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Abstract— Modern autonomous systems often rely on LiDAR
scanners, in particular for autonomous driving scenarios. In
this context, reliable scene understanding is indispensable.
Current learning-based methods typically try to achieve max-
imum performance for this task, while neglecting a proper
estimation of the associated uncertainties. In this work, we
introduce a novel approach for solving the task of uncertainty-
aware panoptic segmentation using LiDAR point clouds. Our
proposed EvLPSNet network is the first to solve this task
efficiently in a sampling-free manner. It aims to predict per-
point semantic and instance segmentations, together with per-
point uncertainty estimates. Moreover, it incorporates methods
for improving the performance by employing the predicted
uncertainties. We provide several strong baselines combining
state-of-the-art panoptic segmentation networks with sampling-
free uncertainty estimation techniques. Extensive evaluations
show that we achieve the best performance on uncertainty-
aware panoptic segmentation quality and calibration compared
to these baselines. We make our code available at: https:
//github.com/kshitij3112/EvLPSNet

I. INTRODUCTION

A perception system capable of providing comprehensive
and reliable scene understanding is crucial for the safe
operation of an autonomous vehicle. The recently introduced
panoptic segmentation [1] unifies the semantic segmentation
of stuff and instance segmentation of thing classes into a
single task. This facilitates the evaluation of the overall
accuracy, which is crucial for a holistic scene understanding.
In practice, however, the performance can only be evalu-
ated on a limited dataset, while the real-world consists of
scenarios and objects possibly not present in the dataset.
Therefore, in addition to an evidence signal, a reliable
uncertainty estimate is crucial for safety-critical applications,
such as autonomous driving. Hence, the task of uncertainty-
aware panoptic segmentation [2] for a unified evaluation of
panoptic segmentation and uncertainty estimation offers a
better potential for deployment. Our method aims to solve
this task for LiDAR point-clouds, as illustrated in Fig. 1.

The regular grid structure of images allows a number of
works on the panoptic segmentation to take advantage of
recent advances in deep learning, in particular using convo-
lutional neural networks (CNNs) [3], [4]. On the other hand,
the irregular, sparse and unordered structure of LiDAR point
clouds posed unique challenges. However, LiDARs provide
an illumination-independent accurate geometric description
of the environment, yielding a great advantage over images.
This motivated recent works for panoptic segmentation of
LiDAR point clouds, represented in various ways, such
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(a) LiDAR panoptic segmentation

(b) LiDAR panoptic uncertainties

Fig. 1: Panoptic segmentation and associated uncertainties as pre-
dicted by our EvLPSNet for the SemanticKITTI validation dataset.

as range images [5], [6], [7], 3D voxels [8], birds-eye-
views (BEVs) [9], or direct points [10]. These methods are
generally classified into proposal-based [5] and proposal-free
[11].

Conventional CNN-based methods, utilizing the softmax
operation, typically show overconfidence in their predictions
[12]. On the other hand, popular sampling-based methods
for uncertainty estimate methods, such as Monte Carlo
dropout [13], and Bayesian neural networks (BNNs) [14],
are time and memory intense hence not suitable for real-
time applications. Therefore, there is a recent interest in
sampling-free methods for uncertainty estimation, such as
evidential deep learning [12], predicting uncertainties in a
single pass. However, most of these works for classification
or segmentation deal with the image domain. Hence, to the
best of our knowledge, there is still no existing approach to
provide sampling-free point-wise uncertainty estimates for
the panoptic segmentation of LiDAR point clouds.

In this work, we present the novel Evidential LiDAR
Panoptic Segmentation Network (EvLPSNet), the first net-
work to tackle this task, by utilizing evidential deep learning.
We use the 2D polar BEV grid representation [11] for our
network, facilitating fast inference times and better sepa-
rability of instances. However, the projection into the grid
structure leads to discretization errors, as all points in a grid
cell are assigned the same prediction. We approach this issue
using the 3D point information, as well as our uncertainty
estimates, proposing a novel learnable uncertainty-based
Query and Refinement (uQR) module. This module employs
a simple point-based convolution layer to achieve point-wise
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predictions for points selected based on their uncertainty. We
also propose to utilize the predicted probabilities to create
an efficient version of the k nearest neighbors algorithm
(pKNN). Furthermore, we provide several baselines and
evaluate their results on the task of uncertainty-aware LiDAR
panoptic segmentation. In summary, our contributions are as
follows:

• The novel proposal-free EvLPSNet architecture for
uncertainty-aware LiDAR panoptic segmentation.

• The uQR module for refining the prediction for the most
uncertain points.

• The efficient pKNN algorithm utilizing the predicted
class probabilities.

• Several baselines for comparison with EvLPSNet.

II. RELATED WORK

A. Segmentation of LiDAR Point Clouds

The release of the SemanticKITTI dataset [15] led to
the emergence of many works, initially for the semantic
segmentation of LiDAR point clouds. These can generally
be classified based on the point cloud representations they
employ, such as projected range images [16], [17], [18], 3D
voxels [19], point-based [10], and BEV polar coordinates
[9]. Most panoptic approaches utilize these representations
as well.

Panoptic segmentation approaches can be classified as
proposal-based and proposal-free. While both employ sep-
arate semantic and instance segmentation branches, the dis-
tinction lies in the latter. Proposal-based methods typically
employ bounding box regression for discovering instances,
such as Mask-RCNN [20] in the case of EfficientLPS [5].
On the other hand, proposal-free approaches perform clus-
tering on the semantic prediction to obtain instance ids for
objects belonging to separate instances. Panoptic-PolarNet
[11] utilizes a Panoptic Deeplab-based [4] instance head to
regress offsets and centers for different instances. DS-Net
[21] proposes a dynamic shifting module to move instance
points towards their respective center. Panoptic-PHNet [22]
utilizes two different encoders, BEV and voxel-based, to
encode point cloud features, followed by a KNN-transformer
module to model interaction among voxels belonging to thing
classes.

B. Uncertainty Estimation

Many works for estimating uncertainty in segmentation
tasks employ sampling-based methods, such as Bayesian
Neural Networks [14] or Monte Carlo dropout [13], [23].
However, such methods are time and memory-intensive,
requiring multiple passes or sampling operations. For LiDAR
point clouds, SalsaNext [17] is an uncertainty-aware seman-
tic segmentation utilizing BNNs. Even though the network
output is quick to evaluate, due to the sampling of the
BNN approach the uncertainty is slow to obtain. Further,
no metric is presented to quantify the calibration of the
predicted uncertainty for this approach. We believe these
are severe limitations for safety-critical real-time applications

like autonomous driving. The need for single-pass sampling-
free uncertainty estimation motivates many works in the field.
Classical neural networks utilize softmax operations of the
final logits to predict per class score or probability, which
is not a reliable estimate of the network’s confidence in the
prediction, as shown by [12]. Guo et al. [24] propose the
Temperature Scaling (TS) method to learn a logit scaling fac-
tor on the softmax operation to provide calibrated probability
predictions. Other methods, such as [25], learn to separate
different classes in a latent space and, based on the distance
of the predicted to the nearest class feature, calculate the
uncertainty.

Sensoy et al. [12] proposed evidential deep learning to
provide reliable and fast uncertainty estimation with minimal
changes to a network. Petek et al. [26] utilize this method to
simultaneously predict semantic segmentation and bounding
box regression uncertainty. Sirohi et al. [2] introduce the
uncertainty-aware panoptic segmentation task and provide a
sampling-free network for a unified panoptic segmentation
and uncertainty for images. In our present work, we build
upon this to extend the approach to LiDAR point-clouds and
we provide a comprehensive quantitative analysis.

III. TECHNICAL APPROACH

An overview of our network architecture is shown in
Fig. 2. It is based on the proposal-free Panoptic-PolarNet
network [11]. Our evidential semantic segmentation head
and Panoptic-Deeplab based [4] instance segmentation head
utilize the learned features to predict per-point semantic
segmentation, semantic uncertainty, instance center and off-
sets. The predictions from both heads are fused to provide
panoptic segmentation results. Leveraging the segmentation
uncertainties, our proposed query and refine module helps to
improve the prediction for points within uncertain voxels.
Moreover, post-processing using our efficient probability-
based KNN improves the results further.

A. Network Architecture

We project the LiDAR points into a polar BEV grid
utilizing the encoder design proposed by PolarNet [9]. First,
the points (represented in 3D polar coordinates) are grouped
according to their location in a 2D polar BEV grid. The
grid has the dimensions of H ×W = 480× 360, where H
corresponds to the range and W to the heading angle. Then,
for each grid cell, the corresponding points are encoded using
a simplified PointNet [27]. This is followed by a max pooling
operation to calculate the feature vector for every 2D grid cell
and to create a fixed-size grid representation of W ×H×F ,
where F = 512 is our number of feature channels.

The subsequent encoder-decoder network utilizes the U-
net [28] architecture. Its first three decoder layers are shared
by the semantic and instance segmentation branches, while
the remaining layers are separate. The instance segmentation
regresses the instance center heatmap and the instance offsets
on the BEV grid.
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Fig. 2: Overview of our EvLPSnetwork architecture.

B. Evidential Semantic Segmentation

We utilize evidential deep learning [12] to provide voxel-
level semantic segmentation with calibrated uncertainty es-
timation. Here, the voxels are in polar coordinates with
dimension H × W × Z, where Z = 32 corresponds the
vertical segmentation of the BEV grid. Our network is based
on Panoptic-PolarNet [11].

To incorporate the uncertainty estimate, we first add a
softplus activation function on the final logits of the network,
which works as the evidence signal, essentially signifying
the evidence or weight collected for a particular class. Then
instead of treating the per class prediction as a single-value
estimate, we employ the Dirichlet distribution for our per-
point multinomial classification [12]. For each point i, the
Dirichlet distribution is parametrized by α = [α1, ..., αK ],
where K is the number of classes and αk

i = softplus(lki )+1
for network logit output lki for class k. The corresponding
probability pi and uncertainty ui are calculated as:

pki = αk
i /Si (1)

ui = K/Si, (2)

where Si =
∑K

k=1 α
k
i .

We train the semantic segmentation head using the type-
II maximum likelihood version of the loss and the KL
term, provided by [12], to regularize the evidence magnitude
in order to predict high uncertainty for wrongly predicted
classes. The loss is given by:

Lsem = Ls
log + λtLs

KL, (3)

We use λt = 0.065×min{1, t/(20I)}, where t is the current
training iteration and I is the number of iterations per epoch.
Thus λt increases until epoch 20 and then remains 0.055. The
log loss is given as:

Ls
log =

N∑
i=1

K∑
k=1

oki log(Si/α
c
i ). (4)

where N =W ·H ·Z is the total number of voxels, and o is

the one-hot encoded vector, which is 1 for the ground truth
class and 0 otherwise.

In our experiments, we found that the performance stag-
nates after some point due to a high number of empty voxels.
On the other hand, if we only use the occupied voxels
(N = number of occupied voxels in Eq. (4)), the uncertainty
estimation results are not calibrated. Hence, we first train the
network with all voxels, and then, after performance con-
vergence, we train for some epochs with only the occupied
voxels. This improves both the segmentation performance
and uncertainty calibration.

C. Instance Segmentation

Similar to [11], we base our instance segmentation head
on Panoptic-Deeplab [4]. The instance segmentation head
consists of separate center prediction and offset prediction
heads. The former predicts the likelihood of each grid cell
being the center of an instance, while the latter predicts a 2D
offset for each grid cell to its center in polar coordinates. We
encode the ground truth heatmap as a 2D Gaussian around
the center of each instance.

Note that the instance predictions operate in the 2D BEV
domain, which allows the application of well-researched and
fast 2D convolution operations. Another benefit of the BEV
is the easy separation of objects that are close/overlapping
in the heading or elevation angles, which is not the case in
the range projection.

D. Panoptic Segmentation

To obtain the panoptic segmentation we are following [11],
by first extracting the top k centers of the instance seg-
mentation after applying non-maximum suppression. Next,
we utilize the semantic segmentation to create a foreground
mask, where at least one of the Z predictions in a BEV cell
belongs to a thing class. We group the objects and assign an
instance id I in the foreground mask based on their distance
to the nearest of the k centers. Then, we assign the instance id
I to the thing class predictions in the semantic segmentation
output. Finally, we assign the instance class label based on
a majority voting [11] utilizing the evidential probabilities
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Fig. 3: Our uncertainty-based query and refinement module (uQR).

within the same instance group. All the points belonging
to the stuff class get their class label from the semantic
segmentation.

E. Uncertainty-based Query and Refinement module

Our uncertainty-based query and refinement module
(uQR) leverages the predicted uncertainties to counter the
discretization errors due to the BEV grid structure. We select
the top N = 20k most uncertain points and pass them to our
uQR module to actively improve the segmentation quality
in an efficient way. An overview of the module is shown
in Fig. 3. While the semantic segmentation head makes
voxel-wise predictions (which are simply transferred to the
corresponding points), the uQR module does refined point-
wise predictions.

For N points and K classes, let S ∈ RN×K be the
semantic segmentation probabilities calculated using Eq. (1)
and Us ∈ RN be the associated uncertainties from Eq. (2).
First, we append each point by its x, y, z coordinates, remis-
sion value, and uncertainty value to obtain Sa ∈ RN×K+5

with a feature size of K + 5. Then we create a subset
Su ∈ RNu×K+5 of the Nu most uncertain points and pass
these to the KPconv-based network [10] for refining. KPconv
utilizes point-based convolution in 3D space by capturing
contextual information from its neighbors. We only utilize
one KPConv layer, followed by ReLU and a final classifier
layer to obtain the refined predictions and uncertainties as
Sr ∈ RN×K and Ur ∈ RN .

F. Efficient probability-based KNN

In this section we devise our efficient probability-based k
nearest neighbors (pKNN) approach. Post-processing meth-
ods based on KNNs can be employed to cluster the instances
or improve the segmentation quality. However, their the
speed of execution is a typical limitation. We try to decrease
the execution time by limiting the number of points requir-
ing post-processing by taking advantage of the predicted
probabilities. We first select points that have a probability
(Eq. (1)) below a certain threshold. Then we find its k nearest
neighbors in the whole point cloud followed by a majority
voting to decide the final label. We choose k = 5 and a
probability threshold of 0.4. If a label is transferred from
a neighboring point, the we corresponding uncertainty is
transferred as well.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of our network on the chal-
lenging SemanticKITTI [29] dataset. The dataset consists of
43,551 LiDAR scans distributed over 21 driving sequences.
Sequences 00 to 10 are used for training, except the se-
quence 08 which is reserved for validation, and sequences
11 to 21 are for testing. The dataset provides point-wise
annotation for 20 classes, out of which 8 are thing classes
and contain unique instance ids. As the test set annotations
are not provided, we evaluate the uncertainty-aware panoptic
segmentation on the validation set.

A. Baselines

We aim to tackle the task of uncertainty-aware Li-
DAR panoptic segmentation for autonomous driving sce-
narios. Hence, the uncertainty estimation method should be
sampling-free and not create extra computation overhead.
The temperature scaling (TS) [24] and evidential learning
(Ev) [12] qualifies both criteria. For panoptic segmenta-
tion, we choose the proposal-based EfficientLPS [5] and
the proposal-free Panoptic-PolarNet [11]. We train these
networks to the best setting provided by the official codes.
However, for a fair comparison we do not use pseudo labels
for EfficientLPS. First, we evaluate both original networks
without any uncertainty estimation method involved. Then,
for temperature scaling, we add a scaling parameter to the
semantic segmentation logits, freeze the networks and train
the scaling parameter until it converges on the validation set,
as suggested by the original authors. Finally, we train our net-
work utilizing evidential learning, our proposed uncertainty-
based query and refinement module (uQR), and our efficient
probability-based KNN (pKNN) post-processing.

B. Training Procedure

We discretize the space into the grid size of 480× 360×
32 polar voxels within the range r ∈ [3, 50]m and height
z ∈ [−3, 1.5]m w.r.t. the LiDAR scanner. For non-maximum
suppression, we use kernel size of 5 with 0.1 threshold and
select top k = 100 centers similar to [11]. We train the
network for 50 epochs on single NVIDIA TITAN RTX GPU
with a batch size of 3. We use Adam optimizer with step
learning rate with an initial value of 0.01 and a drop by a
factor of 10 at epoch 40 and 45.

We apply instance augmentation and random data flipping
along the x and y axes as suggested by [11]. However,
we do not utilize their Self Adversarial Pruning (SAP)
since it requires two forward passes per iteration, slowing
down the training significantly. In contrast, we utilize Lovász
Evidential loss [2] (Llev) for the last five epochs, which
significantly improves the performance. Further, we employ
the evidential loss for semantic segmentation Lsem from
Eq. (4), MSE loss (Lh) for the center heatmap and L1 loss
(Lo) for the offset. The overall loss is

L = Lsem + λhLh + λoLo + λlevLlev, (5)

where λh = 100, λo = 10 and λlev = 1 for the last five
episodes and λlev = 0 otherwise. After the main network,



we train the uQR module with Lsem + Llev for 15 epochs
with the Adam optimizer and a learning rate of 0.0001.

C. Metrics

We evaluate the performance of our network based on
the uncertainty-aware Panoptic Quality (uPQ) and panoptic
Expected Calibration Error (pECE) metrics as proposed in
[2]. The metrics were utilized for evaluating performance
for images where each instance consists of many densely
organized pixels. However, LiDAR point clouds are sparse,
and separate instances generally contain fewer points, which
can lead to biases in the metrics. Hence, we adjusted the
metrics to fit the sparse LiDAR points setting.

First, we search for the unique matching pairs between the
ground truth and the prediction having IoU > 0.5. For each
matching pair we calculate the average accuracy (acc) and
confidence (conf). Similar to [2], we calculate the confidence
as confi = 1− ui, where ui is the predicted uncertainty for
point i. Further, we define acc = 1 if the predicted class and
instance id matches the ground truth and acc = 0 otherwise.
Then, we average the accuracy in J = 10 bins of confidence
(from 0 to 1) for each class separately over the full dataset.
This is opposed to [2], where this calculation was done
separately for each instance. Finally, we calculate uECEk

for each class k, pECE and uPQ as:

uECEk =

J∑
j=1

|Bj |
N
|acc(Bj)− conf(Bj)| (6)

pECE =
1

K

∑
k

uECEk (7)

uPQ = (1− pECE)PQ. (8)

where |Bj | is the number of points in bin j, and acc(Bj)
and conf(Bj) are the average accuracy and confidence for bin
Bj . In addition, we provide separate results for the thing and
stuff classes. Further, we provide the mean Intersection over
Union (mIoU) and the semantic uECE to evaluate the seman-
tic segmentation and uncertainty estimation performance.

D. Quantitative Results

The experimental results on the SemanticKITTI validation
dataset are presented in Tab. I. Our proposed EvLPSNet
achieves the best score for the overall uPQ, signifying its
superior performance for the uncertainty-aware panoptic seg-
mentation task, as well for the pECE and uECE, signifying
the most accurate uncertainty calibration of all methods.
Interestingly, our network is also superior to the Panoptic-
PolarNet in PQst and mIoU, which we attribute to our
proposed uQR and pKNN modules for refining segmen-
tation results utilizing the uncertainties and probabilities,
see Sec. IV-F. Comparing the overall PQ, our approach is
slightly worse than Panoptic-PolarNet. However, given its
well calibrated uncertainty estimation, our network recovers
the performance on uPQ. We observe mixed results for
temperature scaling (TS). It generally improves uECE, but
pECE is only improved for EfficientLPS, while it is worsened
for Panoptic-PolarNet. This is similar to [2], where TS was

able to improve uECE, but the advantage almost vanishes
for the panoptic pECE.

E. Qualitative Results
We present qualitative results including the predicted

panoptic segmentation and uncertainties together with the
error maps in Fig. 4. For example, in Fig. 4a, we depict
a misclassified vehicle (marked by the box). We observe
that the wrongly classified points (see error map) are well
represented with high predicted uncertainties in the network
output. Similarly, in Fig. 4b, a sidewalk (dark magenta) is
wrongly predicted as drivable road (light pink), but high
uncertainties are predicted here as well. Generally, the un-
certainty prediction is strongly correlated with the error map,
validating the prediction quality.

F. Ablation Studies
1) Refinement Modules: We present the quantitative anal-

ysis of our proposed uQR and pKNN modules in Tab. II
for the overall performance and for selected classes. The
motivation behind both modules is to utilize uncertainties to
improve the segmentation performance, specifically of points
suffering from discretization errors. This affects in particular
smaller objects that consist of fewer points, such as persons,
poles, and traffic signs.

Model M1 leaves out the pKNN and uQR modules com-
pared to our final approach. In model M2, we incorporate the
pKNN module, which leads to a gain in PQ for all mentioned
classes, with the most gain for the person class. The overall
uPQ, PQ and mIoU are slightly improved as well, however,
pECE and uECE are slightly worsened. Similarly, in model
M3 we incorporate the uQR module, improving PQ and
mIoU, but slightly worsening uPQ, pECE and uECE. Both
results, for M2 and M3, signify a loss in calibration quality,
but a gain in segmentation performance. Model M4 is our
final model, incorporating both the pKNN and uQR modules.
We observe that the contributions from both modules roughly
add up, in particular a significant gain in PQ for most of the
small classes can be seen.

We further present calibration curves for the models M1
and M4 in Fig. 5. It can be observed that the application
of our refinement modules renders the network slightly
overconfident. In conclusion, our final M4 model shows
the best segmentation performance, however, our M1 model
shows the most accurate uncertainty calibration.

2) Efficiency of pKNN: The efficiency of our pKNN
module is showcased in Fig. 6. In our experiment, we
increment the probability threshold that is used to select
the points for applying the KNN post-processing. We report
the increase in PQ and in runtime of the network. Here,
we used a subset of the validation set. The results compare
to a base runtime of about 0.09 seconds per frame without
pKNN. We observe that the PQ and runtime increase with the
threshold, which is expected due to an increase in the number
of selected points. However, the PQ saturates for a threshold
of about 0.4, our final value. For a faster evaluation one can
lower the threshold to e.g. 0.2 for a modest performance gain
with low increase in runtime.



TABLE I: Performance values in % on the SemanticKITTI validation set. Lower values are better for ↓, and larger values otherwise.

Method uPQ PQ pECE ↓ uPQTh PQTh pECETh ↓ uPQSt PQSt pECESt ↓ uECE ↓ mIOU

EfficientLPS 48.7 57.1 14.6 52.6 59.9 12.1 45.9 54.9 16.4 16.5 62.3
EfficientLPS + TS 49.6 56.9 12.9 48.5 59.8 18.8 50.2 54.9 8.7 7.7 62.1
Panoptic-PolarNet 48.8 58.5 16.6 53.1 65.7 19.1 45.4 53.3 14.7 13.2 63.2
Panoptic-PolarNet + TS 48.1 58.5 17.7 51.4 65.7 21.8 45.4 53.3 14.7 10.5 63.3

EvLPSNet 51.4 58.0 11.5 52.7 62.7 15.9 50.1 54.6 8.2 7.1 64.0

Panoptic Segmentation Uncertainty Map Error Map

(a
)

(b
)

Fig. 4: Qualitative results for the uncertainty-aware panoptic segmentation by our EvLPSNet for two scans of the SemanticKITTI validation
set. Red regions in the uncertainty map depict high predicted uncertainty, and dark regions in the error map depict misclassified points.

TABLE II: Class-wise PQ values in % on the SemanticKITTI validation set. Lower values are better for ↓, and larger values otherwise.
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Fig. 5: Calibration curves for our M1 and M4 models.

V. CONCLUSIONS

In this work we proposed EvLPSNet, a novel proposal-free
approach for solving the task of uncertainty-aware LiDAR
panoptic segmentation. It is the first network to simulta-
neously predict panoptic segmentation and uncertainties of
LiDAR point clouds in a single forward pass. To this end,
we demonstrated an effective way of utilizing evidential deep
learning for our uncertainty-aware semantic segmentation
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Fig. 6: PQ gain and runtime versus pKNN probability threshold.

head. We further proposed an uncertainty-based query and
refining (uQR) module to leverage and improve the seg-
mentation of points that suffer from discretization errors.
Moreover, our pKNN module showcased how probabilities
can be beneficial to reduce the runtime of KNN clustering
methods, while maintaining the gain in performance. Our
network achieves the best performance on the uncertainty-
aware panoptic segmentation performance and calibration
metrics, uPQ and pECE, respectively. We hope our work
will motivate future works in holistic and reliable 3D scene
understanding using LiDAR point clouds.
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[2] K. Sirohi, S. Marvi, D. Büscher, and W. Burgard, “Uncertainty-aware
panoptic segmentation,” arXiv preprint arXiv:2206.14554, 2022.

[3] R. Mohan and A. Valada, “Efficientps: Efficient panoptic segmenta-
tion,” International Journal of Computer Vision, vol. 129, no. 5, pp.
1551–1579, 2021.

[4] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and
L.-C. Chen, “Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp.
12 475–12 485.
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