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Abstract

One of the goals in the field of mobile robotics is the de-
velopment of mobile platforms which operate in populated
environments. For many tasks it is therefore highly desirable
that a robot can determine the positions of the humans in its
surrounding. In this paper we introduce sample-based joint
probabilistic data association filters to track multiple moving
objects with a mobile robot. Our technique uses the robot’s
sensors and a motion model of the objects being tracked. A
Bayesian filtering technique is applied to adapt the tracking
process to the number of objects in the sensor range of the
robot. Our approach to tracking multiple moving objects has
been implemented and tested on a real robot. We present ex-
periments illustrating that our approach is able to robustly
keep track of multiple persons even in situations in which
people are temporarily occluded. The experiments further-
more show that the approach outperforms other techniques
developed so far.

1. Introduction

The problem of estimating the positions of moving objects
is an important problem in mobile robotics. Knowledge about
the position of moving objects can be used to improve the be-
havior of the system especially if the robot is deployed in pop-
ulated environments. For example, this ability allows a robot
to adapt its velocity to the speed of people in the environment
and enables a robot to improve its collision avoidance behav-
ior in situations in which the trajectory of the robot crosses
the path of a human.

In this paper we present a method for tracking multiple
moving objects with a mobile robot. This technique uses
the robot’s sensors and a motion model of the objects be-
ing tracked in order to estimate their positions and velocities.
We introduce sample-based Joint Probabilistic Data Associ-
ation Filters (SJPDAFs). JPDAFs [1, 3] are a very popular
approach to tracking multiple moving objects. They com-
pute a Bayesian estimate of the correspondence between fea-
tures detected in the sensor data and the different objects to

be tracked. Like virtually all existing approaches to track-
ing multiple targets, they apply Kalman filters to estimate the
states of the individual objects. While Kalman filters have
been shown to provide highly efficient state estimates, they
are restricted to Gaussian distributions over the state to be es-
timated.

More recently, particle filters have been introduced to es-
timate non-Gaussian, non-linear dynamic processes [7, 15].
They have been applied with great success to different state
estimation problems including visual tracking [2, 9], mo-
bile robot localization [5] and dynamic probabilistic net-
works [10]. The key idea of particle filters is to represent the
state by sets of samples (or particles). The major advantage
of this technique lies in the ability to represent multi-modal
state densities, a property which has been shown to increase
the robustness of the underlying state estimation process [8].
However, most existing applications deal with estimating the
state ofsingleobjects only. One way to apply particle filters
to the problem of trackingmultipleobjects is to estimate the
combined state space, as proposed in [12]. Unfortunately, the
complexity of this approach grows exponentially in the num-
ber of objects to be tracked.

Our approach combines the advantages of particle fil-
ters with the efficiency of existing approaches to multi-target
tracking: It uses particle filters to track the states of the ob-
jects and applies JPDAFs to assign the measurements to the
individual objects. Instead of relying on Gaussian distribu-
tions extracted from the sample sets as proposed in [6], our
approach applies the idea of JPDAFs directly to the sample
sets of the individual particle filters. To adapt the SJPDAFs
to the different numbers of objects in the robot’s sensor range,
our approach maintains a probability distribution over the
number of objects being tracked. The robustness of the over-
all approach is increased by applying a motion model of the
objects being tracked. Furthermore, it uses different fea-
tures extracted from consecutive sensor measurements to ex-
plicitely deal with occlusions. This way, our robot can reli-
ably keep track of multiple persons even if they temporarily
occlude each other.

This paper is organized as follows. After introducing a



general framework for JPDAFs, we introduce SJPDAFs in
Section 2. Section 3 explains how we add and remove particle
filters based on an estimate of the current number of objects.
In Section 4, we describe how to extract features from prox-
imity information provided by a robot’s laser range finders.
Furthermore, we show how to deal with occlusions. Section 5
describes several experiments carried out on a real robot and
in simulations. The experiments illustrate the capabilities and
the robustness of our approach.

2. Sample-based Joint Probabilistic Data Asso-
ciation Filters (SJPDAFs)

To keep track of multiple moving objects one generally
has to estimate the joint probability distribution of the state
of all objects. This, however, is intractable in practice al-
ready for a small number of objects since the size of the state
space grows exponentially in the number of objects. To over-
come this problem, a common approach is to track the dif-
ferent objects independently, using factorial representations
for the individual states. A general problem in this context
is to determine which measurement is caused by which ob-
ject. In this paper we apply Probabilistic Data Association
Filters (JPDAFs) [3] for this purpose. In what follows we
will first describe a general version of JPDAFs and then a
sample-based implementation.

2.1. Joint Probabilistic Data Association Filters
Consider the problem of trackingT objects. Xk =

{xk1 , . . . , xkT } denotes the state of these objects at timek.
Note that eachxki is a random variable ranging over the
state space of a single object. Furthermore, letZ(k) =
{z1(k), . . . , zmk(k)} denote a measurement at timek, where
zj(k) is one feature of such a measurement.Zk is the se-
quence of all measurements up to timek. The key question
when tracking multiple objects is how to assign the observed
features to the individual objects.

In the JPDAF framework, a joint association eventθ is
a set of pairs(j, i) ∈ {0, . . . ,mk} × {1, . . . , T}. Eachθ
uniquely determines which feature is assigned to which ob-
ject. Please note, that in the JPDAF framework, the feature
z0(k) is used to model situations in which an object has not
been detected, i.e. no feature has been found for objecti. Let
Θji denote the set of all valid joint association events which
assign featurej to the objecti. At time k, the JPDAF com-
putes the posterior probability that featurej is caused by ob-
ject i according to

βji =
∑
θ∈Θji

P (θ | Zk). (1)

Using Bayes’ rule and under the assumption that the estima-
tion problem is Markovian, we can compute the probability
P (θ | Zk) of an individual joint association event as

P (θ | Zk) = P (θ | Z(k),Zk−1) (2)

Markov!= P (θ | Z(k),Xk) (3)
Bayes!

= α p(Z(k) | θ,Xk) P (θ | Xk). (4)

Hereα is a normalizer ensuring thatP (θ | Zk) sums up to
one over allθ. The termP (θ | Xk) corresponds to the prob-
ability of the assignmentθ given the current states of the ob-
jects. Throughout this paper we make the assumption that all
assignments have the same likelihood so that this term can be
approximated by a constant. Throughout our experiments we
did not observe evidence that this approximation is too crude.
However, we would like to refer to [4] for a better approxi-
mation of this quantity.

The termp(Z(k) | θ,Xk) denotes the likelihood of mak-
ing an observation given the state of the objects and a specific
assignment between the observed features and the objects. In
order to determine this quantity, we have to consider the case
that a feature is not caused by any of the objects. We will
call these features false alarms. Letγ denote the probabil-
ity that an observed feature is a false alarm. The number of
false alarms contained in an association eventθ is given by
(mk − |θ|). Thenγ(mk−|θ|) is the probability assigned to all
false alarms inZ(k) givenθ. All other features are uniquely
assigned to an object. Making the assumption that the fea-
tures are detected independently of each other, we get

p(Z(k) | θ,Xk) = γ(mk−|θ|)
∏

(j,i)∈θ

p(zj(k) | xki ). (5)

By inserting Eq. (5) into Eq. (4), using the assumption that
P (θ | Xk) is constant, and after inserting the result into
Eq. (1) we obtain

βji =
∑
θ∈Θji

α γ(mk−|θ|)
∏

(j,i)∈θ

p(zj(k) | xki ). (6)

It remains to describe, how the beliefsp(xki ) about the states
of the individual objects are updated. In the standard JPDAF
it is generally assumed that the underlying densities are Gaus-
sians, and Kalman filtering is applied to update these densi-
ties. In the more general framework of Bayesian filtering,
the update equation for the prediction of the new state of an
object is

p(xki | Zk−1) =

∫
p(xki | xk−1

i , t) p(xk−1
i | Zk−1) dxk−1

i . (7)

Whenever new sensory input arrives, the state is corrected
according to

p(xki | Zk) = α p(Z(k) | xki ) p(xki | Zk−1), (8)

where, again,α is a normalization factor. Since we do not
know which of the features inZ(k) is caused by objecti,
we integrate the single features according to the assignment
probabilitiesβji

p(xki | Zk) = α

mk∑
j=0

βjip(zj(k) | xki ) p(xki ). (9)
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Thus, all we need to know are the modelsp(xki | x
k−1
i , t) and

p(zj(k) | xki ). Both depend on the properties of the objects
being tracked and the sensors used. One additional important
aspect is how the distributionsp(xki ) over the state spaces of
the individual objects are represented.

2.2. The Sample-based Approach
In most applications to target tracking, Kalman filters and

hence Gaussian distributions are used to track the individ-
ual objects. In our approach, we use sample-based represen-
tations of the individual beliefs of the states of the objects
which allows us to represent arbitrary densities.

The key idea underlying all particle filters is to represent
the densityp(xki | Zk) by a setSki of N weighted, random
samples orparticlesski,n(n = 1 . . . N). A sample set con-
stitutes a discrete approximation of a probability distribution.
Each sample is a tuple(xki,n, w

k
i,n) consisting of statexki,n and

an importance factorwki,n. Thepredictionstep of Bayesian
filtering is realized by drawing samples from the set com-
puted in the previous iteration and by updating their state ac-
cording to the prediction modelp(xki | x

k−1
i , t). In thecorrec-

tion step, a measurementZ(k) is integrated into the samples
obtained in the prediction step. According to Eq. (9) we have
to consider the assignment probabilitiesβji in this step. To
determineβji, however, we have to computep(zj(k) | xki ).
In our particle filter-based version this quantity is obtained by
integrating over all samples:

p(zj(k) | xki ) =
1
N

N∑
n=1

p(zj(k) | xki,n). (10)

Given the assignment probabilities we now can compute
the weights of the samples

wki,n = α

mk∑
j=0

βjip(zj(k) | xki,n), (11)

whereα is a normalizer ensuring that the weights sum up to
one over all samples. Finally, we obtainN new samples from
the current samples by bootstrap resampling. For this purpose
we select every samplexki,n with probabilitywki,n.

3. Estimating the Number of Objects
The Joint Probabilistic Data Association Filter assumes

that the number of objects to be tracked is known. In practi-
cal applications, however, the number of objects often varies
over time. For example, when a mobile robot is moving in a
populated environment, the number of people in the percep-
tual field of the robot changes frequently. We deal with this
problem by additionally maintaining a densityP (Nk | Mk)
over the number of objectsNk at time k, where Mk =
m0, . . . ,mk is the sequence of the numbers of features ob-
served so far. Using Bayes’ rule, we have

P (Nk | Mk) = α · P (mk | Nk,Mk−1) · P (Nk | Mk−1).
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Figure 1.The sensor modelP (mk | Nk) specifying the
probability of observingmk features, ifNk objects are in the
perceptual range of the sensor

Under the assumption that, given the current number of ob-
jects, the number of observed features is independent of the
number of previously observed features, we obtain

P (Nk | Mk) = α · P (mk | Nk) · P (Nk | Mk−1).

Using the law of total probability, and given the assumption
thatNk is independent ofMk−1 givenNk−1 we have

P (Nk | Mk) = α · P (mk | Nk)
·
∑
n P (Nk | Nk−1 = n) · P (Nk−1 = n | Mk−1) (12)

As a result, we obtain a recursive update procedure for
P (Nk | Mk), where all we need to know are the quantities
P (mk | Nk) andP (Nk | Nk−1). The termP (mk | Nk)
represents the probability of observingmk features, ifNk

objects are in the perceptual field of the sensor. In our current
implementation, which uses laser range sensors, we learned
this quantity from a series of 5100 range scans, recorded dur-
ing a simulation experiment, where up to 10 objects where
placed at random locations within the robot’s surrounding.
The resulting density is depicted in Fig. 1. Please note that
the probability of an occlusion increases with the number of
objects. Accordingly, the more objects are in the perceptual
field of the robot, the more likely it becomes that a feature is
missing. Therefore, the resulting distribution shown in Fig. 1
does not correspond to a straight line lying on the diagonal.
The termP (Nk | Nk−1) specifies how the number of objects
changes over time. In our system we model arrivals of new
objects and departures of known objects as Poisson processes.

To adapt the number of objects in the SJPDAF, our system
uses the maximum likelihood estimate ofP (Nk | Mk). If
the number of particle filters in the SJPDAF is smaller than
the new estimate forNk, new filters need to be initialized.
Since we do not know which of the features originate from
new objects, we initialize the new filters using a uniform dis-
tribution. We then rely on the SJPDAF to disambiguate this
distribution during subsequent filter updates.

In the alternative case that the new estimate forNk is
smaller then the current number of particle filters, some of
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Figure 2.Typical laser range finder scan. Two of the local minima are caused by people walking by the robot (left image). Feature
grid extracted from the scan representing the corresponding probability densitiesP (legskx,y) (center). Occlusion grid representing

P (occludedkx,y) (right).

Figure 3. From left to right, top-down: the current oc-
cupancy mapP (occx,y | Z(k)), the previous occupancy
map P (occx,y | Z(k − 1)), the resulting difference map
P (newkx,y), and the fusion of the difference map with the fea-
ture maps for the scan depicted in Figure 2

the filters need to be removed. This, however, requires that we
know which filter does not track an object any longer. To es-
timate the tracking performance of a sample set, we accumu-
late a discounted averagêW k

i of the sum of sample weights
W k
i before the normalization step:

Ŵ k
i = (1− δ)Ŵ k−1

i + δW k
i . (13)

Since the sum of sample weights decreases significantly,
whenever a filter is not tracking any feature contained in the
measurement, we use this value as an indicator that the cor-
responding object has left the perceptual field of the robot.
Whenever we have to remove a filter, we choose the one with
the smallest discounted averageŴ k

i .

4. Application to Laser-based People Tracking
with a Mobile Robot

In this section we describe the application of the SJPDAF
to the task of tracking people using the range data obtained
with a mobile robot. Our mobile platform is equipped with
two laser range scanners mounted at a height of 40 cm. Each
scan of these two sensors covers the whole surrounding of
the robot at an angular resolution of 1 degree. To represent
the state of a person we use a quadruple〈x, y, φ, v〉, where
x andy represent the position relative to the robot,φ is the
orientation andv is the walking speed of the person.

To robustly identify and keep track of persons, our system
uses two different patterns in range scans which are typically
caused by humans walking through a building. Consider as
an example the situation shown in the left image of Figure 2.

In this situation two people pass a robot in a corridor which
cause two local minima in the range profile of the laser range
scan. The third minimum is caused by a trash bin placed in
the corridor. Given these local minima we compute a set of
two-dimensional position probability grids containing in each
cell the probabilityP (legskx,y) that a persons legs are at posi-
tion 〈x, y〉 relative to the robot. We generate one such map for
each feature in the range scan. An overlay of all three maps
representing the candidates found in our example is shown in
the center of Figure 2.

Unfortunately, there are other objects in typical office en-
vironments which produce patterns similar to people. To dis-
tinguish these static objects from moving objects our system
additionally considers the changes in consecutive scans. This
is achieved by computing local occupancy grid maps [14] for
each pair of consecutive scans. Based on these occupancy
grids we compute the probabilityP (newkx,y) that something
moved to location〈x, y〉:

P (newkx,y) = P (occx,y | Z(k)) · (1− P (occx,y | Z(k − 1))).

Because the local mapsP (occx,y | Z(k)) are built while the
robot is moving, we first align the maps using the scan match-
ing technique presented in [11]. Figure 3 shows two subse-
quent and aligned local grids and the resulting grid represent-
ing P (newkx,y).

In order not to loose track of a moving object when it stops
our system takes an inductive approach. A local feature is as-
sumed to be caused by a moving object either if it is supported
by P (newkx,y) or if a moving object was detected at the same
position already in the previous scan

P (supportkx,y) = 1− (1− P (newkx,y)) · (1− P (objectk−1
x,y )).

Finally P (objectkx,y) is a probability grid specifying
the probability, that a moving object is currently placed
at position 〈x, y〉. This grid is computed by combining
P (supportkx,y) with the position probability grid of the fea-
ture. Under the assumption that the probabilities are indepen-
dent, we have

P (objectkx,y) = P (legskx,y) · P (supportkx,y)

In the correction steps of the particle filters, we now use
theP (objectkx,y) of each featurezj(k), 1 ≤ j ≤ mk to com-
pute the sample weightsp(zj(k) | xi,n(k))

P (zj(k) | xki,n) = P (objectkxi,n). (14)

4



Additionally we have to compute the likelihood
p(z0(k) | xi,n(k)), that the person indicated by a sam-
ple xi,n(k) has not been detected in the current scan. This
can be due to failure in the feature extraction or due to
occlusions. The first case is modeled by a small constant
value in all cells of the position and difference grids. To
deal with possible occlusions we compute the so-called
“occlusion map” containing for each position in the sur-
rounding of the robot the probabilityP (occludedkx,y) that
the corresponding position is not visible given the current
features extracted in the first step. The resulting occlusion
map for the scan shown on the left of Figure 2 is depicted in
the right image of Figure 2. To determineP (z0(k) | xi,n(k))
we use this occlusion map and a fixed feature detection
failure probabilityP (¬Detect):

P (z0(k) | xi,n(k)) = P (occludedkxi,n ∨ ¬Detect). (15)

To predict the samples estimating the motions of persons,
we apply a probabilistic motion model. We assume that a
person changes its walking direction and walking speed ac-
cording to Gaussian distributions. Thereby, the translational
velocity is assumed to lie between 0 and 150 cm/s. Addition-
ally, we use the static objects also extracted from consecutive
scans to avoid that samples end up inside of objects or move
through objects.

5. Experimental Results

Our approach has been implemented and tested exten-
sively with our mobile robot as well as in simulation runs.
Throughout the experiments the robot was moving with
speeds of up to 40 cm/s. The current implementation is able
to integrate laser range scans at a rate of 5Hz.

5.1. Performance of SJPDAF-Tracking

In the first experiment our robot was moving in the cor-
ridor of the department building. Simultaneously, up to 6
persons were walking in the corridor, frequently entering the
robot’s perceptual range of 8m. Figure 4 shows a short se-
quence of pairs of images taken during the experiment. Each
pair consists of an image recorded with a ceiling-mounted
camera (left part) as well as a 3D visualization according to
the current estimate of our system at the same point in time
(right image). The time delay between consecutive images is
1.25 seconds and the robot moves with a speed of 40 cm/s.
As can be seen from the figure, the robot is able to accurately
estimate the positions of the persons.

A typical situation is shown in Figure 5. Here the robot is
standing and three people are walking along the corridor. The
upper image shows the ground truth extracted from the data
recorded during the experiment. The lower image depicts the
trajectories estimated by our algorithm. Please note that there
is a certain delay in the initialization of the sample set for the

Figure 4. Tracking sequence showing a real photo and a
3D visualization of the state estimate at the same point
in time. The time delay between consecutive images is
1.25 seconds.

person marked “a”. This delay is due to the number of object
estimate and the occlusion by person “b”.

To estimate the accuracy of our approach, we manually
determined the positions of the persons for each individual
scan and measured the distance to the estimated positions. It
turned out that the average displacement between the ground
truth position and the estimated position was 19 cm and the
maximum displacement was 37 cm. In order to evaluate the
accuracy of the estimation of the number of objects, we man-
ually determined the correct number of people in each scan
and compared them to the estimate of the system. Note, that
the estimation process is a filter, which smoothes out the ef-
fect of random feature detection failures and false alarms, but
it also introduces some delay in the detection of the change of
the number of objects. We found an average detection delay
of 1 sec. Neglecting this delay effect, the estimator correctly
determined the number of objects in 90% of all scans.

To analyze the advantage of the explicit occlusion han-
dling, we systematically analyzed a data set recorded with
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Figure 5.Typical situation in which the robot had to track
three persons. Whereas the ground truth is shown in the up-
per image, the estimated trajectories are depicted in the lower
image.

occluded

Figure 6.Estimated trajectories of two persons in a situation
in which one person temporarily occludes the other. The ar-
row indicates the point in time, when the occlusion occurred.

our robot while it was moving at a speed of 40 cm/sec. In
this experiment two persons were walking in the corridor of
our department with speeds of 60cm/s and 80cm/s, respec-
tively. Figure 6 shows a typical situation which occurred dur-
ing this experiment in which one person temporarily occludes
the other. From the data we created 40 different sequences
which were used for the quantitative analysis. For all these
sequences we evaluated the performance of our tracking al-
gorithm with and without occlusion handling. Thereby we
regarded it as a tracking failure if one of the two sample sets
is removed or if one sample set tracked the wrong person af-
ter the occlusion took place. Without occlusion handling, the
system failed in seven cases (17.5%). With occlusion han-
dling, the robot was able to reliably keep track of both persons
and failed in only one of the 40 cases (2.5%).

These experiments demonstrate, that our system is able to
reliably and accurately keep track of several moving objects
even in cases in which occlusions occur.

5.2. Comparison to Standard JPDAFs

As pointed out above, the main advantage of particle fil-
ters compared to Kalman filters is that particle filters in prin-
ciple can represent arbitrary densities, whereas Kalman fil-
ters are restricted to Gaussian distributions. Accordingly, our
SJPDAF-approach produces more accurate densities than the
standard JPDAF using Kalman filters.

obstacle
t1

t2

t3�     

obstacle

t1 t3�  
t2

Figure 7.Tracking one object approaching a static obstacle;
using a particle filter (left) and using a Kalman filter (right).
The arrow indicates the trajectory taken by the object. The
Kalman filter erroneously predicts that the object moves into
the obstacle.

Figure 7 shows a typical example in which the restricted
representation of Kalman filters leads to a wrong prediction.
Here the robot tracks a person which walks straight towards
an obstacle and then passes it on the right side (see solid line).
The left image of Figure 7 also contains the probability den-
sities of the particle filters computed by the SJPDAF at three
different points in time. The grey-shaded contours indicate
the corresponding distributions of the particles (the darker the
higher the likelihood), which were obtained by computing a
histogram over a discrete grid of poses. The Mahalanobis dis-
tance of the Gaussians computed at the same points in time
by the standard JPDAF using a Kalman filter are shown in the
right image of Figure 7.

As can be seen from the figure, both filters correctly pre-
dict the position of the person in the first two steps. However,
in the third step the Kalman filter predicts that the person will
move into the obstacle. Our SJPDAF, in contrast, correctly
predicts that the person will pass the obstacle either to the left
or to the right. This is indicated by the bimodal distribution
shown in the left image of Figure 7.

5.3. Advantage of the SJPDAF over Standard Parti-
cle Filters

In the past, single state particle filters have also been used
for tracking multiple objects [13, 9]. This approach, which
rests on the assumption that each mode in the density cor-
responds to an object, is only feasible if all objects can be
sensed at every point in time and if the measurement errors
are small. If, for example, one object is occluded, the sam-
ples tracking this object obtain significantly smaller impor-
tance factors than the samples tracking the other objects. As
a result, all samples quickly focus on the un-occluded object.

Figure 8 shows an example situation in which the robot
is tracking two persons. Whereas one person is visible all
the time, the second one is temporarily occluded by a static
obstacle. The upper row of the figure shows the evolution
of the samples using such a single state particle filter. This
filter was initialized with a bimodal distribution using 1000
particles for each object. As soon as the upper object is oc-
cluded, all samples are moved to the un-occluded person and
the filter loses track of the occluded object. The lower row of
the figure shows the samples sets resulting from our SJPDAF.
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Figure 8.Tracking two persons with one sample set (top
row) and with two sample sets (bottom row). The arrows indi-
cate the position of the persons and their movement direction.

Although the uncertainty about the position of the occluded
object increases, the filter is able to reliably keep track of both
objects.

6. Summary and Conclusions

In this paper we presented a technique for keeping track
of multiple moving objects with a mobile robot. In order to
avoid the exponential complexity of joint state spaces, each
object is tracked using a particle filter and Joint Probabilis-
tic Data Association Filters are applied to solve the problem
of assigning measurements to the individual objects. By in-
tegrating particle filters with JPDAFs, our SJPDAF inherits
the advantages of both: it can represent arbitrary densities
over the state space of the individual objects while still be-
ing able to efficiently solve the data association problem. Our
approach uses a probabilistic approach to deal with varying
numbers of objects. Furthermore, it extracts appropriate fea-
tures from proximity data to deal with possible occlusions.

The technique has been implemented and evaluated on a
real robot as well as in simulation runs. The experiments
carried out in a typical office environment demonstrate that
our approach is able to reliably keep track of multiple per-
sons. They furthermore illustrate that our approach outper-
forms other techniques developed so far.
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