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Abstract—This paper addresses the problem of adapting an
existing object detector to the characteristics of the environment
in an unsupervised manner. The technique aims to reject all the
false positive detections by exploiting the information from the
environment and from the tracking system. We follow the intuition
that similar characteristics are shared among the objects that are
present in the same scene. Our aim is to detect the false positives
by analyzing which detections do not share common properties in
RGB-D feature space. For this, we make use of a One-class SVM in
an unsupervised manner. This idea allows our approach to adapt
to the environment it is tracking in. We developed and evaluated
our system based on a people detection and tracking system that
operates on Kinect data. Our experimental evaluation shows that
our method outperforms standard outlier detection techniques
and that is able to remove over 50% of the false positives without
eliminating a significant amount of correct detections.

I. INTRODUCTION

Tracking objects in the environment from image and depth
data is a key task for several robotics applications. To
track objects of interest, most approach use object detection
techniques that are trained to respond to specific categories of
objects in the sensory data. Prominent examples are cars or
pedestrians in street scenes [1, 2, 18] or everyday objects with
which a service robot has to interact in a household environment.
Typically, object detectors are trained beforehand by using large
datasets. During operation, the detectors recognize the objects
and the tracking module takes care of estimating the position
of the object in the environment. A key problem when applying
such processing pipeline is that detection is never perfect. It is
practically impossible to build a detector that is error-free in
every environment and noise condition.

Great efforts have recently been taken for collecting datasets
that present objects with large appearance variety and different
backgrounds [5, 6]. Despite the efforts to robustify the
generalization capabilities of object detection methods, datasets
appear to have a strong build-in bias so that a classifier
trained on one datasets underperforms in others [20], the
so called ’dataset-bias’ effect. This especially happens if the
environment that has been used for training has significantly
different appearance characteristics with respect to the testing
environment. A different sensitivity to shadows, structures
producing strong gradients, light conditions and optical quality
of the imagery can generate unwanted detection responses and
produce false positive detections, see Figure 2.

In this paper, we consider the problem of adapting an existing
object detector to the characteristics of the environment in order
to obtain lower false positive rates. We follow the intuition

Fig. 1. Architecture of our method. X is the RGB-D data frame, h(·) is the
object classifier, a(·) is the adaptation function, and T is the tracking module.
In this paper, the adaptation function collects features computed in RGB-D
data to learn a One-class SVN model for rejecting false positive detection in
an unsupervised manner.

that similar appearance/depth characteristics are shared among
all the objects that are present in the same scene.

Our contribution consists in formulating an object detection
adaptation system that exploits the information coming from the
tracking module, in an unsupervised manner. Our approach is
formulated as a one-class classification problem and solved via
a One-class SVM [15]. This machine learning technique is used
to learn a feature model of the ”real objects” by extracting RGB-
D features from all the tracked targets, that usually include
correct detections (inliers) and false positives (outliers).

The approach is unsupervised in the sense that the system
does not need any labeling information from the user but it
only requires a coarse estimate of the ratio between outliers
and inliers. Our approach exploits the tracking information
by considering as valid data for adaptation only the object
detections that are consistent over time (such that they are
successfully included in a track). This simplifies the feature
space and the adaptation capability.

To the best of our knowledge, our system is the only one
that is able to address and remove systematic false positive
detections that might generate entirely false tracks. These cases
are usually the hardest to remove because they are generated
by specific environment configurations such as strong gradients,
cluttered areas or unexpected light conditions. Moreover, it
is the first time that a tracking system is used for improving
a generic object detection performance in an unsupervised
manner and it is the first time that a One-class SVM technique
is used in this context. Our approach can be used in conjunction
with most detectors and any tracking approach.

II. RELATED WORK

The problem of semi-supervised object detection and tracking
as well as the adaptation of existing classifiers has also
been studied by other researchers. For example, Teichman



and Thrun [18] presented a semi-supervised approach to
track classification in urban traffic scenes using dense 3D
depth data. This approach requires segmented point clouds
for the classification of objects and tracking without a class
model. It iteratively trains a classifier and extracts useful
training examples from unlabeled data by exploiting tracking
information. The approach is reported to require only few hand-
labeled training tracks of each object class and still provides
a competitive performance. The recent approach of Teichman
et al. [19] is a semi-supervised learning method that uses
tracking information to find new, useful training examples
automatically. It aims at classifying the tracks of all visible
objects not requiring individual point cloud segments. The
authors propose a new track classification method that can
be executed online, is not specific to the object class and
provides high accuracy for the task of classifying correctly-
tracked, well-segmented objects into car, pedestrian, bicyclist
and background classes.

The problem of adapting object detection system to the
current scene received considerable attention recently and ap-
proach, for example, for category models to new domains [14].
In this work, Saenko et al. propose a method for transferring
models from labeled datasets acquired in one image domain
to other environments. This can be used to account, for
example, for different cameras used in training and testing
phase. The key idea is to learn a metric that compensates for
the transformation of the object representation that occurred
due to the domain shift. Breitenstein et al. [2] proposed a
tracking-by-detection approach in a particle filtering framework
that uses the confidence of the detectors and online trained
instance-specific classifiers as a graded observation model.
Thus, generic object category knowledge is complemented by
instance-specific information. A central contribution of their
work is the investigation of how unreliable information sources
can be used for multi-person tracking. Recent works focus in
detecting objects in RGB-D data [10, 16]. Both approaches have
been shown to be robust to real-world Kinect data collected
in indoor environments. As most detection approaches, the
systems are not free of false detections. Therefore, our current
work aims to adjust the tacking-by-detection process to be more
reliable by eliminating false positive detections. Our current
approach is also different to [17], which focuses on adaptive
fusion and domain adaptation for object detection in RGB-D
data. Their approach works in a totally supervised manner and
primary focuses on adaptive fusion scheme for RGB and D
cues.

III. OVERVIEW

This section describes our main contribution. Please see
Fig. 1 for an overview of our architecture. The input of the
system are RGB-D data frames. The processing pipeline is
composed of a detector trained for an object category and a
tracking system that computes estimated trajectories of the
detected objects in a scene. We use the following notation
in the paper: given a RGB-D data frame X, we indicate the
detector as h(X) and the tracking system as T . In addition to

Fig. 2. Visual exemplification of the ’dataset bias’. The left is a RGB sample
image from the training set ’TUD-Brussels’[21], the right one is an image
taken from the test dataset. Separate RGB and depth imagery are used for
training the RGB-D detector. The RGB training set collects images of urban
outdoor scenarios, where shadows, clutter and lighting conditions make it very
different from the test scenario, that has been acquired indoor in a university
hall. The training set has been recorded by using high quality optics, the test
set uses budget hardware resulting in less sharp imagery.

this standard tracking architecture, we included an adaptation
block a(X, T ) that gates the output of h(X) in order to modify
the input of T . The tracks and the RGB-D data is fed back to
the adaptation block a(·) that uses this data over time to learn
which detector output to discard.

Object tracking is a very well studied field. Several successful
techniques have been presented in the recent years [2, 7, 9]. Our
method follows a tracking-by-detection approach: the tracker
takes as input the output of a detector trained for a certain
object category. The input can be binary or real-valued. The
object detector is trained in a standard supervised manner with
a dataset containing many positive and negative examples.

Our aim is to fight the ’dataset-bias’ and to build an
object detection system that adapts to the current scene. Our
approach makes use of object tracks, i.e. filtered detections
that are consistent over time, for collecting object information
in the environment. We follow the intuition that similar
appearance/depth characteristics are shared among the objects
that occur in the same scene. Thus, the tracks generated by false
objects (false positives) potentially have different appearance
(in RGB-D sense) with respect to the real ones. In practice, our
architecture computes an object detector domain adaptation:
the response of the detection system is changed by exploiting
characteristics of the objects present in the environment. Here,
it is important to notice that the proposed architecture is
orthogonal to the choice of the tracker and to the kind of
detector, as soon as the latter is able to achieve high recall
rate. This is important in order to not miss relevant objects in
the scene in the early detection step.

Notice that this work differs from standard target adaptation
methods that instead aim to build, highly specific classifiers
for each tracked target (e.g,: [9]), in a online fashion. In
those works, no knowledge is shared between the various
classifiers and no rejection of false positives is possible. Our
work approaches the problem of adaptation in a different way:



the goal is to find a common description of the appearance
that is shared between all the true objects in the environment,
in an unsupervised manner. To achieve this goal, we build a(·)
with a machine learning technique based on a One-class SVM
that is able to efficiently work in an unsupervised manner with
high dimensional features and lots of data.

IV. RGB-D DETECTOR

The proposed method is general with respect to the choice
of the object detector. In this work, we employ the recently
proposed RGB-D Combo-HOD detector with adaptive sensor
fusion [17] that combines the outputs of an Histogram of
Oriented Gradients (HOG) detector for images with an His-
togram of Oriented Depths (HOD) detector for dense depth
data and fuses the two modalities in an adaptive manner. As
stated before, our approach is orthogonal to the detector itself,
assuming that it provides high recall rates.

The detector h(·) takes as input a portion of a RGB-D data
frame X̂ ⊂ X and computes a confidence about the presence
of an object in it. It is often possible to model the detector
output h(X̂) as a probability[4, 13]:

p(π | X̂, θ1) ' r(h(X̂) ) (1)

where r(·) is the function that maps the detector output to
probabilities (e.g. a sigmoid), θ1 are the parameters learned for
the classifier h(·) and π indicates the existence of an object in
X̂. The detector runs at several locations in the RGB-D data
frame. For notation simplicity, we use h(X) to indicate all the
detections computed for the entire RGB-D frame X by the
object detector.

V. ADAPTATION-BY-TRACKING

This section presents our method to formulate and compute
the adaptation mechanism for object detection in an unsuper-
vised manner.

The idea is to build a function a(·) which by inspecting the
RGB-D data associated with the current tracks (i.e. bounding
boxes) is able to reject false positives in the upcoming frames.
The tracking module plays a key role in the adaptation
mechanism. Tracking can be seen as a first filtering stage
for occasional false detection responses, triggered for example
by temporary noise or clutter. Such false detections will not be
included as tracks due to weak space-time consistency. This
fact is exploited by our approach. The adaptation function is
learned using only data that is associated with tracks. Thus,
the input data for learning a(·) is potentially polluted by a
relatively small quantity of false positives. It therefore has the
potential to represent the “true objects” well.

The idea of the adaptation function shares some common
ground with the Mixtures of Local Experts method developed
by Jacobs et al. [8]. In that work, the authors fuse the response
of several classifiers by multiplying their output with gating
functions that use the classifiers input. In our case, there is only
one gating function, a(·), and it is used to scale the detector
confidence, h(X), see Figure 1.

The online adaptation mechanism follows two distinct phases:
the boostrapping and the gating phase. The bootstrapping phase
is used for learning a(·) and lasts for an amount of time fixed
beforehand by the user. During the gating phase, a(·) is used
for filtering detections. The adaptation system can be reset
and re-bootstraped after a certain amount of time or when the
scene appearance changes significantly.

A. Bootstrapping the Adaptation Function

The first phase consists in collecting data for training a(·).
This is achieved by processing the output of the tracking module
during operation. The tracking module T estimates at each
time step the position of N targets and computes their position
in the RGB-D data frame:

li = [x, y] bi(li) = [xI , yI , wI , hI ]

L = {l1, ..., lN} B = {b1, ...,bN}
X̂ = {X̂b1 , ..., X̂bN

}
(2)

where li is the estimated 2D position of a target in world
coordinate frame, bi(li) is its bounding box in the RGB-D data
frame and X̂b1 is the RGB-D data enclosed in the bounding
box. We then compute shape-describing RGB-D features for
each element of X̂ :

f(X̂bi) ∈ RD X̂b1 ⊂ X̂
F = {f1, .., fN}

(3)

Here, f consists of a coarsely described HOG descriptor in
depth and RGB data and D = 64. In the bootstrapping phase,
a fixed amount of F data is collected by letting the tracker
run for several time steps, U = {F1, ...,FM}. The set U is a
feature-based appearance description of all the targets followed
by the tracker in the bootstrap phase. The data in U is likely
to contain false detections (false positives) but it is assumed to
contain a majority of true positives. The intuition is that the
features describing the false positives will be apart from the
features of the real objects. We are interested in detecting these
outliers. We aim to compute a probability distribution of the
features that describe the true objects in order to compute outlier
likelihoods. The problem is that our input is unsupervised thus
it has unknown labels (true positive or false positive) and
contains feature noise.

Several works have been presented that address the problem
of outlier detection, for example [3, 11]. As a straight forward
approach, clustering techniques with heuristics based on nearest
neighbors could be used to achieve this goal. Such approaches,
however, typically show suboptimal performances when applied
with robust, high-dimension features. In our approach, the high
dimensionality of the feature space and its sparsity makes
the problem hard to solve with simplistic techniques. Thus,
we propose to solve this problem by formulating it as a one-
class classification problem and solving it via a One-class SVM
method. We learn the adaptation function a as a one-class model
S that is trained by using the collected unlabeled features U .
A brief discussion and the formulation of the One-class SVM
approach is presented in the Section V-C.

In the bootstrap phase, a(·) := 1 and adaptation is not active.



B. Gating with the Adapation Function

In the second phase of the algorithm, the learned one-
class classification model is directly used for computing the
adaptation function a(·) and it is not further updated. In the
current implementation, we use only the binary output of the
one-class SVM:

a(X, T ) = S(f , θ2) = {0, 1} (4)

where S is the one-class SVM function, and θ2 are its learned
parameters. As soon as all the detections in a RGB-D frame
are computed by h(·), the associated bounding boxes are used
for computing features f then the learned SVM classifies this
data as outlier or not. Essentially, for each detection h(X̂) in
the RGB-D frame, the tracker input becomes:

a(X̂, T ) · h(X̂) =

{
p(π | X̂, θ1), if X̂ is an inlier
0, otherwise

(5)

C. One-class SVM classification

The standard problem of classification is the problem of
identifying the category which a data point belongs to. This
decision is taken on the basis of a training set containing data
whose category membership is known beforehand.

In one-class classification, a data point is just classified as
an inlier or outlier. Moreover, there is a substantial difference
between standard classification and one-class classification: in
the latter, it is assumed that imperfect information of only a
single class is available. This means that no explicit information
about the class of outliers is present. The boundary between
the two classes has to be estimated from noisy and unlabeled
data. The reasoning is that it is often intractable to characterize
the distribution of the outliers (false positives) because they
belong to an unknown number of different “negative” classes.

Particularly robust methods for addressing one-class classifi-
cation are One-class SVMs. One-class SVM is an algorithm
which computes a binary function that estimates the regions
in input space where data can be explained as a probability
density function. In short, a One-class SVM tries to capture the
support within which the positive examples are located, with
the aim to separate them from all the rest. After transforming
the data points via a kernel, One-class SVM treats the origin as
the only member of the second class (the outlier class). Data
is separated from the origin by solving the following quadratic
program:

min
w∈F,ξ∈RE ,ρ∈R

1

2
‖w‖2 +

1

νE
·
∑

ξi − ρ

subject to w · Φ(fi) > ρ− ξi, ξi > 0, i ∈ [1, E]

(6)

where E is the total number of feature vectors in U , w and ρ
are the margins to optimize, ξi is a slack variable (as in the
standard soft-margin SVM formulation) and Φ is the kernel
function. Two parameters have to be set before the optimization,
the kernel Φ and the expected ratio of outliers in the training
set ν ∈ (0, 1). The parameter ν is critical to avoid overfitting
or underfitting. In our case, we have used linear kernel and
we have determined ν based on a validation set. By solving

the optimization in Equation 6, we have generated a model for
object inliers described by features f , denoted as S(f , θ2).

VI. EXPERIMENTS

The experiments are designed to show the improvements
of our unsupervised approach to learn an adaptation function
for reducing the number of false positives detections. For the
evaluation of our method, we have chosen people as objects to
detect and adapt for the reasons that there exist well-established
detectors. Moreover, the people category is one of the most
challenging object categories: humans are articulated objects
that exhibit a large variability in their appearance due to
different body poses, clothing, or wearable luggage.

A. RGB-D Data Set

We make use of the canteen RGB-D dataset, a large-scale
indoor data set with unscripted behavior of people [12]. The
data set consists of 3000+ frames and it has been recorded in
the lobby of a university canteen at lunch time. The data set has
been manually annotated to include bounding boxes and the
visibility status of subjects (fully visible/partially occluded).

B. Results

We have quantified the advantages of the proposed technique
by analyzing standard performance indices. For evaluation,
we have used a ground truth track assignment given by the
annotated dataset. We additionally added false-positive tracks
(tracks entirely composed of false positive detections) and
added false-negative misdetections to true-positive tracks.

The first experiment is designed to show the robustness
of the adaptation system with respect to the quality of data.
For analyzing this aspect, we have evaluated the robustness at
different level of noise and mislabeling in the bootstrapping
process. In our experimets, we have fixed the length of the
bootstrapping process to 500 frames, ν = 0.35 and we have
gradually increased the number of false positive tracks, thus
the number of false positive detections (outliers). In the plot
in Figure 3-left, we evaluate the true positive rate (TPR) and
the ratio of discarded false positives (rmFR), computed in
the entire dataset, with respect to the ratio of outliers in the
bootstrap phase. In practice, the ’x’ axis depicts the ratio of
outliers in the One-class SVM learning phase. Theoretically
optimal results in this graph are: a TPR curve that is constant
and close to 1, a rmFR curve constant and close to 1. TPR
and rmFR are computed with respect to a detection system
without adaptation. This means that the system would be able
to reject all false positives meanwhile being able to detect true
positives with unchanged ability. Consider the true positive rate
curve TPR-RGBD and the discarded false positive rate curve
rmFPR-RGBD, respectively the red and blue continuous curves
in Figure 3-left. In our case, TPR-RGBD is fairly constant and
close to 0.75. This value guarantees good tracking performances
(not many targets are lost due to missed detections). In contrast
to that, many false positives are rejected: rmFPR-RGBD goes
from 0.68 to 0.48. With this rate, many outliers are rejected and
potentially many erroneous tracks are not initialized. Especially
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Fig. 3. Robustness of the adaptation system with respect to the quality of data (outlier ratio in the bootstrap phase). True positive rate (TPR) and rejected
false positives rate (rmFP) are computed for the entire dataset. Left: Comparison of the system using RGB and RGB-D features. When using the full RGB-D
data (continuous curves), the system is able to achieve a high detection rate and an high rejection of false positives. When using features computed with
RGB-only data (dashed curves), the task of outlier rejection is harder and only a few percentage are discarded.-left. Right: Comparison between our system
and LOF outlier detector. Our system is depicted with continuous curves, the LOF method with dashed lines. LOF largely underperforms with respect to our
approach due to the difficulty of correctly modeling the feature density in a sparse and high dimensional space.

at high error rates, the rmFPR-RGBD curve decreases: the One-
class SVM still tries to model a very complicated noisy feature
distribution but tends to be more conservative and discards
errors with more difficulty.

Another experiment evaluates the improved adaptation
capability when RGB-D features are used instead of RGB-
only, see Figure 3-left dashed curve. With RGB-only features,
the performance is substantially lower, and a low quantity
of false positives are removed. Using the additionally depth
information alleviates the classification task thus it eases the
outlier rejection.

We also compared our technique with the ”Local Outlier
Rejection” (LOF) method [3], see Figure 3-right. LOF largely
underperforms with respect to our approach due to the difficulty
of correctly modeling the feature density in a sparse and high
dimensional space. For this reason, it is complicated to decide
which kind of distance to use and which threshold to use. In
our experiments, LOF did not manage to reject more than 10%
of the false positives.

Additionally, we evaluated the impact of the adapted detector
in the tracking context by using the MOTA index. It is
important to notice that false tracks have a high impact on
the tracking performance. As soon as the detector is able to
reject systematic and consistent false-positive detections, a
new track is not initialized and the MOTA index increases.
The reduced detection rate on the real object tracks resulting
from the adapted detector has less impact on the tracking
performances because the tracker is still able to “fill the small
gap“ in an object’s trajectory. In an experiment consisting
of a strongly noised bootstrapping phase (ν = 0.3) and a
track initialization after 4 consistent consecutive detections, the
MOTA index increases of 40%. In a further experiment with
a relatively clean bootstrapping phase (ν = 0.1), the MOTA

index increases up to 60%.
Figure 4 qualitatively shows false positive tracks, due to

systematic and consistent false positive detections, that can be
removed with our method.

The system takes approximately 1s for computing the One-
class SVM model, and after learning, a few milliseconds to
classify RGB-D data as outlier or a real object.

VII. CONCLUSION

In this paper, we propose a novel approach to automatically
adapt object detection systems, trained on generic datasets, to
the characteristics of scene in order to reduce the number of
false positives. Our method collects RGB-D data features in
locations where objects are tracked by a tracking system. These
features are used to learn a One-class SVM that is able to reject
false positive detections. Our approach is unsupervised in the
sense that no human needs to label false detections. The model
is able to learn an implicit object feature distribution that is
robust to noise and mislabeling input. After an unsupervised
learning phase, the output of the learned SVM is used to rescale
the confidence of the detector.

We have presented experiments in the context of people
tracking with a large RGB-D dataset. We have shown the
reliability of our approach with respect to high level of outliers
in the crucial bootstrap learning phase. We have highlighted
the performance increase of using the full RGB-D data instead
of using only image data and we have shown that our approach
largely outperforms other standard outlier rejection methods
such as LOF.
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Fig. 4. Three depth views of the environment. Several false positive tracks, depicted by black boxes, that are generated by consecutive false positive detections
can be removed with the proposed method
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