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Shakey 2016 - How Much Does it Take to Redo
Shakey the Robot?

David Speck, Christian Dornhege, and Wolfram Burgard

Abstract—Shakey the robot was one of the first autonomous
robots that showed impressive capabilities of navigation and
mobile manipulation. Since then, robotics research has made
great progress showing more and more capable robotic systems
for a large variety of application domains and tasks. In this
paper we look back on decades of research by rebuilding Shakey
with modern robotics technology in the open-source Shakey
2016 system. Hereby we demonstrate the impact of research by
showing that ideas from the original Shakey are still alive in
state-of-the-art systems, while robotics in general has improved
to deliver more robust and more capable software and hardware.
Our Shakey 2016 system has been implemented on real robots
and leverages mostly open-source software. We experimentally
evaluate the system in real-world scenarios on a PR2 robot
and a Turtlebot-based robot and particularly investigate the
development effort. The experiments documented in this paper
demonstrate that results from robotics research are readily
available for building complex robots like Shakey within a short
amount of time and little effort.

Index Terms—Autonomous Agents, AI-Based Methods

I. INTRODUCTION

HAKEY the robot was one of the first autonomous robotic

systems. Decades ago, Shakey included capabilities that
are still relevant for modern robot systems including local-
ization, navigation, object detection, and manipulation by
pushing, as well as high-level reasoning [1]. Shakey had
significant impact on robotics and artificial intelligence re-
search. This is not only due to the algorithms developed, but
also because Shakey was a complete system and therefore
individual components were shown to work together enabling
the desired functionality. This demonstrated, what was possible
at that point in time and thereby established the state of the
art.

Highlighting the state of the art is—from a research
perspective—a major reason for building complete systems.
Shakey and many other systems integrate different approaches
and thereby not only prove that they work well individually,
but also allow us to learn how components developed inde-
pendent from each other perform in combination. In addition,
insights about the reliability and generality of algorithms can
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Fig. 1: Shakey at the Computer History Museum in Mountain View, California
(left); The PR2 (middle) and the modified Turtlebot (right) used for the Shakey
2016 system.

be gained. Another central point for the research community
is availability. Complex systems require multiple different
components that are ideally available to any roboticist to be
able to utilize state-of-the-art algorithms.

In this paper, we recreate the Shakey system with state-of-
the-art technology in hard- and software. We focus on algo-
rithms that are available to the public as open-source libraries
leveraging the progress made by the research community. We
limit the amount of customized work as much as possible
thereby proving that our Shakey 2016 system is the result of
research and engineering of the last decades.

Our contribution is to demonstrate the impact of robotic
systems by showing, which components of Shakey are in some
form still relevant today, and in addition, we show the progress
in robotics made during the years in terms of

e Generality: We make less assumptions about the en-
vironment, the algorithms work on different hardware
platforms and are more robust to failures.

o Availability: The complete system is mainly constructed
from open-source software and available online.!

e Ease of use: Shakey 2016 was created by a single master
student and anyone should be able to reproduce it easily.

We first discuss the impact of robotics systems with ex-
amples of various systems that have been developed through
the years. Then we shortly illustrate what the original Shakey
system could do, before describing our Shakey 2016 system
in detail. The evaluation not only shows the capabilities of a
modern Shakey system, but also addresses the effort required
to develop such a system.

Many robotic systems have been built over the years,
each demonstrating what is possible at that time. With the

Uhttps://github.com/speckdavid/shakey2016
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capabilities of robots becoming more and more general, so
have the application areas.

A first focus was indoor navigation, where Shakey was one
of the first systems [1]. Applications were pursued early on.
For example, HelpMate was designed to carry medicine in
hospitals [2] and Dervish performed navigation and delivery
tasks in offices [3]. Such scenarios were also investigated in the
1993 robot competition [4]. Ultrasound was the main distance
sensor and localization was performed mainly on local features
or markers. Envisioned tasks also went beyond navigation,
where manipulation in the form of pushing objects was not
only performed by Shakey, but also a subject at the 1993 robot
competition. Robotics was already connected with artificial
intelligence especially in the form of high-level reasoning.
Shakey with the Stanford Research Institute Problem Solver
(STRIPS) introduced a formalism for planning that in some
form is still in use today [5]. Xavier was instructed via a Web
interface to perform various tasks in an office environment,
among these telling “knock-knock”-jokes, and used at the
highest level a task planner [6]. RHINO was an interactive
tour guide robot that combined high-level problem solving
with low-level probabilistic reasoning [7]. The topic of indoor
navigation is still relevant today, especially with regard to
reliability that allows robots to operate without interventions
for long term deployments. One example for this is the CoBot
system that performs tasks at CMU. CoBots mitigate their own
limitations by actively asking help from humans [8].

Turning from indoor to outdoor navigation, a major ap-
plication area is autonomous driving. Early systems demon-
strated that this is within reach of state-of-the-art systems.
A software named RALPH steered a car “no hands across
America”, where throttle and brakes were still controlled by
humans [9]. Within the PROMETHEUS project in 1994 a
fully autonomous car drove at speeds of up to 175 km/h
on the German Autobahn. Other notable systems resulted
from the DARPA challenges. Stanley, an autonomous SUV
drove on unpaved roads within the DARPA grand challenge in
2005 [10]. The following urban challenge, where cars drove in
urban environments was won by Boss [11]. These systems not
only impacted science, but have been picked up by numerous
companies for development into a product. Navigation has also
considered city navigation on sidewalks. Recently, the robot
Obelix managed to autonomously drive a three kilometer long
route to the city center of Freiburg [12].

Service robots should be able to actively change their
environment. One could consider early robots, such as Shakey,
that push objects to be capable of manipulation. On a hardware
level going beyond that has been possible for a long time by
industrial robots, starting with the Unimate. However, these
usually follow pre-programmed paths. Systems that operate in
areas that are not fully specified, like household environments,
became available only more recently. This is the result of more
light-weight manipulators and better perception sensing. Inte-
grated systems such as the mobile manipulation robot PR2 [13]
or the manipulation platform Baxter [14] are now commonly
found in many research institutions. Progress in this area was
often driven by research competitions. The RoboCup@Home
league focuses on service robots in household scenarios and

tests integrated systems that work in various areas ranging
from navigation over object recognition and manipulation to
human robot interaction and cognitive reasoning [15]. Early
systems here showed navigation capabilities, but also already
high-level reasoning based on Golog [16]. Nowadays complex
object handling is possible, for example by team Nimbro
demonstrating mobile manipulation skills, such as watering
a plant [17], [18]. While Shakey focused on a full system
integration from high-level reasoning to low-level execution,
competition systems mostly show individual skills combined
into tasks. Besides Shakey’s skills this includes among oth-
ers grasping, people recognition and tracking, and speech
or gesture recognition [19]. Recently, the Amazon picking
challenge targeted detecting and grasping arbitrary objects.
Team RBO from the TU Berlin team won this challenge by
using a suction cup attached to a vacuum instead of mechanical
actuation for the gripper [20]. Impressive robot systems were
built for the DARPA robotics challenge that addressed disaster
recovery scenarios. This required robots to be capable of
complex manipulation tasks and navigation over rough terrain.
In addition suitable user interfaces for controlling the robots
had to be designed. Notable systems are the robot built by
Schaft winning the trials and Hubo by KAIST that won the
finals [21].

All these systems and many others have paved the way
towards where we are now. Nevertheless, a look back on
Shakey is valuable as shown in workshops at ICRA, AAAI
and RSS during its 50 year anniversary in 2015. We now
explain how we connect the research work started by the
original Shakey system and continued by many researchers
throughout the years to build Shakey 2016. We demonstrate
that techniques developed for Shakey are still relevant today
and that following research led to better systems like ours.
Moreover, such state-of-the-art techniques are available to
be leveraged by everyone and make it possible to easily
recreate Shakey on modern hardware. The implementation is
available as open source software and thus makes it possible
to reproduce experiments with the PR2. In addition a minimal
hardware setup with a Turtlebot-based platform allows anyone
to recreate the Shakey 2016 system.

II. SHAKEY THE ROBOT

The mobile robot system developed by the Artificial Intelli-
gent Center at the Stanford Research Institute (SRI) nicknamed
“Shakey” (Fig. 1) led to various improvements in Al and
robotics. In this paper we discuss the second Shakey system,
which was more advanced than the previous system and is well
known for the film “SHAKEY: Experiments in Robot Planning
and Learning”. The system and its capabilities were tested
with object rearranging experiments. In particular, two tasks
are described. One to block and one to unblock a doorway in
an environment consisting of connected rooms and pushable
objects (boxes and wedges).

The robot used a differential drive and was equipped with
a vidicon camera and an optical range finder mounted on a
movable head. In addition, touch sensors were attached to
the robot base. Instructions and information were sent via
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radio links from the robot to a computer and vice versa. The
architecture of Shakey was structured in five major levels.
The lowest level was the interface between the robot system
itself and its connection to the software programs. The next
higher level were the Low Level Actions consisting of simple
motion controls like ROLL and TILT. The third level called
Intermediate Level Actions were predefined programs calling
Low Level Actions. The purpose of the fourth level was to han-
dle and solve planning problems. The fifth and highest level
executed the plans and monitored them. Robot localization
was computed based on the executed motion commands. A
resulting localization error was from time to time corrected by
an Intermediate Level Action called LANDMARK that took
a picture of a near feature (e.g., corners or a door-jamb). That
picture was analysed and used to calculate the corrected robot
pose [1].

III. SHAKEY 2016

The Shakey 2016 system is todays successor of Shakey.
Similar to the original Shakey experiments we define object
rearranging tasks for our system. The setting is extended,
generalized and set in a context of tidying up several connected
rooms. The goal is to search for boxes and wedges that
should be tidied up by pushing them to goal positions. More
specifically, the goal is to search for pushable objects at
particular search locations and to push the observed objects to
defined goal locations or to the closest wall, if no goal location
in the same room is defined or free. Thus, the Shakey 2016
system requires various skills. First, detection, classification
and pose estimation of pushable objects, as well as pushing
objects to the closest wall or a chosen goal location is essential.
In addition, the system determines blocked doorways and
clears them, if necessary. Finally, the robot is able to move
from a start pose to a goal pose, i.e., perform autonomous
navigation. These skills are combined into plans to solve tasks
of the described tidy up scenario.

Shakey 2016 has been implemented on the PR2 [13] robot.
This platform has an omni-directional drive, a Hokuyo UTM-
30LX laser scanner at the base for navigation, and a Kinect
RGBD camera mounted on a movable head for perception.
Computation is performed onboard on two servers with quad-
core i7 Xeon processors with 24 GB of memory. Other
hardware, such as manipulator arms is not required for Shakey
2016. To demonstrate a minimal hardware setup, we also
tested the Shakey 2016 system on a modified Turtlebot (see
Fig. 1) that has been equipped with a Hokuyo SimpleURG
laser, a Kinect RGBD camera and a standard consumer laptop.
The Robot Operating System (ROS) [22] on the software
side forms the lowest level of the Shakey 2016 system. The
next higher levels are the navigation level, the action level
encapsulating individual skills and at the highest level a
continual planning loop including a planner, action execution,
state estimation and monitoring. The remainder of this section
describes this system in detail.

A. Continual Planning

Like Shakey, Shakey 2016’s decisions are driven by a task
planner. Its main purpose is to integrate the individual skills
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Fig. 2: Shakey 2016 is governed by a planning loop that continually estimates
the current state, monitors or replans if necessary, and executes the appropriate
robot skill.

into a system and to reliably combine these to solve a complex
task. We rely on the principle of continual planning, which
was implemented in ROS in our earlier work [23], [24]. This
solves the problem that a robot must react to the outcome of
its perceptions and actions, even when they are not executed as
predicted. Fig. 2 illustrates, what happens in each cycle of the
continual planning loop. The robot estimates its current state
consisting of symbolic values (e.g., in what room the robot
is) and numeric values (e.g., the 3d pose of an object) from
perception data. Monitoring then determines, if the current
plan still leads from this state to the goal. Otherwise a task
planner is called to produce a new plan. The next action of the
current plan is mapped to the individual skills and executed
resulting in a new world state.

In contrast to Shakey that used a classical task planner,
we use an integrated task and motion planner, in our case
Temporal Fast Downward/Modules (TFD/M) [25]. Here, a
planning problem is not only solved symbolically, but geo-
metric sub-solvers are integrated in the planning process as
external reasoning modules. For Shakey 2016 we implemented
two such modules, one for navigation and one for object rear-
ranging. The navigation module determines, if goal positions
are blocked in the world. For object rearranging we check, if
push trajectories are valid.

B. Navigation

A basic requirement for goal-oriented navigation are map-
ping and localization, which are well understood nowadays,
especially for structured indoor scenarios. First, the system
builds a grid-based map of the environment from laser range
data using GMapping® that implements a Rao-Blackwellized
particle filter [26]. Localization in this map is realized with
Monte-Carlo localization [27] implemented under the name
amcl in ROS. In comparison to the original Shakey system,
the localization in state-of-the-art mobile systems runs contin-
uously and in parallel to navigation and for our system is not
feature-based and can process dense data.

Navigation is handled by a combination of a long-term plan-
ner and a reactive execution component. Long-term collision-
free paths on the grid map are generated using Dijkstra’s al-
gorithm. A local trajectory planner using the dynamic window

Zhttp://www.openslam.org/gmapping.html
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Fig. 3: A navigation task (left), where the robot needs to move past a box.
The global plan (blue) and the local plan (white) drawn in a global cost map
(right) guide the robot in the navigation task.

approach [28] generates velocity commands to drive the robot
following the path. Fig. 3 shows an example of this.

C. Object Detection

We detect objects by shape and similar to the original
Shakey setup use boxes and wedges. We identify pushable
objects by planes (surfaces) that are characteristic for an
object. For a box this is the square plane on top and for a
wedge this is an inclined plane. We use plane segmentation of
point clouds created from an RGBD camera. We apply random
sample consensus (RANSAC) [29] implemented in the point
cloud library (PCL) [30].

A plane parallel to the ground plane is considered to contain
top surfaces of boxes. Surfaces are detected by point clusters
lying on such a plane. Minimal 2D bounding boxes of the
detected point clusters determine the corner points and normal
vectors of the object. By this it is possible to compute the
dimensions and poses of detected boxes (see Fig. 4). Similar to
boxes, the system determines wedges and their corresponding
dimensions and poses by searching for surfaces on a plane with
a certain angular deviation (e.g., 45 & 15 degrees) relative to
the ground plane. In our experiments we search for boxes and
wedges with a minimal side length of 20 cm.

Fig. 4: The robot observes a box and a wedge with its RGBD camera (top left)
and projects the objects (green) into its internal representation (top right). An
overlay on the camera image shows two detected boxes with normal vectors
(bottom left). The corresponding view in the representation of the robot shows
overlaid point clusters (bottom right).

D. Object Rearranging

There are two different ways to tidy up objects in the
Shakey 2016 scenario. The first one is to push objects to

particular goal positions, if that is possible. This means that a
goal position is defined in the room and it is not blocked by
another object. In order to push an object to a goal position
the robot always pushes the corresponding object according to
its pushable sides. Thus, objects are pushed along the normal
vectors of its sides. In this way, objects are aligned to the
robot base. The push directions and positions are indicated in
Fig. 4 (bottom) and Fig. 5 by green arrows on the ground.
If a goal location is not aligned with the object, the robot
pushes in two subsequent push actions to the goal position
using two different pushable sides of the object. As mentioned
in Section III-A it is necessary to check if such a two-step push
action is possible given the object location and other objects or
walls in the environment. This is handled during task planning
by an external module that determines if a push is possible. An
example where only one push series is possible is illustrated
on the left-hand side of Fig. 5.

The second possibility to tidy up an object is chosen, if
no suitable goal position for an object exists. In this case the
object is pushed to the closest wall, which is determined using
the map of the environment (right-hand side of Fig. 5). Finally,
blocked doorways are cleared by pushing the blocking objects
aside, which enables the transition between the connected
rooms.

.—
Notjvalid

Fig. 5: Examples for object rearrangement plans. Left: Only one of two
possible push trajectories of the green box to a defined goal location is valid
due to an object on the left. The right side shows a wedge with its possible
target locations (blue) towards the walls.

IV. EVALUATION

We evaluate the Shakey 2016 system in two ways. First, we
perform robot experiments illustrating the system capabilities.
Second, we investigate the effort to recreate Shakey with state-
of-the-art technology.

A. Experiments

The robot experiments are designed to show generality,
robustness and computational performance. We performed 20
different runs with a simulated PR2 and an additional ten runs
on the real robot to verify simulation results. In addition the
Shakey 2016 system was executed on a modified Turtlebot
and another ten runs on this platform were performed. Fig. 6
shows two simulated environments from the experiments and
the real-world experimental scenarios used for the PR2 and
for the Turtlebot experiments. We gave a generic task to
the planner that defines a tidy-up setting as described in
Section III. Object poses were not given to the robot, so that
it needed to search for objects and robustly react to newly
discovered objects becoming part of the problem to solve. The
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Fig. 6: This figure shows the evaluation scenarios. The two simulation
scenarios are shown on the top. An overview of the real-world environment
for the PR2 is shown in the middle. In this example task Shakey 2016 tidies
two objects and clears a blocked doorway. The third row shows three actions:
pushing the red box to its goal position, clearing a doorway, and pushing the
wedge to its goal. The bottom row shows two small connected rooms used
for the Turtlebot experiments.

Run 1 2 3 4 5 6 7 8 9 10
Scenario 1 (PR2) 14 14 18 16 18 20 24 22 24 26
Scenario 2 (PR2) 14 14 16 18 20 22 — 22 — 26
Real world (PR2) 12 12 16 16 — 18 — — 18 18
Real world (Turtlebot) | 11 11 9 9 — — 13 13 17 13

TABLE I: This table shows the number of actions executed for each run.
Real-world experiments used up to three, simulation experiments up to five

B

objects. Entries with ’-’ show tasks that were not completely solved.

experiments consist of ten different runs in each scenario with
up to five objects for the simulated and up to three objects for
the real-world experiments. Search locations were given to the
robot, so that it has a chance to detect the objects by moving
the head.

Overall 33 of the 40 runs were completed successfully lead-
ing to a tidied up world with the planning loop terminating.
An example run is shown in Fig. 6. Multiple replanning steps
were usually required mainly because either a new object was
detected or there were problems during navigation. Table I
gives an overview of the executed actions, e.g., driving to a
location or pushing a box for the individual tasks. Naturally
tasks with more objects lead to more actions. Seven of the
runs were ultimately unsuccessful due to the robot being
stuck during navigation. The setting, which requires the robot
to push boxes, produces such situations as it forces the
robot to operate close to obstacles, something that naviga-
tion algorithms usually avoid. We are confident that a more
sophisticated navigation setup and failure recovery procedures
would mitigate this. However, the goal of this work was to
show, what is achievable “out of the box™.

Regarding the successful runs all objects were detected
despite of one in the fifth run and all such detected objects
were tidied up according to the domain specifications. In total,

99% of all objects were detected, all of the detected objects
were successfully pushed to their goal locations or the closest
wall and an overall 83% of all runs were a full success.
The times over all runs are visualized in Fig. 7. The average
total time of a run and the corresponding components, i.e.,
the action execution time and planning time are illustrated. It
turns out that the planning time, which includes all replanning
steps in the continual planning loop, is only a fractional part
of the action execution time. Planning and execution times
are smaller for the real-world environment as there are only
three objects involved and the environment is smaller than
what could be constructed in simulation. Execution times
are smaller for the Turtlebot than the PR2 as the real-world
test environment in this case was smaller. Overall, for these
kind of scenarios, planning times even including external
geometric reasoning are not a limiting factor. State-of-the-
art task planning and integrated task and motion planning are
only being pushed to their limit with more complex scenarios
that involve a large number of objects, and especially when
pick and place actions are involved. The results indicate a
similar performance for both platforms, although the system
was developed on the PR2 and only ported to the Turtlebot.
This shows that the algorithms for Shakey 2016 are generic
and independent of a specific platform.

B. Implementation Effort

In this section we address the initial question of “How much
does it take to redo Shakey the robot?” with state-of-the-art
hardware and software. As already mentioned in Section III,
many robots capable of navigation are nowadays already
equipped to build a system like Shakey 2016. In other words,
in the field of mobile robotics hardware components such as
laser scanners are generally available and with RGBD cameras
such a system is even affordable for hobbyists. Although
holonomic drive systems are often used, many robots, like the
Turtlebot, still use a differential drive as on Shakey. Sensor
technology has made remarkable improvements. Ultrasound
sensors have been replaced by laser scanners and RGBD cam-
eras make 3d perception possible. Another obvious progress
from Shakey has been made in terms of computing power.
Our robot experiments have shown that for this system it is
not a limiting factor as it runs on a consumer laptop on the
Turtlebot.

25 .
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Fig. 7: This figure shows the average total run time, which consists of the
action execution and planning time.
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Fig. 8: Creating the complete Shakey 2016 system required less than 2,000
additional lines of code over available open-source software and less than
1,000 lines in launch scripts and configuration files.

In contrast to the amount of robotics algorithms at the time
of Shakey, the algorithm knowledge in robotics nowadays
is enormous. Localization, navigation and object detection
is possible by drawing from a large amount of powerful
algorithms. An important point here is that many state-of-the-
art algorithms are included in robotic software collections such
as the Robot Operating System (ROS) [22] or Player [31]
and many more. Easily combining different components is
especially important when developing robotic systems that
require a variety of algorithms to perform a task. Availability
of infrastructure software together with robotics algorithms
leads to fast developments of robot systems and given that
popular approaches are tested by many users to more robust
ones.

In fact, this allowed us to easily redo Shakey. The packages
and algorithms part of Shakey 2016 contain a large amount
of code. We estimate the additional effort that it takes to
redo Shakey the robot on the software side given, what is
available publicly. Therefore, first, we counted the lines of
code that were developed specifically for Shakey 2016, i.e.,
excluding all software that is already available as open source
and has been used in another project. Fig. 8 gives an overview
of the effort needed to build Shakey 2016. From the 2000
lines of code the components on object recognition and object
rearrangement required the most algorithmic work. A major
part is interface code integrating the different components of
the system with each other. Second, we estimated the amount
of work required to actually build this system for a person
not already familiar with the techniques involved. In our case
a single Master student spent about eight man weeks in total
from learning the basics of ROS to running the Shakey 2016
experiments on the PR2.

Afterwards this system was ported to the Turtlebot-based
platform shown in Fig. 1. This was done within two to
three work days and includes hardware modifications, such
as mounting the Kinect sensor on top in a similar position as
on the PR2 and software modifications that mainly consisted
of integrating and calibrating the sensors and actuators of
the robot. While the underlying low-level software, such as
drivers and hardware parameters, for example the footprint of
the robot, had to be adapted, it is important to note that the
PR2 and Turtlebot systems both ran the same mid and high
level algorithms without any major changes or tunings. The
only notable difference is that the Turtlebot does not possess

a movable head and therefore head turning actions had to be
removed. In our case that meant that objects needed to be
in the field of view of the camera to be recognized. Another
alternative to recreate a similar behavior to the PR2 would be
to use multiple search locations with the Turtlebot. The fact
that—besides adaptations due to the changed hardware—the
same system runs on both platforms shows that the Shakey
2016 system is generic and not build towards a specific robot.

The overall effort demonstrates that rebuilding a robot
system that was groundbreaking 50 years ago is today possible
with reasonably small effort. This was only possible by relying
on published algorithms. Shakey becoming within reach of any
roboticist is therefore the result of research and engineering
progress in the last decades.

C. Shakey and Shakey 2016

The original Shakey system is well known for influential
algorithmic developments. To name a few examples, the A*
search algorithm, STRIPS, and the Hough transform are still in
use in robotics and other computer science fields. In compar-
ison to Shakey changes were made in Shakey 2016 although
the system still requires the same kind of basic components.
Localization and navigation for Shakey was based on vision
and required distinct actions to localize based on known loca-
tions. In contrast Shakey 2016 uses laser range scanners with a
full geometric map. Two factors contribute to the robustness of
the navigation system. First, a probabilistic formulation of the
localization system maintains a distribution of pose estimates
instead of a single pose. Second, the complete navigation
system is continuously updated during navigation in real time.

While Shakey could only perceive objects from 2d images,
object detection for Shakey 2016 uses 3d data from an RGBD
camera. Our method determines shapes by their characteristic
planes in 3d. One could see this as an analogous extension
of detecting lines in 2d images. The object rearrangement
problem in the Shakey 2016 system uses its geometric map
to compute possible push actions before these are applied.
The fact that this does not only happen, when the action
is to be executed, but already during task planning is the
most distinctive feature of the high-level planning system of
Shakey 2016. The STRIPS planner in Shakey was a symbolic
system that as such dealt with symbolic actions. Integrated task
and motion planning that considers motion planning during
task planning has become an established technique in recent
years especially when complex mobile manipulation scenarios
are addressed. Our planner itself (TFD/M) at its core still
uses a variant of the A* search algorithm. Although other
approaches to task planning have been investigated search-
based techniques are still state of the art.

Shakey 2016 has been developed to recreate the original
Shakey system. Our goal was to demonstrate this by leveraging
accessible open-source algorithms. While this was successful
and resulted in a working system improvements are possible
by replacing components with newer or adapted versions. One
example is the SLAM component of the navigation system.
Here graph-based methods are nowadays preferred, although
the particle-filter approach worked well for the scenarios that
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we tested. Shakey 2016 is only capable of solving similar
tasks to Shakey. This means that our system is limited to the
skills required in these tasks. There are multiple capabilities
that other state-of-the-art systems demonstrate reliably. For
example, the detection of specific objects beyond generic
shapes, e.g., a corn flakes box, which can be solved by learning
methods or manipulation that allows to pick and place objects.
This is a skill that many robots, including the PR2, already
have and a distinct advancement of modern systems over the
original Shakey.

V. CONCLUSION

In this paper we presented the development of a mobile
robot system called Shakey 2016—a state-of-the-art version of
the famous robot Shakey. We evaluated with simulated and real
world experiments showing that it is a stable, robust and well-
performing system. We compared our Shakey 2016 system
with the methods used in the original Shakey and pointed
out advancements that are the result of progress in robotics.
In addition, we showed which algorithms or ideas are still
relevant today. The system is available online and a minimal
hardware setup demonstrated by the Turtlebot platform allows
anyone to reproduce these experiments.

We believe that we hereby demonstrated and quantified that
robotics has improved in many different ways over the last 50
years. First of all, the required hardware is these days available
for a wide range of people. Second, a system based on the
original Shakey project for the original problem setting can
be built with under 2,000 lines of code within eight weeks.
One thing that could be improved by the community is to
not only provide algorithms, but also a common directory
similar to OpenSLAM. Thus, creating a complex robot system
only requires a comparably small amount of effort allowing
other researchers to build on prior achievements. Pointing
out which algorithms stand the test of time is only possible
by integrating them into systems—something that indeed has
been done repeatedly. The fact that crucial algorithms for a
system like Shakey 2016 are publicly available is not only
valuable for building systems, but also for research in general
as this allows to verify and compare new algorithms as well
as test different components in a state-of-the-art setting.
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