as in the

ViT adapter. Importantly, in comparison to the vision-only

baseline, including the radar information does not result in a

significantly higher runtime. Note that the frequency of the

synchronized keyframes in the nuScenes [2] dataset is 2Hz.

V. CONCLUSION

In this work, we introduced BEVCar addressing camera-

radar fusion for BEV map and object segmentation. BEVCar

comprises a new learning-based radar point encoding and

leverages radar information early during the lifting step of



the vision features from the image plane to the BEV space.

We demonstrated that BEVCar outperforms previous camera-

radar approaches when jointly considering map and object

segmentation. We extensively evaluated the performance in

challenging weather and illumination conditions and analyzed

the robustness for various perception ranges. Our results

clearly demonstrate the benefit of utilizing automotive radar in

addition to surround-view vision. To facilitate further research

in this direction, we include our day/rain/night split of the

nuScenes [2] validation data in the public release of our code.

In the future, we will address robustness in case of partial

or complete sensor failure, e.g., by leveraging cross-modality

distillation during training of the network.
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