Automatic Bone Parameter Estimation for Skeleton Tracking
in Optical Motion Capture

Tobias Schubert
Frank Hutter

Abstract— Motion analysis is important in a broad range
of contexts, including animation, bio-mechanics, robotics and
experiments investigating animal behavior. For applications,
in which tracking accuracy is one of the main require-
ments, passive optical motion capture systems are widely used.
Many skeleton tracking methods based on such systems use
a predefined skeleton model, which is scaled once in the
initialization step to the individual size of the character to
be tracked. However, there are remarkable differences in the
bone length relations across gender and even more across
mammal races. In practice, the optimal skeleton model has
to be determined in a manual and time-consuming process. In
this paper, we reformulate this task as an optimization problem
aiming to rescale a rough hierarchical skeleton structure to
optimize probabilistic skeleton tracking performance. We solve
this optimization problem by means of state-of-the-art black-
box optimization methods based on sequential model-based
Bayesian optimization (SMBQO). We compare different SMBO
methods on three real-world datasets with an animal and
humans, demonstrating that we can automatically find skeleton
structures for previously unseen mammals. The same methods
also allow an automated choice of a suitable starting frame for
initializing tracking.

I. INTRODUCTION

Motion capture systems are widely used to detect human
and animal postures in motion. Typical applications include
animation, bio-mechanics, robotics and experiments inves-
tigating animal behavior. There exist different approaches
to detect the skeleton structure from information about the
exterior of the mammal to be tracked. Depending on the
application at hand, one can use inertial measurement units,
passive markers, which are attached to a human or animal,
or other approaches that use RGB-D data to extract motion.

For experiments investigating animal behavior, accuracy
is one of the principal requirements since one usually needs
to detect small changes in the movements (for example
due to training, medication, or brain stimulation). Compared
to marker-less approaches, optical motion capture systems
based on passive markers yield smoother motion trajectories
at high frame rates [22] and are normally more robust
against occlusions. In contrast to systems based on inertial
measurement units, passive marker based systems do not
impede the animal in motion. However, a major drawback
of these systems is that they return frames of unlabeled
marker positions (see, e.g., the top left image in Fig. 1).
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Fig. 1: Top left: Unlabeled marker positions given by the
Motion Analysis software Cortex [10]. Diagonal bottom left
to top right: Possible skeleton configurations. Bottom right:
Fit of the best skeleton configuration into the marker-cloud.

This introduces the problem of identifying the best of sev-
eral possible skeleton configurations that best explain these
marker positions (see the remainder of Fig. 1).

For an automatic labeling procedure, the occlusion of
markers over longer periods of time and the labeling of
reappearing markers are challenging problems. Furthermore,
the markers are attached to the skin or coat of the tracked
animal or human and therefore move during motion. Several
methods exist for addressing these problems. Meyer et al.
[20] presented a skeleton tracking method that allows to
place markers at arbitrary positions onto the human and
automatically labels them between frames. Schubert et al.
[25] extended this method with an automatic initialization
method for many kinds of initial poses. However, in order to
apply these methods, one has to manually define the relative
bone length, muscle width, and initial frame, all of which
influence the accuracy.

Unfortunately, measuring the bone lengths of animals
often requires to narcotize them and in addition proved to
be inaccurate. In practice, we obtained the best tracking
results by manually tuning the bone parameters while taking
the tracking performance into account. In the following,
we call the skeleton we obtained by this iterative manual
trial-and-error procedure “ground truth skeleton”. This time-
consuming manual process needs to be reiterated for each



individual, for each gender and even more so for other
mammals races. Alternative solutions, which are able to com-
pute the skeleton structure, require manually labeled marker
frames or a specific minimal number of markers attached
to each modeled segment. So far, no system exists that can
deal with a limited number of markers and can initialize the
tracker without manual labeling or measurements of bone
lengths and muscle widths.

In this paper we present a method that automatically
optimizes these bone parameters. To enable this optimization,
we define an appropriate performance measure for skeleton
tracking that encompasses several aspects of a reasonable
tracking, including the percentage of missed markers, the
goodness of the skeleton structure fit into the marker cloud,
and the difference between the predicted and true marker
positions. We optimize this performance measure with re-
cent state-of-the-art global optimization techniques based on
sequential model-based Bayesian optimization [17], which
automatically finds skeletons that minimize the tracking error
without manual intervention.

We apply our method to the skeleton tracking of a sheep
(which is increasingly used as a large animal model in
biological studies'), a female human and a male human.
Our empirical results demonstrate that our method can
automatically find a skeleton structure close to the ground
truth skeleton, which leads to smoother motion trajectories
(Fig. 3). We also show, that we can extend our approach
to find an optimal start frame for initializing the skeleton
tracking (Fig. 4).

II. RELATED WORK

In the last few years marker-less approaches for skeleton
tracking gained popularity, see e.g. Moeslund et al. [21], El-
hayek et al. [14], Baak et al. [2], Yan and Pollefeys [31].
Several methods infer the skeleton structure out of dense
point cloud data, see e.g. Au et al. [1], Huang et al. [16].
Unfortunately, the accuracy of marker-less approaches is not
high enough for certain applications, such as medical studies,
where one wants to detect small movement changes [15, 26].
Therefore, we consider a marker-based system for tracking.

One sub-task of a skeleton tracking method is the com-
putation of the underlying basic skeleton structure. One
approach is to detect the regions of rigid body segments first
by examination of relative marker distances and to infer the
position of the joints connecting these segments, see Ringer
and Lasenby [23], Kirk et al. [18], and de Aguiar et al.
[12]. These methods need a manual labeling step (which
is time-consuming and tedious work) and require a certain
number of markers associated to each segment. Furthermore,
the computation of the skeleton structure is done during
tracking and thus slows down the attainable tracking frame
rate. In the constrained scenarios of medical studies or animal
experiments one can assume, that the subject to be tracked is
the same during an experimental study and the skeleton bone

'While we use a sheep as the only animal in our experiments, our method
can be easily extended to other kinds of mammals.

lengths and muscle widths can be computed beforehand.
Besides, a method which robustly works for different marker
placements and counts is desirable.

There are extensive studies for the skeleton bone lengths
and muscle widths of humans [9], but for most of the other
mammals the underlying skeleton structure is only known
approximately. Differences due to gender and mammal races
(Contini [9] showed that there are even remarkable differ-
ences between male and female human skeleton structures)
are not taken into account.

The work presented in this paper add an automatic deter-
mination of bone lengths and muscle widths to the work of
Meyer et al. [20] and Schubert et al. [25], by the introduction
of a more reasoned skeleton tracking objective function.

III. PROBLEM FORMULATION

Our input data is a set F}.p of frames of unlabeled three-
dimensional observations z;; € F; at equidistant discrete
time steps ¢. Each observation z;; is the three-dimensional
position of one visible marker m € M attached to the skin,
cloth, or coat of the object to be tracked. First of all we have
to find the skeleton bone parameter vector B, containing the
bone lengths and muscle widths. For a given skeleton bone
parameter, the set of reachable skeleton configurations C(B)
is then defined by varying the translation of the root segment
and the rotations of each segment of the skeleton model.
The aim of the skeleton tracking is then to infer the skeleton
configuration C; € C(B) for each time step t.

A. Skeleton Model

We use a predefined skeleton model, which consists of
a tree structure of joints and segments, with varying bone
lengths and muscle widths. For example, in the case of a
sheep it consists of 25 segments. Due to the sparse coverage
of the body with markers, one cannot reasonably compute
the length of the outermost limbs, and thus this number can
be reduced to 20 segments. Although it is not feasible to
model each vertebra in the backbone, it suffices to give a
good approximation of the problem, while keeping the opti-
mization dimension low. The skeleton model is hierarchical
as in Meyer et al. [20], namely for given bone parameter
vector B each skeleton configuration in the set of reachable
skeleton configurations C(B) can be described uniquely
by a three-dimensional rotation for each segment plus a
three-dimensional translation vector of the root segment. All
together, we describe the skeleton configuration of a sheep
by 57 = 3+ 3- 18 degrees of freedom (see Fig. 1), where the
18 comes from the fact that we model the root segment with
three bones but only one orientation, where we represent
the rotations using unit quaternions. In the case of a sheep
the bone parameter vector B is 40-dimensional, which can
be reduced to a 24-dimensional vector (12 dimensions of
bone lengths and muscle widths, respectively), if we take
the symmetry between left and right into account.

B. Probabilistic Skeleton Tracking

There is a lot of uncertainty hidden in the problem formu-
lation, which we have to take into account. The observed



positions Fj.p are affected by measurement noise. The
markers are attached to the skin, cloth or coat of the object
and thus move slightly and non-deterministically with respect
to the corresponding segment. This suggests a probabilistic
problem formulation. Assume first, that the bone parameter
vector B is given. The goal of a skeleton tracking algorithm
is then to find the most likely skeleton configurations C7.,-
given the marker observations Fi.r. Formally, this means
that we have to solve

Cir(B) = arg IgQXP(ClzT(B) | Fi.r), (1)

for a given B. In the work of Schubert et al. [25] and of
Meyer et al. [20] this equation is approximated to allow
an online skeleton tracking. Assume we can compute, or
at least approximate, the most likely skeleton configurations
Cy.r(B) for a given bone parameter vector B. The goal
is then to find the bone parameter vector B* for which
the skeleton configuration C7.(B) describes the marker
observations .7 best. This means we have to solve

B* = argmgxp (Cy.p(B) | Fi.1). (2)

In the work of Schubert et al. [25] and Meyer et al. [20]
the most likely skeleton configuration C;(B) is computed
iteratively from the previous one C;_,(B). They first use
the Hungarian method [19] to associate the unlabeled marker
observations {z;;} to markers. Given the skeleton configu-
ration Cy, they use the relative positions R;_; of markers
to the corresponding bones to predict the global position
pi,i(Ct, Ry—1) of marker 4, which is associated to observation
z;¢ at time ¢. Finally, they obtain the most likely skeleton
configuration C}(B) by minimizing the objective function

FC) = > e (CoRiy) — 2z +1(CY),

2;,t€GLCFy

for each time-step ¢t € {1,...,T}. Here, I(C}) stands for
a quadratic joint limit cost term and G; C F; denotes the
set of observations z;; that are associated to a marker by
the Hungarian method [19]. Schubert et al. [25] and Meyer
et al. [20] suggested to approximate P (C}..-(B) | Fi.1) by

T
P(Cir(B) | Frr) =~ n][exp(—f(C;(B)), 3

where 7 denotes a normalization factor. Accordingly, the
necessity to keep the number of unlabeled markers |F; \ G¢|
low is considered only in the association step and not in the
optimization function. Therefore Eq. (3) is appropriate in
the case of known and fixed bone parameters, but unsuitable
for the general case. In the following section, we present a
different approximation of the problem specified in Eq. (1)
that takes the marker association into account.

IV. OPTIMIZATION FUNCTION

Despite being more general, our improved approximation
of P(Cy.7(B) | Fi.7) relies on three assumptions. Firstly,
we assume that the markers are attached to the skin, coat
or cloth of the mammal to be tracked. This ensures that

the skeleton structure is located somehow inside the marker
cloud. We consider this assumption by adding a cylindrical
error term CY. Secondly, we assume that each observed
marker position corresponds to a marker attached to the
mammal. Accordingly, we introduce a function UO, which
computes the percentage of unlabeled observations. Thirdly,
we assume that markers are attached to each modeled bone,
which we take into account with a function COV (coverage).
In summary, we approximate the left-hand side term of
Eq. (3) by the equation

T
P(Cip(B) | Fur) =n][exp(—a-F(C;(B), &

t=1

where a = (g, ..., a4)T € R? denotes a weight vector cho-
sen manually beforehand and F' = (f, CY,UO, COV)T de-
notes the new R*-valued performance function. The weight
vector is needed to respect the different scalings and can be
set once for all different mammals. In the following we give a
more detailed definition of the new parts in the optimization
function.

A. Cylindrical Error Function

As mentioned above, this error function ensures that the
skeleton structure is located inside the marker cloud. For a
given skeleton configuration C;, we compute the likelihood
that the set of observed positions F; is attached to the body
given by the skeleton configuration C; through

[ Le1cw, (5)

zeF,

where we compute the individual likelihoods L (z | C})
as in Meyer et al. [20]. Namely, assume first that you
know the whole anatomy A(C}) of the mammal, i.e., the
global position and shape of all muscles, given the skeleton
configuration Cj, then the likelihood L (z | Cy) decreases
exponentially in the squared distance di(ct)(z) from the
anatomy. Formally, one can formulate this as

L(z | Cy) =n-exp(—dyc,)(2))-

Since the whole anatomy A of the mammal is not known,
we approximate it by a concatenation of cylinders around
the skeleton configuration. To be more exact, we identify
C,; with a subset in R?, namely a union of bones B, i.e.,

N
Cy = U B; and we define d¢,(z) to be the distance of
=1

j=
the marker position z € F} to the nearest bone, denoted by
B; = B;(Z) of C}. Formally,

de,(2) =

= min ||z — p||.
i ==

min llz —pll

Then the likelihood is approximately given by

L|C) = n-exp(=(de,(z) = W5)?), (6)



where W; denotes the width of the muscle of bone B;.
Putting all together, we obtain the cylindrical error function

2

3 (dct(z) - W3(2)> : %)

z€Fy
B. Unlabeled Observations

The next error function ensures that each observed marker
is associated to a segment. In each time step ¢ the skeleton
tracking algorithm has to associate the marker observations
to markers. In some cases not every marker observation can
be associated to a corresponding marker with high certainty.
In such cases, we experimentally found that it is better
to ignore these markers rather than incorporating a wrong
association. Still, it is desirable to reduce the number Nj; ,,
of unlabeled marker observations. Let Nz, ¢01q1,¢ be the total
number of marker observations at time-step t. Then we
compute the percentage of unlabeled marker observations
UO through UO(C}) = Lt

N, totat,t

CY(Cy) =

C. Coverage Function

We also use an error function that ensures that markers
are attached to every bone in the model. In practice, each
marker needs to be associated to a corresponding segment.
Meyer et al. [20] did this once in the initialization step, while
Schubert et al. [25] allowed this association to change over
time so that errors in the initialization can be corrected. Thus,
we define the coverage COV as the percentage of segments
without an attached marker. This completes the definition of
Eq. (4) and we will focus in the following section on solving
the global optimization problem given in Eq. (2).

V. BAYESIAN OPTIMIZATION

An exhaustive search over all possible skeletons or ac-
quiring the ground truth is often unfeasible. The high-
dimensional optimization problem (24 dimensions for sheep,
18 for humans) defined in Eq. (2) is non-convex as it
possesses many local minima and discontinuities due to the
discrete nature of the association step. Furthermore, associa-
tion errors have a big influence on the tracking performance.

In this paper, we solve this global optimization prob-
lem using Bayesian optimization. Bayesian optimization
has recently been successfully applied to optimize robot
gait parameters [7, 8, 29], machine learning algorithms
in general [4, 27, 30], and deep learning algorithms in
particular [5, 11]. In the following we briefly recap it.

Bayesian optimization (see [6] for a detailed exposition)
aims to find the minimum of a function f : A — R
that is expensive to evaluate, non-convex and potentially
discontinuous, based solely on (potentially noisy) function
evaluations, i.e., we have to solve

argmin f(A). 8)

AeA
In order to do so, it iteratively fits and updates a proba-
bilistic regression model M of f based on previous point
evaluations of f and any prior information available, and
uses this model to select the next next point A to evaluate. It

does so by trading off exploration (evaluating f in a region
of the parameter space in which M is uncertain) versus
exploitation (evaluating f at points M predicts to yield
low function values). This exploration/exploitation trade-off
is formalized by means of a so-called acquisition function.
Here, we explain the most popular acquisition function of
expected improvement (EI) [24] over the best function value
fmin observed so far. In our experiments we also tested the
upper confident bound (UCB) [28] as an acquisition function
and obtained similar results.

Let Iy, .. (A) = max(0, frin — f(X)) be the positive
improvement over f,,;, at a parameter setting \; the expected
improvement is then simply the expectation over Iy . (),
taken with respect to the predictive distribution of M, i.e.,

Bailly.. V)] = [

— 00

fnl'in

Inax{fmin - fa 0} . p./\/l(f | )‘) df
9)

In the case of Gaussian predictive distributions with predic-
tive mean p and standard deviation o, this integral can be
solved in closed form as

EptI i (N)] = o - [u- D(u) + p(u)],

where u = f"”gi;“* and ¢ and ® denote the probability
density function and cumulative distribution function of a
standard normal distribution, respectively.

In order to apply Bayesian optimization for the max-
imization problem Eq. (2), we equivalently minimize the
negative logarithmic of Eq. (4) over the bone parameter
vector B =: A. Thus we need to minimize

(10)

T
f(B)=) a-F(C{(B)). (1
t=1

When we have multiple recordings of an individual we
may also want to optimize their bone parameter vector
jointly across all of these recordings. Given K recordings
Fl(zlj)q,...,Fl(Z(q), we simply minimize the average loss g
across several functions fi,..., fk, i.e.,

K
o(B) = 2 S (B, (12)
k=1

with fj, using data Fl(kT)

Some Bayesian optimization methods can exploit this
additive substructure by evaluating the performance on one
recording at a time; when performance is poor, this allows
to stop the evaluation and save time that can be used to
evaluate more parameter settings in the same computational
budget. Other differences in Bayesian optimization methods
are mostly related to the model classes they use. In order
to demonstrate that several approaches can be used in our
context, we evaluated the following three popular instanti-
ations (using the unified interfaces provided by the library
HPOIib [13]):

Sequential Model-based Algorithm Configuration
(SMAC) [17] uses a random forest to model pa(f | A)
and is the only SMBO method that implements a mechanism
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each optimizer and random search.

to exploit the additive substructure when optimizing across
recordings. While other optimizers need to evaluate each
parameter setting on all recordings, SMAC evaluates only
a single recording at a time and rejects bad configurations
as early as possible.

Spearmint [27] implements standard Bayesian optimiza-
tion and uses a Gaussian Process (GP) to model pa(f | A),
using slice sampling over the GP’s hyperparameters.

Tree Parzen Estimator (TPE) [4] in contrast models
p(f < f*), p(f | A), and p(A | f > fx), with a tree-
structured Parzen density estimator where fx is a fixed
quantile of the losses observed so far. With these distributions
a term proportional to Eq. (9) can be computed in closed
form.

VI. EXPERIMENTAL RESULTS

We collected our sheep recordings in a barn of width 3m
and length 8 m. We restricted the number of used markers
to 40, which led to a sparse coverage so that on some
modeled bones only one or two markers are attached to.
Due to the restricted area many markers are occluded if the
sheep stands in a corner of the barn. The skeleton tracking
methods defined by Ringer and Lasenby [23], Kirk et al.
[18], and de Aguiar et al. [12] require connected sequences of
marker frames over longer periods of time or they need time-
consuming preprocessing steps. Thus they are not reasonably
applicable for the datasets we collected.

We use ten Raptor-E cameras at 100 Hz to record datasets
for the experiments. Our datasets consist of nine recordings
of the sheep, nine recordings of a female and eight recordings
of a male. Each recorded dataset consists of at least one
minute of motion data. For the sheep we considered a 24-
dimensional optimization problem, and for the human dataset
we optimized over 18 dimensions. We ran all experiments
on Intel Xeon E5-2650 v2 CPUs, where ten simultaneous
optimization runs shared 16 cores and 64 GiB RAM. Eval-
vating our performance function (see Eq. (11)) on one bone
parameter configuration and on one recording took between
150 and 250 sec.

In order to score our obtained skeleton structure in an
offline analysis phase, we need to know the ground truth
skeleton structure Cgp, which is unavailable in practice.
For the human datasets we approximated the ground truth

skeleton by the skeleton structure given by Contini [9]. For
the sheep recordings we first took the skeleton from a sketch,
which we denote in the following as first manual guess. Then
we measured the bone lengths of the narcotized sheep and
modified them iteratively to fit into the marker cloud and
to obtain good tracking results. In the following, we call
the skeleton we obtained by this time-consuming iterative
procedure “ground truth skeleton”.

The following experiments show the robustness of our
automated method.

A. Global Optimization

To study whether Bayesian optimization can automatically
find a good skeleton structure, we first need to define the
search space. For each free parameter, we choose a range
of % to 2 times the parameter’s value in the ground truth
skeleton. We assume that a human can guess such a rough
range for the parameter vector of the mammal to be tracked,
without manual measurements or other time-consuming anal-
ysis techniques.

Tracking performance. For each of our three datasets,
we ran each of our three Bayesian optimization techniques
(SMAC, TPE, Spearmint) for 24h, as well as a baseline
optimizer based on random search [3]. In order to quantify
the uncertainty in our results we performed ten independent
runs of each of these methods. For the optimizer SMAC we
evaluated next to EI (Eq. (10)) also the acquisition function
UCB [28] like Calandra et al. [8]; in our case, this yielded
qualitatively similar results. We omit the results in the figure
to avoid clutter.

TABLE I: Means across 10 runs of each optimizer. For each
row, bold face indicates the best mean loss, and underlined
values are not statistically significantly different from the best
according to an unpaired t-test (with p=0.05). Additionally,
we report performance of the ground truth (gr.truth) and for
the sheep first manual guess (manual).

#record. SMAC  Spearmint TPE gr.truth  manual
Male 8 0.0070 0.0120 0.0080  0.0036
Female 9 0.0045 0.0093 0.0047  0.0025 -
Sheep 9 0.0077 0.0123 0.0090  0.0061 0.0165



Fig. 2 shows the tracking error of the best parameter
configuration each method found over time, compared to
tracking performance with the ground truth skeleton. We
further provide quantitative results for these experiments
in Table 1. All optimizers found parameter vectors that
substantially improved tracking performance over the initial
guess and almost reached the performance of the ground
truth skeleton with a completely automated process that had
no knowledge of the ground truth.

Comparing the performance of the individual optimizers,
we note that the tree-based Bayesian optimization meth-
ods SMAC and TPE yielded the best performance, with
SMAC having a slight advantage because it can evaluate
parameter settings based on the performance they yield on
individual recordings (while the other methods always have
to evaluate all recordings for a new parameter configuration).
The Gaussian-Process-based method Spearmint is known to
work well for low-dimensional optimization problems but
to have problems in higher dimensions [13]; indeed, here it
performed similar to the baseline (random search) for the 18-
dimensional human datasets and performed even worse than
the baseline for the 24-dimensional sheep dataset. Based on
these results we will only consider the optimizer SMAC for
all further experiments.

Distance to ground truth skeleton. We confirm this find-
ing by comparing the best found skeleton by the optimizer
SMAC with the ground truth skeleton. For this purpose, we
calculate the joint position difference between the obtained
optimal skeleton and the ground truth. In Table I we show
mean and standard deviation of the differences and the
maximal value of the joint position differences. We compare
the skeletons obtained by optimizing with respect to our
proposed performance measure in Eq. (4) and with respect
to the performance measure introduced by Meyer et al.
[20] (Eq. (3)). The result shows that using our objective
function, which allows unlabeled observations and considers
the coverage and cylindric error, yields skeletons closer to
the ground truth.

The main reason for the larger distances for the sheep
in comparison to the humans are sub-optimal marker place-
ments, which do not allow joint position inference. It was
not possible to attach markers to all bones of the sheep and
additionally they shifted towards the joints.

TABLE II: Joint position difference [cm)]

Meyer et al. [20] Eq. (3) OUR Eq. 4)

mean std max mean std max
Male 2.09 092 4.17 1.18  0.65 2.27
Female 268 1.78 5.75 1.11  0.67 2.26

Sheep 9.81 445 18.86 8.15 4.06 11.88

Smoothness. Although smooth motion trajectories are de-
sirable in motion capture, we did not incorporate smoothness
in our performance function to avoid biasing skeleton move-
ments towards motions with zero movement. Our results
show that the optimized skeleton structure nevertheless leads
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Fig. 3: Sheep: Smoothness of the velocity of the root segment
obtained with our method in comparison to the ground truth
skeleton and a first guess. Absolute differences to ground
truth over all datasets: 0.0252+ 0.0641 m/s (First Guess),
0.01774 0.0325 m/s (Optimized Skeleton)

to smoother motion trajectories than a manually-determined
one. In Fig. 3 we plot the velocity of the root segment of
the sheep for the approximate ground truth skeleton, the
optimized one and a first manual guess for the skeleton
structure. We obtained similar results with all other joints
and motion sequences in our datasets.

B. Start Values

As mentioned above, many markers are occluded if the
sheep stands in a corner of the barn and thus the first frame is
not the optimal one for initialization of the skeleton structure.
Since manually defining the right start frame is a time-
consuming task, we also incorporate the start value in our
search space and optimize over each dataset individually. We
choose the start value in the range of 1000 frames before,
which we call first frame in Fig. 4, and 500 frames after
the manual chosen one. We note, that this does not change
the range of frames across which we calculate the tracking
performance. Fig. 4 shows the velocity profile for one dataset
and the optimized skeleton, the ground truth skeleton started
at the first frame and the ground truth started at the manually
chosen one. We obtained similar results for all our datasets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to obtain a
skeleton of a mammal out of moving sequences of unla-
beled marker positions in an optical motion capture system.
Our approach is based on a probabilistic skeleton tracking
approach and employs a novel approximation for the case of
online skeleton tracking, which takes unlabeled observations,
coverage and the anatomy into account. We showed that
Bayesian optimization with respect to this approximation
robustly yields good skeletons based on a rough initial guess.



Velocity of the root in m/s

Fig.

2 T

Ground truth skeleton; Manual start value (1000)
Ground truth skeleton; Start at first frame

—— Optimized skeleton and start value(1125)

1.5

4: Sheep: Smoothness of the velocity of the root

dependent on the start value. Absolute differences to ground
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Our method also automatically finds a suitable start frame for
initializing the tracking. In the future, we plan to record more
mammals to evaluate how well this approach generalizes to
additional mammals and partial views.
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