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Abstract— Stroke and neurodegenerative diseases, among a
range of other neurologic disorders, can cause chronic paralysis.
Patients suffering from paralysis may remain unable to achieve
even basic everyday tasks such as liquid intake. Currently, there
is a great interest in developing robotic assistants controlled
via brain-machine interfaces (BMIs) to restore the ability
to perform such tasks. This paper describes an autonomous
robotic assistant for liquid intake. The components of the system
include autonomous online detection both of the cup to be
grasped and of the mouth of the user. It plans motions of
the robot arm under the constraints that the cup stays upright
while moving towards the mouth and that the cup stays in direct
contact with the user’s mouth while the robot tilts it during
the drinking phase. To achieve this, our system also includes
a technique for online estimation of the location of the user’s
mouth even under partial occlusions by the cup or robot arm.
We tested our system in a real environment and in a shared-
control setting using frequency-specific modulations recorded
by electroencephalography (EEG) from the brain of the user.
Our experiments demonstrate that our BMI-controlled robotic
system enables a reliable liquid intake. We believe that our
approach can easily be extended to other useful tasks including
food intake and object manipulation.

I. INTRODUCTION

Robotic assistance for disabled users is an application
scenario with a great potential. Several previous systems
demonstrate that patients may carry out useful tasks without
the help of a caregiver using a robotic assistant. Depending
on the severity of the user’s disability, different modes of in-
teraction and control of the robot can be considered, such as
via a joystick, via head- or eye-tracking, or via brain-machine
interfaces (BMIs) [7, 4, 3]. While some BMI approaches aim
at a high-dimensional motor control of robotic devices, where
all aspects of the movement are directly decoded from brain
activity, other so-called shared control approaches delegate a
part of the control task to the robotic device. In this way, the
device might for example autonomously carry out the details
of the trajectory control involved to reach a target specified
by the user.

However, the requirements to be met by autonomous
assistive devices in such scenarios are often demanding. For
example, in shared control of liquid intake, the operation
of tilting the cup must be well-planned to deliver neither
too much nor too little liquid to the user. Furthermore, it
is necessary that a liquid-filled cup is brought to the mouth
and kept in direct contact with the mouth of the user with
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Fig. 1. Our BMI-controlled robot providing a user with a drink. The
BMI consists of three components, (i) the EEG recording system, (ii) the
RGB-D camera and (iii) the robotic manipulator. The EEG is used to detect
go-commands from the user. The RGB-D camera detects the mouth of the
user as well as the drinking cup. The robotic manipulator grasps the cup,
serves the drink to the user and places the cup back to the table.

high precision. Visual tracking of the mouth for this purpose
must also solve the problem that the mouth typically will be
occluded during the task execution either by the cup or by
the robot arm.

To address these problems, we developed a system in-
tegrating all relevant components for enabling reliable task
execution in the context of liquid intake using an assistive
(mobile) manipulator that performs object detection, motion
planning, and motion execution autonomously (see Fig. 1).
We used and extended existing technology for object detec-
tion and motion planning, in particular to reliably detect the
mouth of the user even in case of occlusions. Further we
evaluated the compatibility of the robotic assistant with an
EEG-based BMI setup using frequency-specific modulation
of brain activity translated into control signals derived from
dry-electrode EEG recordings [10].

II. RELATED WORK

Recently, several systems to provide assistance to dis-
abled users have been described. Chen et al. [3] developed
an assistive assistive mobile manipulation robot in close
collaboration with a patient suffering from tetraplegia and
different scenarios for assistance were investigated. These
included collecting items from cupboards, distributing hal-
loween candy to children, or scratching and shaving the
user. Control over these actions was shared between the user
and the robot. The user selected high-level control signals
via head tracking and clicking a button, for instance, by
selecting the target region from an RGB-D video stream. The
robot then analyzed the video data, planed the appropriate
motion to approach the target and adjusted the contact force



Fig. 2. System Overview

required by the task. Food or liquid intake, however, were
not investigated. Devices for feeding elderly and disabled
persons have been presented that also rely on interaction
with the user via button-click, examples include [20, 18,
17]. They, however, did not carry out tasks autonomously,
but entirely relied on the user. Similarly, a vision-based
manipulator for liquid intake was described by Higa et al. [6].
They determined the 3-D coordinates of a plastic bottle using
a monocular camera and template matching, control required
users to manipulate a joystick.

Controlling robotic arms with neural signals was addressed
by Hochberg et al. [7]. In this work, patients were implanted
with a 96-channel micro-electrode array in the motor cortex,
and single neuron activity was extracted to control the
prosthetic arm. Collinger et al. [4] present a study that goes
into a similar direction. In both cases, training time for
the BMI required sessions of several weeks to learn direct
motor control with multiple degrees of freedom. In most
of the application examples reported in these studies, the
user directly controlled the complete trajectory of the arm,
which, on the one hand, gives the user control over the exact
execution of the task. On the other hand, the performance of
these approaches is still limited and below what would be
desirable for practical application.

To increase performance, we propose a shared control
approach, in which the robot autonomously takes over at
least a part of the planning of the trajectory, of detecting the
cup and mouth, etc.

Shared autonomy in the context of BMI was previously
realized in different application scenarios, for instance, to
steer wheelchairs that take care of avoiding obstacles [14, 9]
or in tele-presence robots [2]. A concept of high-level BMI
control similar to our system was presented by Lampe, et al.
[11, 10], without, however, addressing the specific challenges
of food or liquid intake.

III. SYSTEM OVERVIEW

Our system consists of several components. The hardware
is a KUKA omniRob platform that is equipped with a DLR
light-weight arm with seven degrees of freedom. For grasping
objects, we attached a Schunk three-finger hand to the robot
arm. To observe the entire scene and to detect the cup,
the user’s mouth, and potential obstacles we use a Kinect
RGB-D sensor. Finally, to communicate with the user we
employ a BMI that extracts control signals from EEG signals.
Fig. 2 illustrates the different components as well as their
interaction.

In the following, we describe the parts of the system that
are required for the autonomous execution of the task. This
includes the detection of the cup and the user’s mouth as
well as the planning of the motions of the robot to the target
locations. Furthermore, we demonstrate the compatibility of
this system with a BMI control based on motor-imagery tasks
that allows the user to send control signals to the robot.

IV. OBJECT DETECTION

The goal of our robot is to autonomously deliver a drink
to the mouth of the user. Thus, the robot needs to identify
the 3D positions of the cup and the mouth of the user
in order to plan appropriate motions. As mentioned above,
we employ an RGB-D Kinect sensor, which is placed in
a way that it is able to observe the required workspace of
the robot. As the Kinect sensor measures the positions of
the cup and the mouth of the user in its local coordinate
frame, we have to determine the transformation between
the robot and the camera coordinate system. We calculate
this transformation in a calibration step. To this end, we
observe the robot end-effector with the camera from four
different positions and orientations. We identify the tool-
center point in the camera images using an optical marker.
In our setting, four observations are sufficient to determine
the full 6d transformation, rotation and translation between
the two coordinate frames.

A. Cup Detection

In our current system, we consider drinks that are provided
in colorful plastic cups, which is taught to the system
beforehand and which can efficiently be detected using a
color-based classifier. To achieve this, we first transform
the RGB-image of the Kinect camera to the HSV format.
Second, we dilate and erode it based on the color shade of the
used cup to obtain a segmentation of the image. Afterwards,
we compute the center of the cup from the pixels belonging
to the cup. Finally, we compute the 3D coordinate of the
center point of the cup using the known offset between depth
and RGB pixels. In the future, we plan to let the user select
the corresponding cup from a set of cups that are present
in the workspace. This can, for instance, be realized by
providing another level of user interaction via the BMI.

B. Mouth Detection

The detection of the 3D position of the mouth of the
user is achieved using an extension of the Viola-Jones face-
detection algorithm [21, 22]. In our system, we transform the
RGB image to a grayscale image and detect the face of the



user using a haarcascade classifier provided by OpenCV [1].
In order to determine the position of the mouth within the
detected face, we rely on the golden ratio of human faces. In
practical experiments we found out that this method yields
better results than directly tracking the mouth of the user
using a specific haarcascade classifier. According to the
golden ratio, we assume the position of the mouth to be
at 7/9 of the height and at 50% of the width of a human
face. However, when the user moves during the execution of
the drinking task, the position of the mouth might change
as well. This requires reliable online tracking of the mouth
in order to be able to react to changes and to adapt the
path of the robot accordingly. When the robot approaches
the user, however, its end-effector might occlude the mouth
which makes tracking more challenging. To deal with such
occlusions of the mouth and to accurately determine the
3D position of the user’s mouth even under occlusions over
longer periods of time, we perform the following approach.
We consider three specific points in the user’s face, which
can typically be observed even when the robot’s end-effector
approaches the user: the first one, fh, is on the forehead,
while the second and the third, lc and rc, are on the left and
right cheek, respectively. A plane P is described by these
three points with s and t ∈ R:

P = fh+ s(fh− rc) + t(fh− lc) (1)

As faces of different users of our system might exhibit
different anatomical features, the plane constructed in this
way will not necessarily coincide with the mouth of the user,
but needs to be shifted or rotated accordingly (see Fig. 4).
This can be described by a user-specific parameter u:

P (u) = ufh+ s(fh− rc) + t(fh− lc), (2)

which minimizes the difference between the actually mea-
sured z-value of the mouth zmeas (obtained from one cali-
bration image in which the mouth is not occluded) and the
expected z-value computed from the plane equation zexp(u):

min
u

D(u) = zmeas − zexp(u) (3)

Since the x− and y-coordinates of the mouth (xm, ym)
result from the golden ratio of the face, we obtain the z-
value zexp(u) of the mouth from the intersection of the line
from the camera center to the mouth and the plane. The line
from the camera center to the mouth is given by

L(u) = wn(u), (4)

with w ∈ R and n(u) = (xm, ym, zexp(u)) and finally

zexp(u) = P (u)L(u). (5)

This calibration procedure is easy to implement and only
requires one RGB-D image of an un-occluded mouth to
determine the user-specific parameter u. Given the plane and
the (x, y)-position of the mouth, we are able to accurately
determine the 3D position of the user’s mouth even under
occlusions.

Fig. 3. Typical situation in which the mouth of the user is occluded by
the cup. Furthermore, the EEG cap occludes parts of the user’s face. Here,
only a fraction of around 50% of the face is visible by the RGB-D-camera.
With our approach, by considering distinct points in the face (blue points),
we are still able to determine the depth value of the mouth (green point)
with high accuracy.

Kinect

fh

ufh lc

Fig. 4. Identifying the depth of the user’s mouth: a plane described by
three distinct points fh, lc and rc is shifted according to a user specific
parameter u to coincide with the mouth. By computing the intersection of
the line through the mouth position in the camera frame with the green
plane we obtain the depth value for the mouth even under occlusions.

V. MOTION PLANNING

Planning motions for a 7-DOF arm is a complex problem.
We use rapidly exploring random trees (RRTs) [8] for this
task. The key idea of RRTs is to iteratively probe and
explore the configuration space given a starting and goal
configuration of the robot. RRTs are designed to handle
nonholonomic constraints and are well suited for systems
with many degrees of freedom. We use the implementation
of MoveIt! [19], which provides an integration with ROS and
the robot.

Delivering a drink to the user requires the robot to consider
different constraints: when carrying the drink, the cup should
stay upright; when the user wants to drink, the rim of the cup
should be in contact with the user’s mouth while the cup is
turned. Therefore, we divide the task of providing the drink
into different sub-tasks: after grasping the cup, the robot first
moves to a position 20 cm in front of the user’s mouth in
order to avoid collisions with the user. Then it approaches the
mouth and turns the cup. To enforce constraints such as an
orientation of the end-effector that keeps the cup upright, we
sample waypoints along linear trajectories between starting
and goal configuration. Waypoints are represented by the
positions and orientations of the end-effector in the work
space and are used as an input for the RRT planner. The
planner connects the waypoints along the trajectory with
valid movements and computes the corresponding robot
configurations using inverse kinematics. With a distance of



Fig. 5. Mouth detection under occlusions: We artificially introduced
black rectangles around the mouth. The three leftmost images illustrate the
positions of the detected mouths under occlusions—our approach is able to
deal with closed eyes as well as glasses. The image on the right, in contrast,
shows a situation in which no face, and hence, no mouth could be detected.

2 cm between individual waypoints, we ensure that the end-
effector moves along the desired trajectory.

When turning the cup, we have to ensure that the rim of
the cup is in contact with the user. Since the rim of the cup
has a constant offset from the end-effector, the corresponding
trajectory of the end-effector is lying on a circular orbit
around this turning point. We obtain waypoints on this orbit
by triangulating the described offset of the turning point.
Densely sampled waypoints along this trajectory ensure a
smooth tilting movement.

VI. BRAIN-MACHINE INTERFACE

Our system is designed for the specific needs of paralyzed
patients who are not able to control joysticks or other input
devices with their muscles, but are still able to drink. As
voice commands cannot be used while drinking, we rely on
decoding brain activity as a means of communication with
the robot. To this end, EEG recordings are used successfully
to detect changes in different EEG signal components that
occur when a user imagines, for instance, different kinds of
movements. These responses can be trained to increase over
time and lead to more reliable detection results.

A. User interaction

In a minimal version of our application, in principle it
would be sufficient for the user to send one start command.
Subsequently, the robot could autonomously execute the
entire task, which consists of reaching for and grasping the
cup, bringing it to the user’s mouth, tilting the cup to let the
user drink, and returning the cup to the table. In order to
provide the user with a larger degree of autonomy, however,
we split the task into several individually initialized subtasks:

1) Find the cup and grasp it
2) Bring the cup to a position in front of the user
3) Move the cup to the mouth of the user
4) Tilt the cup
5) Bring the cup back into an upright position
6) Move away from the users face
7) Return the cup to the table

The execution of each step requires an explicit go-signal
from the user. Furthermore, our current system approaches
a fixed tilting angle of the cup which allows the user to
incorporate a fixed amount of liquid only. This could be
easily extended to a more flexible approach by additionally
decoding a cancel signal from the user. In such a scenario,
a finite state machine could keep track of the state of the
robot. Subsequent go commands could be used to tilt the cup

subject # frames recall rate (%) MAE (cm)

P1 430 99.8 0.26±0.21
P2 381 86.6 0.94±0.94
P3 434 97.7 0.50±0.39
P4 448 92.9 0.35±0.28
P5 444 96.4 0.35±0.30
P6 384 98.2 0.70±0.61

TABLE I
EVALUATION OF OUR MOUTH DETECTION APPROACH UNDER

OCCLUSIONS FOR DIFFERENT PEOPLE AND DIFFERENT VIEWPOINTS.

in small incremental angles. Finally, the user could decide
when to stop the liquid intake by canceling the task.

B. EEG-to-Robot Pipeline

To send a command to the robot, the user imagines finger
tapping movements of the right hand. These imaginations
lead to a frequency power decrease in brain waves in
the alpha and beta frequency band that can be measured
with an EEG recording cap. In our experimental setup,
we used a dry-electrode EEG cap, for ease of use, quick
setup time, and comfort of the user. The EEG data are
acquired from 32 g.SAHARA dry active electrodes, sampled
at 512 Hz using two amplifiers (GUGER TECHNOLOGIES,
Graz, Austria). Electrodes are located according to the 10-20
system [13]. We used BCI2000 [16], a free and thus widely
distributed BMI processing framework to interface amplifiers
and signal processing. Signal processing, feature extraction
and decoding was performed in real-time in MATLAB using
an artificial neural network. Details about feature extraction
from the EEG signal and decoding methods can be found
in [10]. No direct communication method between MATLAB
and robotic system was available. Therefore we set up a uni-
directional User Datagram Protocol (UDP) network interface
to connect MATLAB and the robot. We implemented the
communication over the campus’ wireless network. When-
ever our decoding system detects the imagination of the right
hand finger tapping consecutively for 3 s, a ’true’ bit is sent
to the robot. This threshold of 3 s increases confidence in
the decoded command and was determined experimentally
to avoid false positives. Of course, this leads to a trade-off
between safety and satisfaction of a user who will experience
frustration if intended commands are not carried out.

VII. EXPERIMENTAL EVALUATION

In several experiments, we evaluated our approach to
detect the mouth of the user under occlusions. Furthermore,
we demonstrate in a series of experimental runs, how our
robotic system successfully and reliably accomplished its
task, that is, enabling liquid intake.

A. Mouth Detection

An important component of our system is the ability to
identify the mouth of the user in order to precisely move
the cup to the desired position. This is required to work
even under occlusions, which are inevitable when the robotic



arm with the cup approaches the user and the mouth. We
evaluated our mouth detection algorithm on image sequences
of six different subjects one of which was wearing glasses
(P6, see Fig. 3). In total, we collected for each user around
two minutes of RGB-D recordings of their faces. In order to
reduce similarity between subsequent test images, the frame
rate was reduced to 4 Hz. To demonstrate the robustness
of the tracking system to movements of the user, the users
were asked to move their head arbitrarily in the x, y, and z
direction. Furthermore, we asked them to perform moderate
rotations of the head. Under optimal circumstances, when the
entire face was visible, the mouth could be detected reliably
with a detection rate of close to 100 %. We used these
detections as ground truth to evaluate how well the system is
able to deal with occlusions. We then artificially introduced
occlusions to the test images by masking a rectangular region
around the detected mouth. We evaluated, how well the
mouth could be detected and how accurately the position of
the mouth could be determined with respect to the ground
truth data. We chose the parameters for the face detection
approach such that we did not receive any false positives.
Thus, we only report the recall rate, which is the fraction
of true positives versus the total number of instances. As
our mouth detection algorithm is based on the detection
of human faces, it will fail whenever important features of
the face are not visible. If, for instance, the user turns his
face by about 90 degrees to the left or right, one of the
eyes will not be visible and the face cannot be tracked.
Therefore, our mouth detection algorithm fails in such cases
and leads to negative detection results. This is particularly
evident with participant P2 who performed rather large and
extreme movements, which challenged the system and lead
to a lower recall rate and a larger error in the detected mouth.
We evaluated the accuracy of the position tracking in terms
of the mean average error (MAE). Table I summarizes the
results. Fig. 5 illustrates examples for successful and failed
detections. As is illustrated here, the system is able to track
the mouth if the user closes his eyes or wears glasses.

B. System Evaluation

We furthermore performed an experiment with the entire
system, that is with communication of the user with the
robot via EEG, detection of objects and mouth, grasping
the cup and bringing the cup to the mouth, letting the user
drink, and placing the cup on the table again after the user
is finished. Our test user was experienced in BMI control
but not engaged in robotics. We executed the experiment
in three sessions over two consecutive days. The first two
sessions were used to integrate and test the robotic system
and the EEG decoding. In the third session, we evaluated the
performance of the system in 13 consecutive runs.

Before the evaluation session, we re-calibrated the EEG
decoding with 10 min of training data. In contrast to an
experiment in a dedicated EEG laboratory, the environmen-
tal circumstances for the BMI were challenging. Firstly,
the robotic arm can lead to EEG recording artifacts and
hence to a decreased classification accuracy. Secondly, the

unaccustomed presence of the robot in front of the user’s
face can cause anxiety, which may interfere with properly
performing the movement imagination task. Over the course
of two calibration sessions, however, we observed that our
test user developed trust into the system and got accustomed
to the presence of the robot. Furthermore, we observed some
false positive detections in the EEG measurements while the
robotic arm was moving in front of the user’s face. This
could possibly be explained by the activity of the mirror
neuron system [5, 12, 15] triggered by the observation of a
moving robot arm, which could lead to similar effects as
movement imagination of the right hand. This possibility
could be examined in further studies.

During the third session, however, all 13 runs were suc-
cessful, that is the user was able to send the commands to the
robot, the robot delivered the drink to the correct position, the
user was able to drink, and finally the robot put the cup back
to the table and returned to its initial position. During the
first 10 trials, the required time to complete the task was on
average 3 minutes per trial. To speed up the task execution,
in the last three trials, we increased the speed of the decoding
procedure. Per default, 5 consecutive control signals, that is
finger tapping movements needed to be detected before a
control signal was sent to the robot. In the last three trials,
we reduced this to three consecutive detections. Furthermore,
we increased the arm velocity from 10 % to 20 % of the
maximum arm speed. The robot also completed these three
trials successfully with an average runtime of two minutes
per trial. Fig. 6 shows some snapshots of one trial, a video
of an experimental run is available online1.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a prototypical robotic system
for paralyzed patients to drink without having to rely on the
assistance of caregivers. The corresponding increase in daily
independence is important for patients and might greatly
improve the quality of their lives. We realized a robotic
system that is able to autonomously detect the 3D positions
of objects and users and furthermore is able to plan its
movements to autonomously achieve the task. The setup of
the dry-electrode EEG used to interface the users brain and
the robot was fast, easy and provided stable signals over
the whole duration of the experiments. Dry-electrode EEG
thus represents a viable alternative to the more widespread
conventional, wet electrode systems.

Future development will include improving the speed of
the robotic system and adding more user safety, for instance,
by using force-feedback sensing to detect contact between
user and cup. Up to now we do not detect the entire body
of the user. Furthermore we avoid collisions of the robotic
arm and the user by including waypoints that the arm has to
approach and therefore we demand a very stringent room of
possible movement trajectories. As a consequence one part of
our future work will focus on the detection of the entire body

1http://ais.informatik.uni-freiburg.de/projects/
neurobots/

http://ais.informatik.uni-freiburg.de/projects/neurobots/
http://ais.informatik.uni-freiburg.de/projects/neurobots/


Fig. 6. Successful execution of the drinking task.

of the user and the implementation of a reliable collision
avoidance leading in addition to further improvements of the
speed of our system due to less stringent constraints on the
motion planning algorithm.

As a longterm goal, we envision having the robot, instead
of the experimenter, pour the beverage into the cup and
extending our approach to self-feeding. The current advances
in implantable, wireless recording devices also make it
possible to envision transferring our approach to control
signals recorded by means of such devices. Such a transfer
would solve noise issues and can be expected to substantially
improve the information transfer rate from brain to robot.
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