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Abstract— The ability to track skeletal movements is impor-
tant in a variety of applications including animation, biological
studies and animal experiments. To detect even small move-
ments, the method should provide exact accurate estimates.
Besides that it should not impede the mammal in its motion.
This motivates the usage of a passive optical motion capture
system. Thereby the main challenges are the initialization, the
association of the unlabeled markers to their corresponding
segment also across the frames, and the estimation of the
skeleton configuration. While many existing approaches can
deal with the latter two problems, they typically need a specific
pose for initialization. This is rather unpractical in the context
of animal tracking and often requires a manual initialization
process. In this paper, we present an approach to reliably
track animals and humans in marker-based optical motion
capture systems with freely attached markers that is also able
to perform an automatic initialization without any pre- or
post-processing of the data. To achieve this, our approach
utilizes a large database of previously observed poses. We
present our algorithm and its evaluation on real-world data sets
with an animal and humans. The results demonstrate that our
initialization method performs accurately for the most kind of
initial poses and our tracking approach outperforms a popular
fully automatic skeleton tracking method especially with respect
to the smoothness of the motion.

I. INTRODUCTION

In many applications it is important to track the skeletal
movement of an animal or a person. Such applications
include animation, robotics, biomechanics, and animal ex-
periments. The former typically requires realistic motion
sequences and in the latter one usually needs to detect small
changes in the movements to identify changes, for example
after training, medication, or brain stimulation. In all of them,
however, accuracy is one of the principal requirements. In
addition the used motion capture system should be applicable
for animal tracking. In particular it should not impede the
animal in motion. The optical motion capture system with
passive markers complies these requirements. In comparison
to markerless approaches, the marker-based ones are nor-
mally more robust against occlusions and provide more exact
position information at higher frame rates [14]. Furthermore
the most skeleton tracking methods are only able to track
the skeletal motion of humans.

A major drawback of passive optical motion capture sys-
tems is that they provide only unassociated three-dimensional
positions of the detected markers. For an automatic labeling
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Fig. 1. Skeleton pose estimation. Top: Unlabeled marker positions given
by the Motion Analysis software Cortex[5]. Bottom: Observed markers and
the skeleton configuration obtained by our method.

procedure the occlusion of the markers over longer periods of
time and the labeling of reappearing markers is a challenging
problem. Besides the marker are only attached to the skin or
coat of the tracked animal or human and therefore move
during the motion. Recently Meyer et al. [13] presented a
skeleton tracking method for humans with a fully automatic
labeling of the markers. This method allows to place the
markers at arbitrary positions onto the human. It then re-
quires the human to go into a so-called T-pose to initialize
the tracker. Especially in the context of animal tracking
tasks such initialization processes are highly unpractical as
it is typically not possible to force the animal to stand still
in a specific pose. Alternative solutions, which are able to
initialize the system with arbitrary poses, require manually
labeled marker frames or a specific minimal number of
marker attached to each modeled segment. Thus, a system
that can deal with a limited number of markers and can
initialize the tracker without manual labeling and without
a fixed pose are highly desirable.

In this paper we present two methods for fully automatic
initialization of an arbitrary pose. Firstly, a fast method,
which gets along with simple k-means clustering. Secondly,
we use a big data approach for initialization. For the first
method we use only one frame of unlabeled marker positions
to find the initial skeleton. In the big data initialization we
use one frame to reduce the data set to a small number
of skeletons, e.g., one hundred in our experiments, and
then we select the one with best tracking performance over
given sequence of frames. In many existing skeleton tracking
solutions, like the work of Meyer et al. [13] initialization
errors worsen the entire skeleton tracking result. Therein,
they compute the marker to segment association and the
relative positions of the markers to the corresponding joints
only once in the initialization step and they fix them during



the whole algorithm. We present an update step which uses
the Kalman filter [8] to correct the relative positions and the
marker position variance to change the marker to segment as-
sociation. Moreover this models the marker movement along
the skin or coat and leads to smoother motion trajectories. We
apply our method to the skeleton tracking of a sheep, which
is increasingly used as a large animal model in biological
studies. In order to test small movement changes of a sheep
caused by external or environmental factors the skeleton
tracking algorithm should work online and provide results in
a timely fashion. While we use a sheep as the only animal
in our experiments (see Fig. 1), our method can be easily
extended to other kind of mammals.

II. RELATED WORK

In the past many researchers investigated the problem of
inferring the skeleton motion out of marker data. Whereas
there also exist markerless approaches (see Baak et al. [2]),
currently their accuracy is not high enough for certain appli-
cations such as medical studies, where one wants to detect
small movement changes [7]. Several years ago, Schwarz
et al. [16] presented a method for skeleton tracking using
the depth data of a Microsoft Kinect, geodesic distances
and optical flow. Their method provides an pose error of
70.1 ± 9.1mm with respect to a marker-based approach,
which they use as ground truth in their experiments. Thereby
this pose error is defined as the average of the Euclidean
distances between the identical joints. This appears to be too
inaccurate given the medical applications that we envision.

One of the main challenges for an accurate skeleton
tracking is the initialization. Many existing solutions require
a specific initialization pose and are therefore unpractical for
animal experiments, see Meyer et al. [13]. Another approach
is to detect the regions of rigid body segments first and
then compute the position of the joints, which connect these
segments, see Ringer and Lasenby [15], Kirk et al. [9], and
de Aguiar et al. [6]. These methods require a certain number
of markers associated to each segment and an additional
manual labeling step, which is a time consuming and tedious
work. Accordingly, a method which robustly works for
different marker placements and counts is desirable. In the
most cases the underlying skeleton structure of the mammal
to be tracked is only approximately known. In their previous
work, Meyer et al. [13] used a standard skeleton structure
given by Contini [4], which they scale to the actual size
of the tracked person. Zordan and Van Der Horst [18]
used a physical model to fit a predefined skeleton structure
into the marker cloud. Additionally, they use known marker
positions for the initialization. Other authors estimate the
joint positions of a human skeleton, while taking into account
skin movement artifacts [1, 3, 10]. Here, the latter two
methods use a statistics over all frames and thus only allow
offline analysis of the data. In contrast, our approach and
the work of Aristidou and Lasenby [1] compute the skeleton
configuration online, without the knowledge of future data.

The work presented in this paper extends the work of
Meyer et al. [13]. In the following we present our algorithm,

see Fig. 2. Thereby the problem formulation, the labeling
steps and the optimization part stay the same as in Meyer
et al. [13]. Thus we give only a short sketch of this parts and
refer the interested reader to their paper for more detailed
information.

III. PROBLEM FORMULATION

Our input data is a set F1:t of frames of unlabeled
three-dimensional observations zi,t ∈ Ft at equidistant
discrete time steps t. Thereby, each observation is the three-
dimensional position of one visible marker m ∈M attached
to the skin, cloth, or coat of the object to be tracked. The
task in the labeling step is to find the association function
χt : Ft → M , which assigns each observation to a marker.
Each marker is assumed to be attached to a segment s ∈ S
of the skeleton and we need to compute the corresponding
segment association function ζt :M → S. The aim is to infer
the skeleton configuration Ct for each time step t, which is
the global pose of each modeled joint.

A. Skeleton Model

We use a predefined skeleton model, which we scale only
once in the initialization step and afterwards we fix the
lengths of the individual bones. Unfortunately, a detailed
analysis of the relative bone lengths, similar to Contini’s
work for humans [4], is not available for animals. A good
approximation can be obtained by measuring the bone length
together with a proper analysis of the marker position
data. For example, our sheep skeleton model consist of 17
segments. Although, it is not satisfactory to model each
vertebra in the backbone, it suffices to give a good ap-
proximation of the problem, while keeping the optimization
dimension low. The skeleton model is hierarchical, namely
each skeleton configuration can be described uniquely by a
three-dimensional rotation for each segment plus a three-
dimensional translation vector of the root segment. All
together, we describe the skeleton configuration of a sheep
by 54 = 3+3 ·17 degrees of freedom. Thereby we represent
the rotations using unit quaternions.

B. Probabilistic Skeleton Tracking

There is a lot of uncertainty hidden in the problem
formulation, which we have to take into account. The ob-
served positions zi,t are affected by measurement noise. The
markers are attached to the skin, cloth or coat of the object
and thus move slightly and non-deterministically with respect
to the corresponding segment. This suggests a probabilistic
problem formulation. More precisely, we want to get the
most likely skeleton configurations C∗1:t given the marker
observations F1:t. This means in formulas that we have to
solve

C∗1:t = argmax
C1:t

P (C1:t | F1:t) . (1)

This probabilistic formulation comes with several hidden
variables. These are the marker association function χt :
Ft → M and the segment association function ζt : M →
S. Marginalization over all the hidden variables leads to
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Fig. 2. Overview of the proposed method. On the right hand side we present the k-means initialization. In this paper we also present a big data approach
to solve this problem. This approach assumes that there is a sufficiently dense skeleton data base. In each successive frame, most observed points are
labeled based on the preceding frame by nearest neighbor association. Association based on the current skeleton estimate robustly labels the remaining
points.

an optimization problem, which is infeasible in practice.
Besides, we are aiming at an online skeleton tracking method
and thus, we assume that the skeleton configuration and
the association function only depend on past data. Meyer
et al. [13] showed, that a good approximation for online
skeleton tracking can be achieved as follows. Given the
skeleton configurations C1:t−1 and association functions
(χ1:t−1, ζ1:t−1), we first compute the most likely association
functions (χt, ζt) and then the most likely skeleton configu-
ration C∗t by optimizing P (Ct | χt, ζt, Ft). As an extension
to the work of Meyer et al. [13], we allow the markers to shift
across the body and thus consider a time-dependent segment
association ζt. We furthermore compute the initial skeleton
configuration C1 and the initial association functions (χ1, ζ1)
in the initialization phase. State of the art skeleton tracking
methods of humans require the tracked person to stand
still in an initialization pose, as the T-pose [13], which, as
already mentioned, is unpractical for animal tracking. In the
following, we therefore present methods for the initialization
of arbitrary poses.

IV. INITIALIZATION METHODS

In the initialization step we want to get the initial skeleton
configuration C1 given the initial unlabeled observations F1.
We obtain the bijective initial marker association function
χ1 : F1 → M by assigning each observed position zi ∈ F1

to a marker mi ∈M . As soon as we have the initial skeleton
configuration, we get the initial relative position matrix R1 ∈
R3×|S| of each marker to the segments base. In contrast to
the work of Meyer et al. [13], we consider a time dependent
relative position matrix Rt, so that we are able to get rid of
initialization errors and to model the shift of markers over the
coat or cloth more exactly. We will explain this in more detail
in Section VI. With help of the initial skeleton configuration,
we infer the initial segment association function ζ1, which
assigns each marker to a limb of the skeleton configuration.
We do this in a similar fashion as in the work of Meyer et al.
[13], who compute the likelihood L(sj | zi) that a point zi
belongs to a segment sj . Thus, it remains to find the initial
skeleton configuration C1. In the following we propose two
initialization methods to solve this problem.

A. Big Data Initialization

For the first initialization method we assume that a suf-
ficiently dense database of skeleton poses is available for
the corresponding skeleton. In our current system, we use
scaled and rotated versions and translate them into the set of
observed positions. This leads to extensive initial skeleton
configurations {C1,i}, which we have to reduce appropri-
ately to keep the algorithm fast. For each of these initial
configurations we compute the segment association function
{ζ1,i}, as in [13]. Next, we compute the number of segments
to which at least one marker is attached. Since we assume a
proper distribution of the markers over the whole body, we
presume that a low number of occupied segments indicates a
bad initialization, so that we can immediately dismiss most
of the skeleton configurations. Next, we consider for each
skeleton configuration C1,i the likelihood that the set of
observed positions {zj} belongs to its associated segments
{ζ1,i(χ1(zj))}, i.e.,

∏
zj∈F1

L (ζ1,i (χ1(zj)) | zj) , (2)

where we compute the individual likelihood
L (ζ1,i (χ1(zj)) | zj) as Meyer et al. [13]. Next, we
reduce the set {C1,i} to the one hundred skeletons with
highest probability. Up to now, we only used the first frame
F1 of the data. We start our skeleton tracking algorithm with
these one hundred skeletons and eliminate the ones with
highest performance values in comparison to the others.
The problem of this initialization method is that we need a
database of all possible skeleton poses. One might get this
by sampling the rotation matrices of the predefined skeleton
model. Due to the high dimensionality of the sampling
space, e.g., 54 for the sheep, this leads to a huge amount of
skeletons in the database, where most of the data will never
be attained. Another approach is to restrict the data set to
realistic postures. While one can use the method of Meyer
et al. [13] for the generation of human skeletons, a dense
data set of realistic poses for animals is not available.



B. K-means Initialization

The second initialization method gives an adequate and
fast initialization for many poses an animal can adopt.
Moreover, we can use it to generate a data set of natural
animal postures. As mentioned above, we fit a predefined
skeleton model to the marker cloud. We only assume, that
the sheep stands on its feet and that the head and each
feet has attached at least one marker to it. Firstly, we scale
this model to the size of the tracked object. In practical
experiments we found out that the highest marker ptop on the
trunk of the animal provides a robust feature for estimating
the height h of the animal. To determine this marker, we
separate the markers attached to the head and neck from the
ones attached to the rest of the body. We consider the set
of markers, which are lower than the center of mass, and
use the k-means algorithm [17] to cluster them into four or
five groups. If we obtain four groups, the head is at least
as high as the trunk while it is below the trunk if we find
five clusters. Given the cluster for the legs, we can identify
the position of the head and also find the trunk (see right
image of Fig. 2). Finally, we use least square optimization
to fit the skeleton model to the clusters. This leads to the
desired initial skeleton configuration C1. We compute the
segment association function ζ1 with help of the likelihood
L (sj | zi).

V. SKELETON TRACKING

After we have initialized our method the subsequent
challenge is to resolve the data association problem, see [13]
for more details.

A. Labeling

One wants to estimate the most likely associations χt

given the current frame Ft with fixed skeleton configuration
Ct. Due to the high frame rate of the motion capture
system the markers do not move much and one can associate
the marker from χt−1 using nearest neighbor association.
Thereby we obtain the optimal assignment with help of the
Hungarian method [11]. Especially when a marker reappears
after an occlusion, the labeling based on the preceding frame
is incomplete. We address this by associating the remaining
observations to markers given the estimated skeleton con-
figuration Ct. An alternative solution would be to use a
multi-hypothesis tracking method, which we left for future
research.

B. Optimization

Once we know the association functions χt and ζt, we can
compute the most likely skeleton configuration. For this, we
have to solve

argmax
Ct

P (Ct | χt, ζt, Ft) . (3)

For each observation zi,t ∈ Ft and associated marker
χt (zi,t) ∈ M we can use the relative marker position
Rt to obtain the predicted marker position pi,t (Ct) =
p (zi,t, χt, ζt, Rt, Ct) dependent on the skeleton configura-
tion Ct. We try to find the skeleton configuration, which

minimizes the distance between the predicted marker po-
sition and the observed position. In order to improve the
performance of our method we include a quadratic joint limit
cost term, which penalizes abnormal movements, e.g., those
exceeding the joint limits of the involved joints. In sum,
we realize the maximization in Eq. (3) by minimizing the
optimization function

f(Ct) =
∑

zi,t∈Ft

‖pi,t (Ct)− zi,t‖2 + l (Ct) , (4)

where l(Ct) stands for the quadratic joint limit cost term.
Finally, we obtain the skeleton configuration Ct using the op-
timization framework g2o [12]. After computing the skeleton
configuration one can use the observed positions to update
the relative positions of the markers.

VI. UPDATE OF RELATIVE MARKER POSES AND
SEGMENT ASSOCIATION

Our experiments demonstrate that we can improve the
skeleton tracking of Meyer et al. [13] by adjusting the asso-
ciation of markers to segments and their relative poses online
during skeleton tracking. This step corrects errors introduced
by an inaccurate initialization. A first naive approach would
be to compute the relative position matrix Rt using the
current skeleton and the marker positions {χ−1t (m)}m∈M .
In order to incorporate the uncertainty in measurements and
the skeleton estimation we use the Kalman Filter [8]. In our
current implementation, we use a zero motion model, i.e.,
Rt = Rt−1 + εt, where εt is a zero-mean Gaussian with
covariance rt. As measurement we use for the marker mi

the relative position of the measurement, i.e., χ−1t (mi) to the
base of their corresponding segment ζt(mi). Unfortunately,
this approach cannot handle association errors and leads to
a catastrophic labeling performance. In reality the relative
positions of a marker slightly oscillates around a fixed
position. To model this we introduce another relative position
matrix R̂t and force Rt to stay near to it. In order to get rid of
initialization errors and to model displacements of markers
we again use a zero motion Kalman Filter with the same
measurement, but a lower confidence assigned to it. Thus
Rt models the fast movement changes of the marker along
the skin, cloth or coat due to the muscle movement and
R̂t guaranties a robust labeling performance and changes
noticeable only due to shift of markers or initialization
errors. In addition, we change the segment association ζt
by investigation of the marker variance. This is especially
beneficial for the robustness of long time tracking studies.

VII. EXPERIMENTAL RESULTS

The data sets we use in the experiments were recorded
with a Motion Analysis motion capture system with ten
Raptor-E cameras at 100Hz for the human and 300Hz for
the sheep. We test our results on an Intel R© CoreTM i7-950
CPU with 3.07GHz with eight threads. A video illustrating
our method can be found at http://www2.informatik.uni-
freiburg.de/ tobschub/research.html.



0 5,000 10,000

10−5

10−3

10−1

Frames

Pe
rf

or
m

an
ce
λ
5
0

Meyer et al. Our approach

0 5,000 10,000

10−5

10−3

10−1

Frames

Pe
rf

or
m

an
ce
λ
5
0

0 5,000 10,000
10−6

10−4

10−2

Frames

Pe
rf

or
m

an
ce
λ
5
0

0 5,000 10,000

10−5

10−3

10−1

Frames

Pe
rf

or
m

an
ce
λ
5
0

Fig. 3. Comparison of the performance of two different runs (columns) of
two different persons (rows). The low performance values at the beginning
are due to the lack of movement in the T-pose initialization.

A. Update Step

First of all, we present the effect of adjusting the marker
to segment association and their relative poses online. For
reasons of comparability we present the effect for human
motion sequences. We evaluated the presented algorithm on
a set of four motion capture recordings of different test
subjects and marker sets. As a performance measure, we use

the optimization error λN = 1
min{t,N}

min{t,N}∑
s=1

f(Ct−s+1).

Fig. 3 shows the performance λ50 of each data set. In this
experiment, we use the T-pose initialization.

Next, we show that the update step leads to smoother
trajectory estimates. To achieve this, we compare the smooth-
ness of our method with the one of Meyer et al. [13]. In
Fig. 4 we plot the velocity of the left elbow. We obtain
similar results with all other joints and motion sequences
in our data set.

B. Big Data Initialization

To analyze our big data initialization method, we apply
it to the human motion sequences. Our database consists of
about 170 000 skeleton configurations coming from human
while walking, sitting, jumping, and even playing basketball.
We created these skeletons poses with the skeleton tracking
method of Meyer et al. [13] and regard them in the following
as ground truth, since the real poses are not available. To
speed up the initialization we only use every fifth skeleton.
We test our approach on 103 arbitrary chosen initial frames
out of the 170 000, where we do not use the skeletons two
seconds before and after the frame we want to initialize.
We use the mean distance of each joint to the ground truth
as accuracy measure. Table I shows the number of frames
for which the mean distance of the initialization to the
ground truth is below the given threshold in the first row. For
example in 81.55% of all frames the assumed initial skeleton
is less the 10 cm apart from the ground truth. This shows that
the initialization method works in general. Its accuracy might
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Fig. 4. Smoothness of the velocity of the left elbow obtained with our
method in comparison to that of Meyer et al. [13].

be improved with the help of a dense and exhaustive database
or using a particle filter with a more advanced motion model.
In total, the initialization takes 388.6±206.4 seconds, where
it takes 204.6 ± 52.2 seconds to find the hundred starting
hypotheses and 184± 194.9 seconds to find the hypotheses
with the best performance. Up to a parallelization of the code
we do not use any further code optimization.

TABLE I
BIG DATA INITIALIZATION

Data set Poses 5cm 7cm 10cm 15cm
1 9 0 5 9 9
2 12 3 5 12 12
3 12 0 3 7 11
4 8 1 3 5 6
5 6 4 4 4 5
6 7 1 6 7 7
7 17 3 6 11 13
8 16 7 14 15 15
9 11 3 7 9 9

10 5 1 3 5 5
Total 103 23 56 84 92

% 100% 22.33% 54.37% 81.55% 89.32%

C. K-Means Initialization
We recorded the sheep data sets in a barn of 3 × 5m2

area. We located three cameras in three of the corners of
the barn and the remaining seven cameras uniformly along
the boundary of the barn at a height of about 2.5m. We
mounted hook and loop fasteners to the limbs, body and
head of the shaven sheep and attached the passive marker
on it. We recorded seven data sets of about four and a half
minutes in total with one sheep and we tested our algorithm
on these data sets.

To evaluate our initialization method we run it for each
frame of our data sets. Next, we compute the mean distance
of the feet joints to the corresponding ones of the ground
truth skeleton. We again use the skeletons given by our skele-
ton method as ground truth. Table II contains the number of



frames, where this distance is below the given threshold (see
first row). For example, if we accept an initialization error of
at most 5 cm our method is able to find an adequate initial
skeleton in 48.27% of all frames.

TABLE II
K-MEANS INITIALIZATION

Data set Total Frames 3cm 5cm 7cm 10cm
1 18000 4947 14185 15319 16538
2 10000 566 4675 6392 9347
3 12000 2150 3051 5062 7070
4 7000 158 980 1891 3495
5 11000 1811 8137 9305 10440
6 10000 57 1250 2981 8251
7 15000 1827 7786 9641 11811

Total 83000 11516 40064 50591 66952
% 100% 13.87% 48.27% 60.95% 80.67%

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a robust approach to tracking
movements of people and animals in an optical motion cap-
ture system. In contrast to many other previous approaches,
our method does not rely on a manual process or a specific
pose for initializing the tracking process. Our methods has
been implemented and tested on different data sets includ-
ing human and sheep motion. In practical experiments we
demonstrate the robustness of our approach. In our future
work we want to apply our method to other kind of animals
as well. Therefore, will extend our approach towards a fully
automatic procedure for the determination of the lengths of
the bones. Furthermore, we plan to use a particle filter with
an improved motion model in the big data initialization. This
will further improve the robustness of our approach.
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