
Run-time Soft Error Injection and Testing of a
Microprocessor using FPGAs

A. Spilla1, I. Polian2, J. Müller1, M. Lewis1, V. Tomashevich2, B. Becker1, and W. Burgard1

1Albert-Ludwigs-University 2University of Passau
Georges-Köhler-Allee 51 Innstraße 43

79110 Freiburg i. Br., Germany 94032 Passau, Germany
{spilla,muellerj,lewis,becker,burgard}@informatik.uni-freiburg.de {ilia.polian,victor.tomashevich}@uni-passau.de

Abstract—Nowadays, soft errors in logic circuits are becom-
ing increasingly important. This is especially true in the ever
shrinking nanometer technologies, and aerospace applications
where soft errors are more prevalent. Previous soft error injection
simulation methods using FPGAs have usually been limited to
small test circuits such as ISCAS89, or parts of a larger circuit.
Other software approaches have been proposed that simulate
soft errors by adding extra instructions that the processor must
execute. In this paper, we introduce our FPGA based transient
fault injection system that can handle all memory elements of an
entire microprocessor (MIPS32) while connected and running
within a complete system. This allows us to perform fault
injection and analysis when the system is live and actually
running arbitrary applications on the processor. We test our
implementation, and the effects that soft errors have on a
software filter used in aviation for probabilistic sensor data
fusion, as this algorithm would be run at higher altitudes where
soft errors are more frequent. Our experimental results not only
show that our method is extremely fast and versatile, but that it
also allows us to test how software applications perform under
a wide range of fault conditions.

I. INTRODUCTION

Transient faults cause nodes within a circuit to temporarily
fail. The source of these types of faults is typically due to
ionizing radiation from α-particles or cosmic rays [14]. Since
external natural events cause transient faults to occur, they
are not reproducible (i.e. the fault may occur during one test
and not in a second identical test). The probability of a single
node upset is normally relatively small. However, as modern
transistors shrink, the probability of a transient fault occurring
increases. For certain fields like medical devices, where proper
operation must be guaranteed, transient faults have been stud-
ied for quite some time [9]. Furthermore, in aviation/space
applications where chips operate under increased radiation,
these faults can be problematic [13], [23].

To rate how susceptible a chip is to a soft error, terms like
mean time to failure (MTTF) or failure in time (FIT) are used.
The FIT rate is defined as the number of failures per billion
hours of operation, i.e. 114,000 years. A typical FIT rate of
a commercial semiconductor circuit is between 1 and 100.
Consequently, MTTF is between 1,140 and 114,000 years.
Therefore, acceleration techniques are needed to measure
MTTF [26]. To accelerate soft error testing, increased levels
of radiation are used. The results are then scaled down for

M
u
x

Logic

Arith.

M
u
x

RD
RT
RS

Instr.

Data

Compare
Branch?

Sign
Extend

RegistersMemory

ALU

A
D

D

4

Mux

Address

PC

Data

Memory

Fig. 1. OurMIPS: Processor from [8] and used in courses taught at the
University of Freiburg.

normal levels of radiation. However, it is difficult to validate
the scaling factors (calibration) [19], thus, failure rates are
often gross estimates. This has motivated much of the previous
simulation work discussed in Section II.

Additionally, during the development of a chip, a radiation
testing facility is not always available. For a hardware de-
signer, the ability to test how susceptible a design is to tran-
sient faults can be of great importance. Accelerated simulation
techniques can provide a designer with the opportunity to test
a design, providing insight into its soft error characteristics.
Furthermore, these techniques can be used during the devel-
opmental stages of a design, allowing a designer to logically
harden a chip (i.e. by adding error correcting elements) and test
the improvements before the chip is actually produced. This
can result in increased product quality, while also reducing
costs associated with overall product development and testing.

The work presented in this paper tries to address these
issues by providing a platform to test and simulate transient
faults in microprocessors using FPGAs. The flexibility of an
FPGA not only allows us to model many different System
on Programmable Chip (SoPC) systems, but to test these
systems at a significantly faster rate than would be possi-
ble using software. With the addition of our automated PC
based application which allows the user to easily configure
which tests to perform, while also providing and generating
a complete summary (including graphs) of the results, we are
providing a platform that could be seamlessly integrated into
a normal design flow. Furthermore, by allowing the FPGA to

communicate with the external environment, we can test the
susceptibility of the processor when it is running its native
applications in its normal environment.

Before covering our platform in more detail, the terminol-
ogy and previous work will be discussed next. Our emulation
architecture and the software application that was tested is
then described in Section III. Section IV presents our first
experimental results, and Section V concludes the paper.

II. PRELIMINARIES

A. Terminology and Motivation

In literature, the terms “transient fault” and “soft error” have
been used interchangeably which can cause some confusion.
Here, we define a transient fault as a single or multiple node
upset directly attributable to excess charge carriers induced
by external radiation (the terms single event upset (SEU) and
single event transient (SET) are used in the Nuclear Science
literature [7]). By contrast, we define a soft error as the impact
of a transient fault that may persist beyond one clock cycle. For
the impact to transfer from one clock phase to another, it must
be captured in a storage element such as a latch or register.
Thus, soft errors may manifest away from their originating
location. Therefore, transient faults and soft errors can be
viewed as cause and effect.

Strategies for addressing soft errors include the estimation
of the vulnerability of a given device to these errors, and the
design of soft error detection and correction circuitry. For
each of these topics, it is useful to know how the circuit
behaves in the presence of transient faults. For this purpose,
software simulation methods for soft errors exist (including
commercial tools such as IROC’s Roban [15]). However, some
specific characteristics of soft errors impose limits on the
applicability and scalability of these software solutions. For
instance, software injected transient faults can only affect
certain parts of a processor, whereas soft errors can occur
anywhere within a processor. Furthermore, software simulation
methods are not powerful enough to simulate entire SoCs
running real applications. Also, this work only considers logic
based transient faults which are the most common type. α-
particles and cosmic rays can also affect power supplies and
system clocks causing extra signal delays and timing issues.
However, these topics are beyond the scope of this paper.

B. Previous Work

A significant amount of research has been carried out on
examining the real effects of soft errors [29], and on the
ability to detect and correct them if they do happen [6],
[17]. However, here we focus on the simulation and test
aspects of transient faults and soft errors. In this context, [11]
and [12] used a hardware FPGA approach to speedup the
simulation process. Software emulation of transient faults, in
which errors are inserted by adding extra lines of software
to a program has also been introduced in [5], [10], [22].
Combined software/hardware methods have also been looked
at in [20], [24]. A good overview of much of this research
can be found in [16]. Compared to our method, the previous

Cyclone II FPGA Board

Fault
Injector

Memory Controller

OurMIPs

GPIO

USB

UART

FPGA

External RAM

S
ca

n
In

S
ca

n
O

u
t

In
je

ct

�
�
�
�
�

�
�
�
�
�

�����������
�����������
�����������
�����������

�����
�����
�����
�����

Fig. 2. Hardware platform and architecture.

hardware based methods only simulate small test circuits such
as ISCAS89 under the presence of random inputs. Here, we
use an entire System on Programmable Chip (SoPC) design
that incorporates a MIPS32 based microprocessor (see Figures
1 and 2). With respects to the software approaches, we are still
able to simulate millions of clock cycles for our SoPC system
per second, and our approach does not limit what areas of the
processor faults can be injected into. In our case, all storage
elements can be affected by the transient faults that we inject.

In [21], an approach is presented that allowed the authors to
emulate an 8051 micro-controller while injecting faults during
run-time. However, their design was limited to a small 8 bit
micro-controller because two entire copies of the system had
to be implemented on the FPGA (i.e. a good implementation,
and one suffering from transient faults). This further limited
the memory available to run applications to a few kilobytes
(using external memory, we have access to MB of space in
our design). Also, the fault injector in [21] was based on a
pseudo random number generator and was not programmable.
Furthermore, they only considered soft errors, not transient
faults. This can be inadequate as transient faults may propagate
to multiple flip-flops, or due to logical, electrical or latching-
window masking, they may not propagate to a single storage
element [27].

III. RUN-TIME FAULT INJECTION

A. System Overview

The basic architecture flow for our FPGA based fault
injection tool is shown in Figure 2. In our SoPC design,
we used the MIPS32 instruction set compatible processor
OurMIPS described in [8] and shown in Figure 1. This 32-
bit processor can execute all MIPSv1 instructions, supports
hardware interrupts, and floating point arithmetic can be done
through software emulation. On average, it can execute one
32-bit instruction every two clock cycles. Through a common
main bus, this processor is connected to the Fault Injector,
external Memory Controller, Serial UART, USB, and multiple
GPIO ports. The USB and Serial UART allow us to program
the FPGA and communicate with the system while a software
test program is executing. The GPIO ports can be connected
to sensors, and/or other input/output/bidirectional devices. All
components in our SoPC are memory mapped, allowing the
processor to easily communicate with all parts of the system.

PC0

0 0010

Fault to Inject

· · · · · ·

PC31 · · · · · · · · ·· · · · · ·

Scan In Scan Out Injector

PC Register

Scan Chain

32 bits Out
PC Reg.

Fig. 3. PC Register with scan chain and fault injector.

Our fault injector (shown in Figure 2) can inject transient
faults into the OurMIPS processor using the mechanism shown
in Figure 3. Simply put, for every register or memory element
in the OurMIPS processor, we have introduced a shadow
register (top register in Figure 3 and similar to the approach
taken in [11]). This allows us to shift in the fault location(s)
while not disturbing the normal execution of the running
software. This feature is required to allow the CPU to function
correctly with devices such as the external memory and GPIO.
If a normal scan chain was used for example, it could result in
random data being written to the main SoPC bus when faults
are being shifted in through the scan chain. Furthermore, if the
processor was to be paused while the scan bits were shifted,
this could break any timing requirements and/or protocols used
to communicate with external devices over the GPIO ports.
With our setup, only the simulated transient faults can affect
the system’s behavior.

Another advantage of our shadow scan chain is that it is
XORed with the output of the real registers allowing the
simulated transient faults to propagate to multiple registers, or
in many cases to no registers. This can amplify or remove the
effects of a transient fault from the system, and we consider
this more realistic behavior as we briefly discussed in Section
II-B1. Additionally, if the SoPC is not area limited, additional
injection sites within logic blocks could be included thereby
increasing the transient site fault coverage.

Regarding the fault injector, we designed a flexible, pro-
grammable, and full featured unit. Programmable in this sense
means that before the processor executes the software appli-
cation we are testing, it can program the fault injector with all
the test information. For example, we can program how many
faults or how often faults should occur. Furthermore, we can
use randomly generated faults and time periods, or specify
exactly when and where the faults should happen. This will
allow us in the future to test specific parts of the processor to
see how susceptible each part is to transient faults. Also, by
specifying an initialization value for the random fault injector,
we can reproduce the results of any previous test.

For each actual test, the injector has two modes of operation.
The first mode is the programming mode that allows us to set
all the parameters. The second mode is the running mode.
Once switched into running mode, the registers in the fault
injector can no longer be written to, and it will inject the
specified faults as instructed. This was done to ensure that the

1Through a simple modification (e.g. moving the shadow register and XOR
gate before the real registers), we could simulate soft errors occurring only
in memory elements as many of the previous works have done.

fault injector was not reconfigured by the processor once an
application was started. This could for instance happen if a
previous transient fault caused the processor to jump to some
uninitialized memory location, resulting in the core executing
random instructions.

B. Work Flow

Using our system in Figure 2, the work flow for performing
transient fault simulations is as follows. First, we program the
FPGA with the SoPC described earlier in Section III-A. Again,
this is unlike other work as we do not need to recompile our
design for every test, we just need to program the FPGA which
takes a few hundred milliseconds. This allows us to quickly
run many small tests, and produce averages over a number of
test runs which is important when using random transient fault
injection to characterize the system under test.

Once the FPGA is configured, we send the initial setup
configuration and parameters to the CPU which then config-
ures the fault injector and other components. Next we send
the software application to the CPU, which is then initially
stored in the external memory. Once all this is complete, the
fault injector is started and the CPU begins executing the
test application. During the execution of our application we
can monitor the processor’s progress and status on the PC
through the USB and serial connections. Partial results can
also be sent over the serial cable and tested on the PC for
correctness. For the results in Section V, we only monitored
the programs execution at certain time points. However, to
collect more precise information an embedded logic analyzer
like Altera’s “SignalTap II Logic Analyzer” could be used [2].
This allows one to monitor registers, signal lines, and most
other internal components contained within the FPGA. This
extra monitoring comes at the cost of FPGA area and possibly
reduced frequency, but it shows the flexibility of our overall
design. To summarize, our work flow contains the following
six steps:

1) Program FPGA with SoPC
2) Send the fault injection parameters to the system
3) Send the software application to the system
4) Initialize and start the fault injection
5) Execute the software application
6) Monitor the software application and compare its results

to the expected values

To combine all these steps together, we developed a PC
based application that can perform these steps automatically.
Through our tool, we can configure the type of test we would
like to do, configure the transient fault parameters, and select a
software application to test. The tool will monitor one test run
for a specified time with fault injection disabled, and then run a
predefined number of tests with fault injection enabled. During
these tests it will then compare the output of the program to
the expected values. The tool will also reset the SoPC if the
system does not terminate by a set time calculated from the
fault free run. Once all the test runs have completed, the tool

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250

m
ea

su
re

m
en

t/
p
o
si

ti
o
n
 (

m
)

time (s)

dead reckoning odometry
sonar measurement

true position

Fig. 4. Dead reckoning odometry (using wheel rotation) and raw measure-
ment data of the robot compared to ground-truth data obtained by a laser
range finder.

can output a text file containing information pertaining to each
individual test, and an overall summary of all tests. With the
use of Gnuplot [3], our tool can also automatically generate
charts using the information gathered during each test run.
This tool was used to generate all the results in Section IV.

C. Probabilistic Sensor Data Fusion

Throughout the experiments presented in this paper, we
consider the problem of estimating the position x of a robot
in a known environment using a Kalman filter [18]. In our
application, we aim to track a mobile robot with one degree
of freedom moving back and forth, e.g. in a delivery task
between two stations. As a control input, the robot receives a
velocity command in each time step. Furthermore, we assume
the robot is equipped with a distance sensor which continually
takes noisy distance measurements from its current position to
one station at each time step.

The key idea of this approach is to maintain a probability
density function p(xt | z1:t, u1:t) of the position xt of
the robot at time t given all the sensor data z1:t and the
control inputs u1:t up to time t. This probability is calculated
recursively using the Bayesian filtering scheme [28]:

p(xt | z1:t, u1:t) = ηt · p(zt | xt)

·
∫
p(xt | ut, xt−1) p(xt−1 | z1:t−1, u1:t−1) dxt−1 . (1)

In this equation, ηt is a normalizer that ensures that
∫
p(xt |

z1:t, u1:t) dxt = 1. The term p(xt | ut, xt−1) is the state
transition probability of the motion model, and p(zt | xt) is
the measurement probability of the sensor model.

For the implementation of the described filtering scheme,
we use a Kalman filter, which assumes linear system dynamics
with Gaussian distributed noise. At time t the Kalman filter
represents the belief p(xt | z1:t, u1:t) as a Gaussian N (µt,Σt)
with mean µt and covariance Σt. The linear motion model is
expressed by xt = At xt−1 +Bt ut + εt and is dependent on
the previous state xt−1, the control input ut and a random

variable εt ∼ N (0, Rt). The sensor model is also assumed
to be linear, and is expressed by zt = Ct xt + δt where the
measurement depends on the current state xt and a random
variable δt ∼ N (0, Qt). Algorithm 1 depicts one step of the
Kalman filter fusing a control input and a sensor measurement
into the belief of the filter.

Algorithm 1 Kalman filter step
Input: µt−1, Σt−1, ut, zt
Output: µt, Σt

µ̄t = At µt−1 +Bt ut
Σ̄t = At Σt−1A

T
t +Rt

Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

µt = µ̄t +Kt (zt − Ct µ̄t)
Σt = (I −Kt Ct) Σ̄t

In our application, the linear motion coefficients are At = 1
and Bt = ∆t, where ∆t is the time elapsed since the last step
of the filter. Likewise, the measurement coefficient is Ct = 1.
The covariances Rt and Qt of the random noise variables
can be obtained in a straight forward manner by comparing
recorded data to ground-truth data.

IV. EXPERIMENTAL RESULTS

Our current implementation uses a Cyclone II FPGA Starter
Board2. The entire design uses approximately a third of the
FPGA (Altera EP2C20), and our SoPC runs at 12.5 MHz.
The FPGA is then connected to 512 KBs of external memory
which is used to store our data and test application.

Here, our tests consisted of localizing a Pioneer P3-DX [4]
mobile robot while travelling back and forth between two
walls. The P3-DX was equipped with a forward pointing

2This is an inexpensive board (100 e), and our system could easily be
transfered to a larger faster FPGA, and the memory controller could be
replaced with one that could handle GBytes of DDR memory.

Fig. 5. Altera’s Cyclone II FPGA Starter Development Kit [1].

TABLE I
RESULTS OF TRANSIENT FAULT INJECTION WHILE RUNNING THE KALMAN FILTER LOCALIZATION ON THE OURMIPS PROCESSOR.

10 Transient Faults/s 100 Transient Faults/s
Q-Format Type Time (s) RMSE (m) # TSF Time (s) RMSE (m) # TSF

— float 1.731 9.83E30 8 1.658 2.07E36 22
Q[4].[28] fx32 0.441 0.021 3 0.441 0.022 14
Q[7].[25] fx32 0.487 0.020 2 0.488 0.024 20

Q[10].[22] fx32 0.558 0.019 2 0.580 0.121 21
Q[13].[19] fx32 0.595 0.049 2 0.593 1.794 14
Q[4].[12] fx16 0.349 0.022 1 0.343 0.022 19
Q[7].[9] fx16 0.300 0.026 0 0.297 0.026 14
Q[10].[6] fx16 0.257 0.036 1 0.258 0.106 17
Q[13].[3] fx16 0.230 0.140 0 0.300 0.140 18

Devantech SRF10 miniature sonar sensor. Due to the good
reflection properties of the wall the sonar sensor measurements
had relatively little noise. In our experiments we recorded all
the control and measurement data that the robot generated dur-
ing approximately 4 minutes of operation (shown in Figure 4).
We collected dead reckoning odometry (i.e. position based on
the rotation of the wheels) and ground truth positions (i.e.
actual physical position) with a SICK LMS 291 laser range
finder. Then, we ran the Kalman filter localization algorithm
(described in Section III-C) on the prerecorded data while
injecting transient faults into the OurMIPS processor.

Table I summarizes the results of the Kalman filter local-
ization algorithm using different 32 and 16 bit representations
of floating point numbers. The first representation type is the
normal IEEE defined 32 bit float. We then defined two other
types of floating point numbers, mainly fx32 and fx16. The
fx32 format is 32 bits long, and the fx16 format is 16 bits
long. The integer and decimal parts for each fx32 and fx16
type are divided as specified in the first column of Table I.
For instance, Q[4].[28] means that the integer part of the fx32
variables use 4 bits, and the decimal part uses 28 bits. The
fx32 and fx16 representations of course limit the range and
accuracy of the floating point numbers. However, since the
data generated by the sensor had a maximum range of about
2 meters with an accuracy of about one centimeter, all the
representation are more than sufficient.

For each type of floating point variable type we then ran
200 transient fault simulations. In the first 100 simulations we
injected an average of 10 transient faults per second of run
time. For the last 100 simulations we increased the number
of transient faults to 100 per second. For each group of 100
simulations we recorded the average run time in seconds per
test (Time), and the root mean square error (RMSE) in meters:

RMSE =

√√√√ 1

T

T∑
t=1

(µt − x∗t)
2 (2)

where µt is the position estimate of the Kalman filter local-
ization and x∗t is the actual position at time t. The final piece
of data that was collected in Table I is the number of times

the SoPC system crashed, or became totally unresponsive due
to the transient faults that were injected (# TSF).

The results in Table I first show that the time for each
individual test is relatively small. In our SoPC system, since
the OurMIPS processor operates at 12.5 MHz and can execute
one 32-bit instruction every two clock cycles (on average),
each test requires the execution of a few million instructions.
Using software on a PC to simulate our entire SoPC would be
considerably more time consuming. Because of this, we can
rapidly perform a large number of tests.

The next important results are with respect to the calculated
RMSE values. First, notice that when using normal IEEE
floating point numbers, the RMSE can be huge. This is because
if only one exponent bit is flipped, or falsely calculated, it
can change the result by many orders of magnitudes. For
fx32 and fx16 type numbers, the maximum offset that can
happen is when the most significant decimal bit is flipped.
So for example, the Q[4].[28] and Q[4].[12] representations
are more immune to large errors triggered by transient faults
than Q[13].[19] and Q[13].[3] where the decimal parts are
larger. Furthermore, from this table, you can see the entire
trend that the susceptibility to larger errors increases with the
decimal part of the number. Changing a program to use fx32
or fx16 rather than floats is a good example of how software
can be hardened against transient faults. Generally speaking, a
program written to use fx32 or fx16 would typically perform
significantly better than an application using IEEE floating
point representations in environments experiencing many tran-
sient faults.

The last results from Table I show how many times the
SoPC system failed to respond. This can be caused by a jump
instruction being changed, or the PC register in the CPU being
affected by a transient fault. This could cause the processor
to jump into a random, uninitialized memory location where
it would start to execute random instructions. Furthermore, it
is also possible for bits in the control register to be flipped
that results in the processor entering a forbidden state. For all
of these cases in Table I, we marked them as a total system
failure (# TSF) for each set of 100 runs. As can be seen, when
injecting 10 transient faults per second, the system normally

freezes only a few times. When increasing the number of
injected transient faults, the system crashes significantly more
often. Using this information, and looking deeper at each test
case would provide a designer with more insight on which
parts of the processor should be hardened to make the system
more robust against transient faults.

V. CONCLUSION

In this paper we presented a programmable system for test-
ing transient faults using FPGAs. This work allows us to test
the soft error susceptibility of a common 32-bit processor. Our
architecture enables us to seamlessly connect our SoPC to ex-
ternal devices, and removes the restrictive memory limitations
that previous work have had. Futhermore, our platform can
execute real applications in real environments, not just random
test programs. As we showed in our experimental results, our
system allowed us to harden the Kalman filter localization
algorithm using a better floating point representation of the
data. This information would have traditionally required a very
expensive radiation testing facility, and here we simulated it on
a 100 e FPGA board. This application is also only a starting
point. In the future, we plan to test other types of software
applications while our system is directly connected to sensors
with live data streams.

Lastly, since our platform can be used during the design
phases of a project (before the real SoC ASIC chips are
produced), and because it can run real applications, the de-
signer can test both the hardware and software aspects of
a design. This can give a designer much more flexibility
when trying to meet certain FIT quality levels. For instance,
under certain circumstances it might be more cost effective to
meet the FIT requirements by hardening only the software
as we did with our floating point representation, or more
thoroughly as was presented in the software-implemented
fault tolerance (SWIFT) work introduced by [25]. In other
cases, error correcting hardware or the addition of redundant
components to the SoC could be tested to meet more stringent
soft error system requirements.

REFERENCES

[1] Altera. http://www.altera.com/.
[2] Altera’s SignalTap II Embedded Logic Analyzer.

http://www.altera.com/literature/hb/qts/qts qii5v3 05.pdf.
[3] Gnuplot. http://www.gnuplot.info/.
[4] MobileRobots Inc. http://www.mobilerobots.com/.
[5] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Generic object-

oriented fault injection tool. In International Conference on Dependable
Systems and Networks, pages 83–88, 2001.

[6] J. Arlat, Y. Crouzet, and J.-C. Laprie. Fault injection for dependability
validation of fault-tolerant computing systems. In International Sympo-
sium on Fault-Tolerant Computing, pages 348–355, 1989.

[7] R. Baumann. Ghosts in the machine: A tutorial on single-event upsets
in advanced commercial silicon technology. In International Test
Conference, 2004.

[8] B. Becker and P. Molitor. Technische Informatik: Eine einführende
Darstellung. Oldenbourg Wissenschaftsverlag, 2008.

[9] P. Bradley and E. Normand. Single event upsets in implantable
cardioverter defibrillators. In IEEE Transactions on Nuclear Science,
pages 2929–2940, 1998.

[10] J. Carreira, H. Madeira, and J. Silva. Xception: a technique for the
experimental evaluation of dependability in modern computers. IEEE
Transactions on Software Engineering, pages 125–136, 1998.

[11] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vi-
olante. An FPGA-based approach for speeding-up fault injection
campaigns on safety-critical circuits. In Journal of Electronic Testing,
pages 261–271, 2002.

[12] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and
M. Violante. FPGA-based fault injection for microprocessor systems.
In Proceedings of the Asian Test Symposium, 2001.

[13] J. Clark and D. Pradhan. Fault injection: a method for validating
computer-system dependability. Computer, pages 47–56, 1995.

[14] P. Dodd and L. Massengill. Basic mechanisms and modeling of single-
event upset in digital microelectronics. In IEEE Transactions on Nuclear
Science, pages 583–602, 2003.

[15] E. Dupont, M. Nicolaidis, and P. Rohr. Embedded robustness IPs for
transient-error-free ICs. IEEE Design and Test of Computers, pages
56–70, 2002.

[16] B. F. Dutton. Embedded soft-core processor-based built-in self-test of
field programmable gate arrays. Master’s thesis, Auburn University,
2010.

[17] B. F. Dutton and C. E. Stroud. Single event upset detection and
correction in Virtex-4 and Virtex-5 FPGAs. In International Conference
on Computers and Their Applications, pages 57–62, 2009.

[18] R. E. Kalman. A new approach to linear filtering and prediction
problems. ASME-Journal of Basic Engineering, March(82):35–45, 1960.

[19] H. Kobayashi, H. Usuki, K. Shiraishi, H. H. Tsuchiya, N. Kawamoto,
G. Merchant, and J. Kase. Comparison between neutron-induced system-
SER and accelerated-SER in SRAMs. In International Reliability
Physics Symposium, pages 288–294, 2004.

[20] M. Kochte, R. Baranowski, and H.-J. Wunderlich. Zur Zu-
verlässigkeitsmodellierung von Hardware-Software-Systemen. In
GMM/GI/ITG-Fachtagung Zuverlässigkeit und Entwurf, 2008.

[21] F. Lima, S. Rezgui, L. Carro, R. Velazco, and R. Reis. On the use
of VHDL simulation and emulation to derive error rate. In Radiation
Effects on Components and Systems Conference, pages 253–260, 2001.

[22] B. Nicolescu and R. Velazco. Detecting soft errors by a purely
software approach: Method, tools and experimental results. In Design,
Automation, and Test in Europe Conference, 2003.

[23] E. Normand. Single-event effects in avionics. In IEEE Transactions on
Nuclear Science, pages 461–474, 1996.

[24] M. Rebaudengo, L. Sterpone, M. Violante, C. Bolchini, A. Miele, and
D. Sciuto. Combined software and hardware techniques for the design
of reliable IP processors. In IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pages 265–273, 2006.

[25] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
Swift: Software implemented fault tolerance. In International Sympo-
sium on Code Generation and Optimization, pages 243–254, 2005.

[26] N. Seifert, X. Zhu, and L. Massengill. Impact of scaling on soft-error
rates in commercial microprocessors. In IEEE Transactions on Nuclear
Science, pages 3100–3106, 2002.

[27] P. Shivakumar, M. Kistler, W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of com-
binational logic. In International Conference on Dependable Systems
and Networks, pages 389–398, 2002.

[28] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[29] R. Velazco, R. Ecoffet, and F. Faure. How to characterize the problem
of SEU in processors and representative errors observed on flight. In
IEEE International On-Line Testing Symposium, pages 303–308, 2005.

