
Online Generation of Kinodynamic Trajectories
for Non-Circular Omnidirectional Robots

Christoph Sprunk* Boris Lau* Patrick Pfaff‡ Wolfram Burgard*

Abstract— This paper presents a novel approach to kino-
dynamic trajectory generation for non-circular omnidirectional
platforms that can be combined with existing path planners.
We use quintic Bézier splines to specify position and orientation
of the holonomic robot for every point in time. To fully
exploit the capabilities of the holonomic robot we propose a
novel path representation. It allows for continuous variation
of path shapes in the spectrum between straight-line paths
with turns on the spot and smooth paths with independent
rotations and translations. Using this representation our method
optimizes trajectories according to a user-defined cost function,
considering the constraints of the platform. This way, it gener-
ates fast and efficient trajectories in an anytime fashion. The
experiments carried out on an industrial robot show that our
approach generates highly efficient and smooth motion trajecto-
ries that can be tracked with high precision and predictability.
Furthermore, the system operates in real-world environments
containing unmapped obstacles and narrow passages.

I. INTRODUCTION

Over the past years, holonomic vehicles with non-steered
omnidirectional wheels developed into commercially avail-
able products. With their ability to freely translate and rotate
in all directions independently and simultaneously they can
perform complex maneuvers in narrow spaces as shown in
Fig. 1 and Fig. 2. Due to their slip-free motion, precise move-
ments are possible even with heavy payloads. Therefore, this
type of platform is attractive for applications like mobile
manipulators, fork lifts, or transportation vehicles.

To achieve autonomous motion of such platforms, a plan-
ning system is required to generate trajectories that are free
of collisions, feasible regarding constraints, and effective or
ideally optimal with respect to a given cost function. Early
approaches for omnidirectional platforms assume circular
robots and completely neglect the orientation [1], [2], which
reduces the size of the problem space compared to non-
holonomic planning. Although non-holonomic constraints
add a level of complexity to motion planning, they also
reduce the size of the search spaces. Thus, the problem space
for a non-circular holonomic platform is substantially larger
due to the added dimension (see the table in Fig. 1), and due
to the absence of a confining non-holonomic constraint.

We propose a new optimization-based approach to gener-
ate smooth and efficient trajectories for non-circular omni-
directional robots. In contrast to previous work it operates
online and in the full configuration space of the holonomic

*Department of Computer Science, University of Freiburg, Germany,
{sprunkc,lau,burgard}@informatik.uni-freiburg.de

‡KUKA Laboratories GmbH, Augsburg, Germany, patrick.pfaff@kuka.com
This work has partly been supported by the European Commission under
contract numbers FP7-248258-First-MM and FP7-248873-RADHAR.

optimized path, fast

initial path, slow

omniWheels

A B

C

Platform State space Control space
1) Orientation-free holonomic 4D: x, y, ẋ, ẏ 2D: ẍ, ÿ
2) Differential drive / Ackermann 5D: x, y, θ, v, ω/φ 2D: v̇, ω̇/φ̇
3) Non-circular holonomic (ours) 6D: x, y, θ, ẋ, ẏ, θ̇ 3D: ẍ, ÿ, θ̈

Fig. 1. Holonomic platform with four “omniWheels” (A), and trajectories
before (B) and after optimization (C) with our method. The table compares
state and control spaces of different platform types, containing pose (x, y, θ),
translational/rotational velocities (v, ω), steering angle (φ), or derivatives.

platform. It furthermore deals with both, mapped and unex-
pected obstacles. To achieve this, it does not perform global
search in the spatio-temporal state space, but instead builds
on waypoints given by a global path planner. From these
waypoints it generates an initial path consisting of pure
translations alternating with turns on the spot. Considering
admissible velocities, the trajectory is iteratively optimized
to minimize a cost function that might assess the travel time,
energy consumption, or other user preferences.

In this paper we describe the individual properties of our
approach, the implementation on an omnidirectional plat-
form, and the evaluation in real-world experiments that show
its versatile behavior. We furthermore present simulations to
evaluate the performance of our method in combination with
several waypoint planning algorithms.

II. RELATED WORK

Previous work on holonomic robots with omnidirectional
wheels mostly covers fundamental control topics like posi-
tion and velocity control [3], trajectory tracking [4], and opti-
mal trajectories in the absence of obstacles [5], [6]. A number
of search-based approaches to kinodynamic motion planning
have been developed for differential and Ackermann drives.
Often AD* or RRTs are used with predefined action sets
consisting of feasible trajectory pieces [7], [8]. To gain
online feasibility, one usually has to make compromises like
coarse discretization of the action space. For omnidirectional
platforms we have to consider an even larger state space and
also a considerably larger action set. LaValle and Kuffner
use RRTs to find paths in such high-dimensional but static
spaces in an offline manner [9].

A B C

Fig. 2. Omnidirectional platforms are versatile in narrow spaces. They can
rotate freely in open spaces (A), move with constant orientation in narrow
passages (B), and execute maneuvers (C) where non-holonomic trajectories
would lead to collisions (dashed). For readability, the figure contains the
circumcircle of the rectangular robot.

To reduce the complexity of the motion planning problem,
one can decouple the generation of the trajectory shape from
determining velocities along the path [10]. Many approaches
plan paths through traversable space without considering
velocities at all. To execute these paths, motor velocities
are typically determined by controllers [11] or reactive
systems [12] which smooth the trajectories and thereby
deliberately deviate from the planned path during execution.

Alternatively, several approaches exist that employ para-
metric path representations and inherently plan smooth paths.
By modifying control points, these paths can be deformed to
account for obstacles [13], [14], [15]. Unlike our approach,
all of these systems do not plan velocities in advance. This
way, accurate motion prediction is rendered impossible, hard
kinodynamic constraints become difficult to enforce, and a
dynamically feasible solution cannot be guaranteed.

Kinodynamic trajectories in contrast specify the position,
orientation, and corresponding velocities of the robot for
every point in time. If platform constraints are satisfied
during generation, these trajectories can be tracked with
high precision and predictability using an error-feedback
controller. Fraichard and Delsart deform such trajectories to
restore collision-freeness after they have been invalidated by
dynamic obstacles [16]. In our previous work we proposed
a system for non-holonomic motion planning that starts
from an admissible initial path [17]. It uses quintic Bézier
splines to model trajectories that can be appended or locally
modified without any discontinuities. This way, it accounts
for unexpected obstacles, unlike a similar cubic B-spline
approach that only operates in static environments [18].

This paper addresses spline-based trajectories for holo-
nomic vehicles that can rotate and translate independently
and simultaneously. Exploiting these capabilities is usually
required to achieve efficient and smooth trajectories as in
Fig. 1 (C). However, pure translation on straight paths is
needed to traverse narrow corridors and to generate collision-
free initial paths between waypoints, as shown in Fig. 1 (B).
A key contribution of this paper is a novel representation
that enables path optimization in the full spectrum between
these two extremes. Thus, we can exploit the full potential
of omnidirectional platforms. Furthermore, we formulate
kinodynamic constraints for holonomic platforms and pro-
pose methods for efficient collision checking. In contrast
to previous work, we plan kinodynamic trajectories for
holonomic platforms that can be executed with high precision
and account for constraints and unexpected obstacles.

III. HOLONOMIC PATH REPRESENTATION

As mentioned before, our system employs a global planner
that provides a traversable path to the goal. This path
is represented by N + 1 waypoints W 0

i , i ∈ {0, . . . , N},
connected by N straight line segments. The planner assures
the traversability of the path when moving with constant
orientation θ0i between W 0

i and W 0
i+1 for all segments, and

turning on the spot at the waypoints.
Given this path we create a continuous trajectory Q(u(t))

that specifies the pose (position and orientation) of the
robot for any point in time t, and by its derivative the
corresponding velocities as well. It consists of the path Q(u)
which determines the progression of robot poses 〈x, y, θ〉
in global coordinates as a function of a native parameter
u ∈ [0, N], i.e., without regarding velocities. The path is
associated with a mapping u(t) that represents an admissible
velocity profile for the path, as described in Sect. IV.

This section recalls our previous work on 2D path rep-
resentations where the direction of travel determined the
robot’s orientation. Furthermore, it proposes a novel repre-
sentation for independent rotation that specifically addresses
the challenges of omnidirectional platforms. Together, this
provides a set of meaningful parameters that allow for
continuous and efficient optimization of holonomic paths.

A. 2D path shape over ground

The orientation-free 2D path of the robot is modeled using
quintic Bézier splines segments that connect pairs of con-
secutive waypoints Wi and Wi+1. This allows for smooth,
curvature continuous paths with minimal interdependence of
spline segments that are locally adaptable.

To closely approximate the provided straight-line path
with the spline segments, we set Wi :=W 0

i and use small
derivatives at these points to achieve turns on the spot. The
positional components of the waypoints and the magnitudes
of the corresponding first derivatives are part of the high-
level parameters altered by the optimization, e.g., to widen
curves and adapt the distance to obstacles, see [17].

B. From turns on the spot to holonomic motion

At first glance, 2D spline paths could trivially be extended
with an additional dimension to independently represent
orientation. This way, however, the robot would rotate inbe-
tween instead of at the waypoints, which appears unnatural to
humans and furthermore prohibits translation through narrow
passages with constant orientation as in Fig. 1 (right).

Our representation tackles this problem by introducing
points rs

i and re
i on the segments enclosing each waypoint

Wi. At these points, the spline segments are subdivided
allowing constant orientations θi−1 and θi on the “middle”
part of the adjacent segments (between re

i−1, rs
i and re

i , r
s
i+1,

respectively) and smooth rotation from θi−1 to θi around the
waypoint Wi. Thus, rotation starts at rs

i and ends at re
i .

To approximate the straight line path as initial path for
the optimization, rs

i and re
i are placed directly on Wi which

yields a turn on the spot as in Fig. 3 (left). The optimization
can slide rs

i and re
i away from Wi (green arrows) which

rs
i, r

e
i Wi

re
i−1

rs
i+1θi−1 θi

rs
i

re
i

Wi

re
i−1

rs
i+1θi−1 θi

Fig. 3. Settings of rotation control points rs
i and re

i (green) at waypoint Wi

for a turn on the spot (left) vs. rotation during translation (right). The darts
indicate robot motion with constant (black) and changing (gray) rotation.

θ0
0

θ0
1

θ0
2

λθ = 0
θ1
0

θ1
1

θ1
2

λθ = 1

Fig. 4. Paths with different rotation behaviors. Left: initial paths use λθ=0
to orient the robot as specified by the waypoint planner. Right: minimized
change of rotation with λθ=1. The optimization can adjust λθ to interpolate
between these two extremes.

causes smooth rotation during translation (right) and thus re-
duces travel time. In the extreme case, rs

i and re
i of waypoint

Wi coincide with re
i−1 and rs

i+1 of the neighboring waypoints
Wi−1 and Wi+1, which causes uninterrupted rotation.

C. From conservative orientation to minimized rotation

The control points rs
i and re

i presented above determine
where on the path the robot rotates. However, the initial
values for θi given by the waypoint planner (θ0i) can be
conservative. Adjusting the θi to reduce the total amount
of rotation as shown in Fig. 4 can further reduce travel time
or energy consumption (cf. Sect. VI-C).

Usually, the orientation of the robot at start and goal is
given. At intermediate waypoints it can also be fixed due to
adjacent path segments requiring a particular orientation. We
therefore split the path at these waypoints and optimize the
rotational behavior of the resulting subpaths independently.

For such a subpath with waypoints Wi, i ∈ {0, . . . ,M}
we compute the orientations θ1i that realize a minimal
change of orientation. They interpolate the given start and
end orientation θstart and θend of the subpath as shown in
Fig. 4 (right), and are determined according to

θ1i = θstart + si · (θend − θstart) . (1)

Here, si ∈ [0, 1] stands for the fraction of path length up to
the middle of the ith segment, and is computed as

si =
∑i
k=1 ‖Wk−Wk−1‖+ 1

2‖Wi+1−Wi‖∑M
k=1 ‖Wk−Wk−1‖

. (2)

For every subpath we introduce a parameter λθ ∈ [0, 1]
that blends the rotational behavior between the initial (θ0i)
and minimized (θ1i) values according to

θi = (1− λθ) · θ0i + λθ · θ1i . (3)

For λθ = 0, the initial θ0i orientations are used in the
corresponding subpath as shown in Fig. 4 (left). Choosing
λθ = 1 uses the θ1i and thus achieves a minimal change of
rotations as depicted in Fig. 4 (right) which however might
not be free of collisions anymore. The optimization starts
with all λθ = 0 and continuously changes these parameters
to obtain more efficient paths that are still collision-free.

IV. VELOCITY PROFILES

The speed at which a path Q(u) is traversed is determined
by the mapping u(t), such that Q (u(t)) determines the
pose and velocities of the robot over time t. For every
path Q(u) our method seeks to compute the mapping u(t)
that corresponds to the fastest velocity profile that respects
given dynamic constraints. The algorithms are based on the
approach presented in our previous work [17] and extended
for holonomic robots. A trajectory Q(u(t)) defines velocities
by its first derivative with respect to time t,

Q̇(u(t)) = Q′(u(t)) · u̇ (t) , (4)

where the dot and the prime denote derivatives with respect
to t and u, respectively. We specify finely discretized support
points along the path, e.g., whenever the robot would travel
more than 0.02 m or rotate more than 0.02 rad after the
preceding support point. For these supports we compute
the maximum u̇(t) that satisfies a set of constraints. The
translational and rotational velocities of the platform can be
limited to vmax, ωmax for safety reasons, e.g., in the vicinity
of obstacles. The resulting constraint for u̇(t) is given by

u̇(t) ≤ vmax

‖Q′xy(u(t))‖
, u̇(t) ≤ ωmax

|Q′θ(u(t))|
. (5)

To prevent skidding and protect sensitive payload, a maximal
centripetal acceleration ac can be enforced by

u̇(t) ≤
√

ac

‖Q′xy(u(t))‖ · |Q′θ(u(t))|
. (6)

Between the supports we assume constantly accelerated mo-
tion. To ensure safe transportation of sensitive payload, we
also limit the range of allowed acceleration and deceleration
in these intervals. Given u̇(t) we can now compute u(t).

The specific algorithm to calculate velocity profiles is not
integral to our method and could also be implemented using
different approaches, e.g., the time scaling algorithm [10].

V. TRAJECTORY OPTIMIZATION

The optimization starts with a close approximation of
the straight-line path provided by the global path planner.
By subdividing long segments, the approximation error can
be kept below the map resolution due to the convex hull
property of Bézier splines. Typically, the optimization can
substantially reduce the time of travel by widening curves,
performing simultaneous translation and rotation, and adjust-
ing the distance to obstacles that impose a speed limit.

Direct optimization of spline segments might theoretically
be possible, but it would be very complex due to the high
number of parameters and their interdependence. Therefore,
our optimization relies on the meaningful higher-level pa-
rameters provided by the path representation, see Sect. III.

The optimization repeatedly iterates through the list of
tunable parameters as long as planning time is left, and
separately optimizes each parameter using a derivative-free
gradient descent [17]. Each step involves modifying a pa-
rameter, checking the resulting trajectory for collisions and
computing the associated cost. The optimization terminates

collides circ(circle C, distmap D)
(cx, cy)← center(C)
return (D(cx, cy) ≤ radius(C))

collides rect(rectangle R, distmap D)
(cx, cy)← center(R)
if D(cx, cy) ≤ ri then

return true
else if D(cx, cy) > ro then

return false
compute rectangles R1, R2

return (collides rect(R1, D)
∨ collides rect(R2, D))

(cx, cy)

D(cx, cy)

ri

ro

R1

R2

R

obstacle some-
where on circle

Fig. 5. Efficient collision checks for circular and rectangular elements. The
drawing shows a rectangular element R with inner and outer diameter ri and
ro. Only if the obstacle distance D(cx, cy) at the center of R is between
ri and ro, the result depends on recursive collision checks of R’s subparts
R1 and R2. Exceeding recursion can be terminated assuming collision.

if an iteration through all parameters did not result in a
considerable cost reduction.

Checking the trajectories for collisions dominates the com-
putational cost during optimization. For efficient checks, our
algorithm approximates the shape of the robot and its payload
by a set of circles and rectangles. Using a dynamically
updated distance map D(x, y) of the environment [19], these
elements can be efficiently checked for collisions with the
two methods outlined in Fig. 5.

Since the optimization starts from a valid trajectory and
rejects colliding variants, it can provide valid trajectories
with decreasing costs at any time. As another consequence,
the initial path predefines the topological route between
obstacles. However, this can be overcome by running the
algorithm in parallel with different path inputs, e.g., with
the n-best topologically different paths from start to goal.

VI. EXPERIMENTS

We conducted experiments using the KUKA omniRob
shown in Fig. 1. It has a drive like the Uranus robot [20],
a rectangular shape of 1.15×0.86 m, and a mass of 250 kg.
Two SICK laser range finders are used for self-localization
and detection of obstacles. The motion planning system
was executed on an Intel R© CoreTM2 Duo 2.2 GHz. In our
experiments we allowed velocities up to 1.2 m/s and used
travel time as cost where not stated otherwise.

The trajectories Q(u(t)) were executed using an error
feedback controller that in every time step t computes a
velocity vector V =〈vx, vy, vθ〉T . This vector is determined
using the trajectory Q(u(t)) and its derivative Q̇(u(t)),

V = Q̇(u(t+ tdel)) + κ� (Q(u(t))−X(t)) . (7)

The first term on the right-hand side is the feed-forward
signal that accounts for a command execution delay tdel. The
second term realizes the error-feedback with the pose esti-
mate X provided by the robot’s odometry. Finally, � denotes
the component-wise product of vectors. The parameters have
been set to κ=〈2, 2, 0.2〉T , and tdel =0.1 s.

The motor speeds for the four actuated wheels are com-
puted from V and X via the motion equations for the
platform, in our case for the Uranus [20, Eq. (6.2.13)].

In dynamic environments, it is not reasonable to plan
velocities for the entire path as it might be obstructed by

1m

0 10 20

0

0.02

0.04

0.06

0.08

time [s]

translational error [m]

0 10 20

0

0.02

0.04

0.06

0.08

time [s]

rotational error [rad]

Fig. 6. Left: Execution of a reference trajectory drawn in black, driven
path in red. Middle/right: the plots show the resulting deviations without
(solid) and with error feedback and delay compensation (dashed).

1m

0.02

0.04

0.06

0.08

odometry global

translational error [m]

pick&place
pick&place, fast
transportation
transportation, fast

start

goal

1m
regular
fast
slow

Fig. 7. The bar plot shows the translational tracking error (mean, standard
deviation) for the experimental tasks: the pick&place task (top) is shown
with an overlay of all driven trajectories and the transportation task (right)
is shown with example trajectories for different velocity constraint settings.

unexpected obstacles. Frequent replanning is also required
to cope with localization errors and odometry drift. In our
experiments we found a good tradeoff by using the next four
waypoints and replanning every ∆t=1.6 s, which is the time
for path planning, optimization, and communication delays.

Besides one initial planning interval of ∆t all compu-
tation is done online, i.e., while the robot is moving. Our
experiments evaluate tracking accuracy, behavior in difficult
situations, and reaction to different constraint settings and
waypoint planners. Due to availability of admissible initial
paths and the anytime characteristic of the optimization, our
system was always able to reach the specified goal pose.

A. Open-loop and closed-loop trajectory tracking
We evaluate the suitability of our trajectory representation

on the basis of tracking errors with and without error
feedback in the controller. The reference trajectory, shown
in Fig. 6 (left), specifies a hook-shaped curve with roughly
25 s of travel time and exploits the holonomic capabilities of
our platform. Fig. 6 also presents plots of the translational
(middle) and rotational (right) deviation of the actual robot
pose from the planned pose for every point in time, as
measured by the odometry of the robot. Even when driving
with feedforward commands only, the translational errors
were below 0.08 m and the rotational errors below 0.08 rad.
With feedback control the errors were below 0.01 m and
0.02 rad. These low errors show that our approach generates
trajectories that can accurately be followed by the robot.

B. Performance in real-world scenarios
This experiment evaluates the applicability of our ap-

proach in four industrial real-world scenarios. In a medium-

start

goal

1m

start

goal

1m

Fig. 8. Left: trajectory of the holonomic robot when driving through
a narrow passage. Right: avoiding an unmapped and unexpected obstacle
(arrow) by replanning trajectories. The trajectories are shown on distance
maps of the environment, where darker spots are closer to obstacles.

distance transportation task the robot has to reach the goal
with a specified orientation, as shown in Fig. 7 (right). The
task was executed ten times yielding an average travel time
of 35.4 s. To challenge our system and to test its adaptivity,
the task was executed another five times with raised velocity
limits. Although the resulting trajectories were longer, this
reduced the travel time to 28.4 s. In a single run with slow
admissible velocities it took the robot 64.7 s to execute the
trajectory. The low standard deviation of 0.2 s in all settings
shows the consistent behavior of the system. The effects of
different constraint settings on the path shape can be seen
in Fig. 7 (right). The faster the robot can drive, the more
the system elongates trajectories to make wider curves and
to stay away from obstacles, as small distances and sharp
curves impose limits on the speed.

The second task is a typical pick&place application that
requires the robot to repeatedly travel between two poses
with a waiting time of 0.2 s between each trip. The task was
executed for two minutes yielding 19 very similar trajectories
as shown in Fig. 7 (top). In a run with higher admissible
velocities and accelerations, the robot achieved 30 iterations
in the same time interval.

The translational tracking errors for both tasks and velocity
settings are shown in Fig. 7 (left). The errors are the deviation
of the robot from its planned pose, averaged over time. When
we measure the deviation based on the odometry of the
robot, the errors are below 0.02 m. The errors according to
the global self-localization are below the map resolution of
0.05 m, even for the high velocity settings.

To demonstrate the capability of our system to handle
challenging situations, we initialized the optimization with
a straight line path through a narrow passage with 0.07 m
clearance on both sides of the robot, shown in Fig. 8 (left).
This is considerably narrow, given the map resolution of
0.05 m. As shown in the figure, the robot aligned itself with
the passage to maximize obstacle distance.

The last scenario involved a cardboard box thrown right
in front of the moving robot as unexpected obstacle, see
Fig. 8 (right). The straight trajectories planned at first would
collide with the box. After sensing the obstacle, the system
smoothly circumvents it (red) by generating new trajectories
that join the original ones without discontinuities.

The results of our experiments demonstrate that our ap-
proach generates smooth and precise motion, effectively
adapts to varying parameters like velocity limits, and handles
challenging situations that occur in real applications.

start

goal

cost: travel time

start

goal

cost: travel time, energy efficiency

Fig. 9. Left: optimized trajectory using time of travel as cost. Right:
using an additional penalty for non-forward motion, which is motivated by
a higher energy efficiency. The main difference is the rotational behavior.

C. User-defined cost function

We conducted experiments in simulation to test our system
with different cost functions. Depending on the application,
other aspects might be appropriate besides the time of travel.
For example, it can be desirable to bias the system to
generate movements anticipated by humans, e.g., moving
forward rather than sideways. Depending on wheel design
this can also be more energy efficient due to lower friction.

We implement this by adding a penalty F for non-forward
motion to our cost function, cost = ttravel+α·F ·ttravel, where
α controls the influence of F . The penalty is computed from
the angular difference γ between the robot’s orientation and
the direction of travel, integrated over the trajectory length l,

F =
1
l

∫ l

0

1− |cos γ(s)| ds . (8)

We optimized the same initial trajectory with two different
settings for α. Although the two-dimensional shape of the
traveled paths look similar, the trajectories differ substan-
tially in their rotational behavior, see Fig. 9. For α = 0
the robot needed 14.46 s and continuously rotated during
translation to reach the specified goal orientation. With α=1
the resulting trajectory took 16.28 s to traverse, but mostly
used forward motion until shortly before reaching the goal.

D. Influence of the choice of waypoint planner

Our system uses waypoints from a global path planner
to generate an initial trajectory as starting point for the
optimization. Naturally, the choice of planning algorithm can
have an influence on the final result.

2D path planners ignore orientation and therefore require
the robot’s circumcircle to be obstacle-free along the path,
see Fig. 2 (A). Waypoint planners that account for the
orientation of the robot during forward motion are able to
find paths through passages as shown in Fig. 2 (B). Planners
operating in the full holonomic configuration space (C-space)
can also find paths through passages that require lateral or
diagonal movements as in Fig. 2 (C). Our approach can
generate admissible spatio-temporal trajectories for all these
situations, given a suitable waypoint planner.

To assess the robustness of our system against the choice
of waypoint planner, we compare the optimization results for
the CARMEN 2D value iteration planner, a C-space planner,
and a hybrid approach that uses Voronoi graphs where

P1 P2 P3

P4 P5 P6

Fig. 10. Map with start/goal poses used in our evaluation of different path
planners in combination with our trajectory generation method. The figure
also contains selected example trajectories between the end poses.

TABLE I
NUMERICAL RESULTS OF GLOBAL PATH PLANNER COMPARISON.

Planner tplan topt ttravel-I ttravel-O
2D value iteration 0.022 s 0.55 s 82.37 s 38.11 s
Voronoi 0.009 s 0.46 s 36.28 s 28.46 s
C-space 4.864 s 0.43 s 31.49 s 27.19 s

possible and resorts to C-space planning when necessary.
We selected six start/goal poses on a map of a factory floor
as shown in Fig. 10 and let a simulated robot perform travel
tasks for all of the 30 start-goal combinations.

Tab. I shows the average times needed for planning (tplan),
optimization (topt), and execution of the initial and optimized
trajectories (ttravel-I and ttravel-O, respectively). As expected,
the C-space planner requires substantially more time to find
a path compared to the others, which prevents its use in
most practical applications. On the other hand, it generates
waypoints that fully exploit the holonomic capabilities of
the robot which leads to trajectories with the shortest initial
and optimized travel times. The hybrid planner uses Voronoi
paths which results in substantially different waypoints.
Nevertheless, the optimization results are comparable, but are
achieved in a much shorter planning time. Additionally, this
planner has the same completeness properties as the C-space
planner. In contrast, the 2D value iteration plans with the
circumcircle of the robot. Thus it has to take detours in some
runs to avoid the narrow passage between P1 and P2 which
increases execution times. Additionally, its waypoints have
to maintain a larger distance to obstacles in general, which
also causes longer initial paths. However, our optimization
can compensate this drawback to a large degree by adjusting
the trajectory shape, which causes a substantial decrease in
execution time as shown in Tab. I.

VII. CONCLUSION

In this paper, we presented a novel approach to kino-
dynamic trajectory generation for holonomic platforms. Our
approach starts with an initial, collision-free trajectory which
can directly be computed from waypoints calculated by
a global path planner. Our novel path representation can
model the spectrum between both, pure translations alter-
nating with turns on the spot and continuous rotation during
translation on smoothly curved trajectories. Relying on this
representation, our method iteratively optimizes the given
trajectory according to a user-defined cost function and under
the constraint that no collisions occur. The output of our

anytime algorithm is a smooth trajectory that complies with
the dynamic constraints of the robot and can therefore be
tracked by the robot with high precision.

Our approach has been implemented and evaluated on
an industrial holonomic platform. The experimental results
show that it yields highly versatile motion behaviors even
in complex situations with narrow passages or unexpected
obstacles. During all our experiments the positioning er-
ror relative to the planned trajectory was below the map
resolution of 0.05 m. Further experiments demonstrated the
robustness of our system against the choice of global path
planner, and its flexibility when adapting to different cost
functions.

REFERENCES

[1] O. Brock and O. Khatib, “High-speed navigation using the global dy-
namic window approach,” in Intl. Conf. on Robotics and Automation,
vol. 1, Detroit, USA, 1999.

[2] D. Hsu, R. Kindel, J. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” The Intl. Journal of
Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[3] R. Rojas and A. G. Förster, “Holonomic control of a robot with an
omnidirectional drive,” Künstliche Intelligenz, vol. 20, no. 2, 2006.

[4] Y. Liu, J. J. Zhu, R. L. Williams II, and J. Wu, “Omni-directional
mobile robot controller based on trajectory linearization,” Robotics
and Autonomous Systems, vol. 56, no. 5, 2008.

[5] D. J. Balkcom, P. A. Kavathekar, and M. T. Mason, “Time-optimal
trajectories for an omni-directional vehicle,” The Intl. Journal of
Robotics Research, vol. 25, no. 10, pp. 985–999, 2006.

[6] O. Purwin and R. D’Andrea, “Trajectory generation and control for
four wheeled omnidirectional vehicles,” Robotics and Autonomous
Systems, vol. 54, pp. 13–22, 2006.

[7] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible
maneuvers for autonomous vehicles,” in Robotics: Science and Sys-
tems Conference, Zurich, 2008.

[8] K. Maček, G. Vasquez, T. Fraichard, and R. Siegwart, “Towards safe
vehicle navigation in dynamic urban scenarios,” Automatika, 11 2009.

[9] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic
planning,” Intl. Journal of Robotics Research, vol. 20, no. 5, 2001.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge, MA: MIT Press, 2005.

[11] Y. Yang and O. Brock, “Elastic roadmaps–motion generation for
autonomous mobile manipulation,” Autonomous Robots, vol. 28, no. 1,
pp. 113–130, 2010.

[12] J. Minguez and L. Montano, “Nearness diagram navigation (ND):
Collision avoidance in troublesome scenarios,” IEEE Transactions on
Robotics and Automation, vol. 20, no. 1, 2004.

[13] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” The Intl. Journal of Robotics
Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[14] J. Connors and G. Elkaim, “Manipulating B-Spline based paths
for obstacle avoidance in autonomous ground vehicles,” in National
Meeting of the Institute of Navigation, San Diego, USA, 2007.

[15] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deforma-
tion for nonholonomic mobile robots,” IEEE Transactions on Robotics,
vol. 20, no. 6, pp. 967–977, 2004.

[16] T. Fraichard and V. Delsart, “Navigating dynamic environments with
trajectory deformation,” Journal of Computing and Information Tech-
nology, vol. 17, 2009.

[17] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning
for mobile robots using splines,” in IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS), St. Louis, MO, USA, 2009.

[18] Z. Shiller and Y. Gwo, “Dynamic motion planning of autonomous
vehicles,” IEEE Trans. on Robotics and Automation, vol. 7, 1991.

[19] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of Euclidean
distance maps and Voronoi diagrams,” in IEEE Intl. Conf. on Intelli-
gent Robots and Systems (IROS), Taipei, Taiwan, 2010.

[20] P. Muir, “Modeling and control of wheeled mobile robots,” Ph.D.
dissertation, Carnegie Mellon University, Pittsburgh, PA, 1988.

