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Abstract Commonly, the inverse kinematic function of robotic manipulators is de-
rived analytically from the robot model. However, there are cases in which a model
is not a priori available. In this paper, we propose an approach that enables an au-
tonomous robot to estimate the inverse kinematic function on-the-fly directly from
self-observation and without a given kinematic model. The robot executes randomly
sampled joint configurations and observes the resulting world positions. To approx-
imate the inverse kinematic function, we propose to use instance-based learning
techniques such as Nearest Neighbor and Linear Weighted Regression. After learn-
ing, the robot can take advantage of the learned model to build roadmaps for motion
planning. A further advantage of our approach is that the environment can implic-
itly be represented by the sample configurations. We analyze properties of this ap-
proach and present results obtained from experiments on a real 6-DOF robot and
from simulation. We show that our approach allows us to accurately control robots
with unknown kinematic models of various complexity and joint types.

1 Introduction

Robotic manipulators typically require a Cartesian controller that maps the three-
dimensional world space coordinates to joint configurations. The equations for the
inverse kinematics can analytically be derived in advance when a robot model is
available. Careful parameter calibration then ensures high accuracy in positioning
tasks.

In the emerging field of home robotics, robots are likely to be assembled without
surveillance of an engineer, meaning that no accurate construction model is avail-
able at design time. Further, home robots need to operate for extended periods of
time, during which they might be subject to damage, inaccurate repairs or other un-
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Fig. 1 Schematic overview of the proposed controller. Configurations are sent to the robot, the
world-position is visually observed and recorded. Configurations for novel world positions are
obtained by locally interpolating between known configurations.

foreseen modifications. This requires the development of new approaches to robust
self-adaptation of the robot’s internal kinematic models.

In this paper we introduce methods that can be used to approximate the inverse
kinematic function without an a priori model. The robot visually observes the effects
of its motor-commands on the position of its end-effector. The robot can then use
these observations to estimate the kinematic function using nearest-neighbor meth-
ods (Figure 1). The remainder of this paper is organized as follows: Section 2 relates
our paper to other approaches on kinematic learning. In Section 3 we introduce our
approach on using nearest-neighbor methods for inverse kinematics estimation and
planning. In Section 4, we analyze the performance and robustness in experiments
on a real robot and in simulation.

2 Related Work

The problem of learning kinematics of robots has been investigated heavily in the
past. In classical engineering, a typical solution starts out with a parameterized for-
ward model, whose parameters are iteratively optimized in order to minimize the
prediction error. However, only few approaches exist that do not rely on such a pri-
ori models of the robot.

Dearden and Demiris [2] present a method which estimates the parameters for
the motion and observation model of a recursive Bayesian filter from visual obser-
vations. Whereas this approach has been applied successfully to a gripper with two
separately controlled fingers, the sheer size of the parameter space prevents us from
the direct application to highly complex robots. Sturm et al.[9] presented an alter-
native method that also uses Bayesian networks to estimate the robot model. In this
work, the networks are learned by visually observing the individual parts of the
robot while performing random movements. The authors estimate the global robot
structure by learning the actuator models and finding the network topology that best
explains the data in terms of data likelihood. The resulting model can then be used
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to predict the end-effector pose, so that gradient descent strategies can be applied
for solving inverse kinematics. Our method presented in this paper, being simpler
in nature, requires only a single marker on the end-effector instead of a marker for
every rigid body part.

In the approach presented by Cheah et al.[1], the robot learns, instead of the end-
effector position, only the Jacobian, which describes the first derivative of the robot’s
kinematics and dynamics, using the visually observed world position of the end-
effector, the joint velocities and configurations. The Jacobian can then be applied for
calculating the inverse kinematics. The approach is evaluated on 2-DOF (degrees of
freedom) robots in a 2D workspace only. In our experiments we demonstrate, that
our approach also works in the full 3D space and also with up to 6-DOF.

In the area of visual servoing (see the work by Malis for an overview [8]) the
robotic arm is typically controlled locally by observing the effect of motor com-
mands on the end-effector in the image space. As visual servoing is a pure online-
technique that relies on visual feedback, it cannot be used for (offline) planning. We
could however apply visual servoing to improve the accuracy of our method after a
plan has been generated.

To sum up, compared to previous approaches our method does not rely on prior
knowledge of the robot model, it scales better even with an increasing number of
DOF, and allows for global planning. Additionally, our approach is able to implicitly
represent the environment and to handle self-collisions.

3 The Model-Free Approach

We collect data by sending a configuration request q = (q1,q2, . . . ,qn) to a robot
with n joints and observing the resulting end-effector position x = (x1,x2,x3) in 3D
space. After m trials, this results in a kinematic database

S =
(〈

q1,x1〉 ,〈q2,x2〉 , . . . ,〈qm,xm〉
)
.

If a collision is encountered, the corresponding sample is rejected. We describe two
online learning methods for estimating the inverse kinematics from the acquired
data. This allows us to generate a valid configuration q for a given target position x.
We furthermore present an approach for planning based on the kinematic database.

3.1 Nearest Neighbor Method

Using a probabilistic formalization, we assume that the collected samples in S are
drawn from a joint probability distribution p(q,x) defined by the unknown under-
lying mechanical model. Estimating a configuration q̂target that is supposed to yield
xtarget then corresponds to finding a configuration that maximizes the conditional



4 Hannes Schulz, Lionel Ott, Jürgen Sturm and Wolfram Burgard

NWN

q

xxtarget

q̂target

(a) Nearest Neighbor

q(x
)

NWN

q

xxtarget

q̂target

(b) Linear Weighted Regression

Fig. 2 Visualization of our approach for a 1-DOF robot. (a) Shaded areas: Collected samples,
NWN: Nearest world-neighbor of xtarget, Horizontal line: Joint position q̂target associated with
NWN. (b) Circles: Subset of collected samples which are close to NWN in configuration space,
Shaded area: p(q,x), with an assumed linear relationship between x and q. Evaluation of fitted
linear function q(x) at the desired world position xtarget yields desired configuration q̂target. Lighter
shading of samples indicates higher world space distance to xtarget and thus less influence on the
slope of q(x).

probability

qtarget = argmax
q

p(q|xtarget).

As a first approximation, we search for the closest world-neighbor to the target loca-
tion xtarget in our database, and assign the associated joint value to q̂target:

q̂target = argmin
qi∈S

∥∥xtarget−xi∥∥
2 (1)

This idea is also visualized for a 1-DOF robot in Figure 2a.
There are two obvious disadvantages of this method: First, it is sensitive to the

noise in the observations. Second, the accuracy of the method is directly related to
the sample density in S. Interestingly, it does not rely on the dimensionality of q
or the effective complexity of the mapping between configuration space and world
space; in particular, the database lookups can be implemented very efficiently for
example by using KD-trees [4]. Also, in the noise-free case, the nearest neighbor
(NN) method will converge to the true function in the limit.

3.2 Linear Weighted Regression

To improve the NN method one can interpolate between the k-nearest neighbors
in configuration space. However, this interpolation is not straightforward since the
configurations resulting in a single world position are ambiguous, as a robot may
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have multiple ways to approach it. We solve this problem by interpolating only
between configurations that are “close” in configuration space. We start by selecting
the nearest neighbor 〈qw,xw〉 to xtarget in world space and from there select the set
of k nearest neighbors in configuration space:

S̄ = argmin
S̄⊂S,|S̄|=k

∑
〈q,x〉∈S

‖q−qw‖ (2)

This locally selected subset S̄ of kinematic samples can now be used for interpola-
tion, because all samples in S̄ are neighbors in configuration space.

Note that rotational joints, for example, move the end-effector on a circular path.
Even though it is possible to interpolate between the joint angles, the information
how a joint affects the position of the end-effector is part of the model, which is not
available. We assume that the actuators are locally linear, allowing us to fit a linear
model to the samples in S̄ such that for a 1-DOF robot whe have

∀〈q,x〉 ∈ S̄ : q = w3x3 +w2x2 +w1x1 +w0, (3)

where w = (w3,w2,w1,w0) is the weight vector defining a plane.
Since the data contains observation noise and the assumption of local linearity is

only an approximation, the linear model will not fit perfectly. Therefore, we estimate
ŵ from the least-squares solution

ŵ = argmin
w

∑
si∈S̄

(
qi− (w3xi

3 +w2xi
2 +w1xi

1 +w0)
)2 = argmin

w
‖Xw−Q‖2

2 , (4)

where X ∈ RN×4 with N = |S̄| is the number of joint neighbors used. Q ∈ RN×1 are
the corresponding joint values and w ∈ R4×1 are the weights we want to estimate.
Using SVD [5], Equation (4) can be solved efficiently. To reduce the effects of non-
linearity, we weight the error introduced by a sample and thus its influence on the
slope of the function by the inverse of its squared world space distance to xtarget.
Given the weights ŵ, we can determine the configuration q̂target for a novel world
position xtarget as

argmax
q

p(q|x)≈ q̂target = ŵ3xtarget
3 + ŵ2xtarget

2 + ŵ1xtarget
1 + ŵ0

When this method is extended to multiple joints, the weight vector w needs to to
be replaced by a weight matrix W . This would treat the individual joints as being
independent during the maximization of p(q|xtarget). Of course, this is not the case,
choosing the value of one joint limits the possible values of subsequent joints. Ac-
tually, finding the configuration with highest likelihood of leading to a pose xtarget in-
volves finding the global maximum, i.e., computing argmaxq1...qn

p(q1, . . . ,qn|xtarget).
We suggest to find this maximum greedily by factorizing this probability distribution
according to the chain rule as



6 Hannes Schulz, Lionel Ott, Jürgen Sturm and Wolfram Burgard

qtarget = argmax
q1...qn

p(q1, . . . ,qn|xtarget)

= argmax
q1...qn

p(q1|xtarget)p(q2|xtarget,q1) · · · p(qn|xtarget,q1, . . . ,qn−1)

and then maximizing the factors one by one, extending the linear least-squares
model from Equation (4) for each joint:

q̂target =


argmaxq1

p(q1|xtarget)
argmaxq2

p(q2|xtarget,q1)
· · ·
argmaxqn

p(qn|xtarget,q1, . . . ,qn−1)

 (5)

In this way, the linearization of the kinematic model for each joint takes into account
all previous joints. Note that the factorization in Equation (5) is valid even for an
arbitrary order of the joints.

3.3 Path Planning

With the methods described above, we can infer joint configurations that move the
robot arm to previously un-encountered target positions. The data stored in the kine-
matic database S implicitly encodes information about the robot itself and the sur-
roundings, as it contains only samples from accessible, obstacle-free regions both
in configuration space and world space. In the following, we present a planning
method based on probabilistic roadmaps [7]. Planning is performed directly in the
kinematic database, by using a cost metric combining world space and configuration
space metrics.

From our kinematic database, we create a undirected graph with the nodes cor-
responding to the samples in the kinematic database. Two nodes si,s j ∈ S are as-
sumed to be connected in the graph, when they are close in world space, i.e.,∥∥xi−x j

∥∥
2 < dmax.

The planning problem then reduces to finding the shortest path 〈π(0), . . . ,π(n)〉
through the graph [6]. To avoid long initial paths and to get as close as possible to
the target, we add a starting node at the current configuration qcurrent of the robot,
and an ending node close to xtarget:

sπ(0) = argmin
si∈S

∥∥qi−qcurrent∥∥
2 , sπ(n) = argmin

si∈S

∥∥xi−xtarget∥∥
2 .

We find the shortest path using the A∗ algorithm. Our cost function takes into ac-
count differences in world space and in configuration space:

n−1

∑
i=0

(
α

∥∥∥xπ(i)−xπ(i+1)
∥∥∥

2
+β

∥∥∥qπ(i)−qπ(i+1)
∥∥∥2

2

)
,
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(a) (b) (c)

Fig. 3 Robots used for testing. (a) Robots with rotational and prismatic (“rails”) joints, (b) Simu-
lated 6-DOF robot, and (c) Real-world 6-DOF counterpart.

where α = 1/dmax, and β can be set likewise to 1 divided by the maximum joint
distance. The squared joint-distance causes the planner to prefer many small steps
through the roadmap instead of one large one. This increases the resolution of the
controlled path and simultaneously penalizes shortcuts through potential obstacles
that appear as unpopulated regions in the roadmap.

4 Results

We first investigate the performance of both methods for a varying number of joints.
Then, the influence of different joint types is evaluated. Finally we applied the meth-
ods to both a simulated version of our 6-DOF robot and the real robot composed of
rotatory Schunk PowerCube modules.

4.1 Positioning accuracy

We compared the accuracy of the a simulated robot with 3 versus 6 active joints.
The results are displayed in Figure 4a. For an arm length of 100cm operating in a
hemisphere. The Nearest Neighbor method achieves an accuracy of 9.0cm (3-DOF)
and 10.7cm (6-DOF) with 300 samples, while Linear Weighted Regression obtains
an accuracy of 5.2cm and 8.3cm, respectively. Note that the decrease in accuracy of
Nearest Neighbor can only be attributed to the increasing workspace volume. Linear
Weighted Regression, however, additionally suffers from the increasing dimension-
ality in configuration space, nevertheless it outperforms Nearest Neighbor in both
cases.

Another property we investigated was the ability to cope with different types
of joints. For this purpose, we constructed two robots. The first robot (similar to
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Fig. 4 (a) Accuracy of our methods on 3 and 6-DOF robots with arm length of 1m. (b) Prismatic
joints (conform to linearity assumption) increase accuracy of LWR, although workspace volume
increases. Contrarily, Nearest Neighbor (NN) performance decreases. Model A contains only rota-
tional joints, while Model B contains prismatic joints as well.

Figure 3b) has five rotational joints in the arm. For the second robot (Figure 3a) we
replaced three rotational joints with prismatic joints.

Analyzing the accuracy of both methods, we find that Linear Weighted Regres-
sion outperforms Nearest Neighbor on both robots (Figure 4b). As expected, Nearest
Neighbor performance drops when the workspace volume increases. The accuracy
of Linear Weighted Regression increases since prismatic joints conform to the lin-
earity assumption and are thus better suited for interpolation.

4.2 Real Robot Evaluation

The following experiments aim at evaluating the general performance of the ap-
proaches with a complex robot, with six rotational joints. Our robot “Zora”, de-
picted in Figure 3c, consists of a B21 base and a robotic arm composed of Schunk
Powercubes on top with a total length of 100cm.

In order to observe the 3D position of the end-effector, we placed a 20cm× 20cm
× 20cm AR-Toolkit [3] marker cube on it (Figure 3c). We inferred the end-effector
position from the 6D pose of the observed markers, with an average observation ac-
curacy of 7.4cm. Alternatively, motion capturing systems or a robot-mounted cam-
era observing its position with respect to the environment could be used.

The database S was filled with 250 samples by sending a joint-configuration to
the robot and observing the resulting world position of the end-effector. The record-
ing took approximately two hours. These joint-configurations were generated by
choosing a random value for each joint.

We evaluated our methods in simulation by determining the accuracy of our sim-
ulated robot with respect to the samples gathered on the real robot for noise-free
ground truth comparison.
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With Nearest Neighbor, we achieved a positioning accuracy of 8.2cm (σ =
6.0cm), whereas we determined the accuracy of Linear Weighted Regression to
be 5.7cm (σ = 5.8cm). The reported values were obtained on an arm with a length
of 100cm.

4.3 Path Planning

We qualitatively tested our planning system described in Section 3.3. To this end,
we constructed a simple test environment containing a 2-DOF planar robot and two
obstacles. The robot had to move to random positions in its workspace. We then
analyzed the resulting trajectories. The 2D visualization of world space and the
corresponding configuration space with a sample trajectory is displayed in Figure 5.

Although the trajectory does not run close to obstacles in world space, the corre-
sponding configuration space trajectory is avoiding such an obstacle by following
a curved path. Moreover, the path is curved more than necessary in configuration
space to allow an almost straight path in world space. It therefore seems that our
approach can help to circumvent problems that would occur if planning was only
performed in configuration space.

Fig. 5 Planning in configuration space (left) and world space (right). Our method is able to find
a path short in both spaces. Blue regions indicate areas inaccessible to the robot (self-collisions,
obstacles). Yellow: recorded samples. Blue lines: roadmap of Planner. Red lines: sample trajectory.

5 Conclusions

In this paper, we presented a general and efficient approach to learn the inverse kine-
matic function for robots with unknown mechanical design. In contrast to classical
approaches, which require the knowlege of the model to determine the kinematic
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function, we collect data consisting of visually observed end-effector positions and
the corresponding robot configurations. We then locally approximate the inverse
kinematic function. Further, we showed how a planner can construct a probabilistic
roadmap directly from the kinematic database. In experiments carried out with sim-
ulated and real robots with varying number of DOFs and joint types, we obtained
accurate positioning results.

In future work, we would like to extend the world space representation to full 6D,
i.e., control both the translational and rotational components. For the planning, we
want to additionally include those kinematic samples that were previously rejected
due to (self-)collisions. Thanks to the simplicity and efficiency of our approach, we
plan to realize a real-time implementation on an embedded device in near future.
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