
Improved Non-linear Spline Fitting
for Teaching Trajectories to Mobile Robots

Christoph Sprunk Boris Lau Wolfram Burgard

Abstract— In this paper, we present improved spline fitting
techniques with the application of trajectory teaching for mobile
robots. Given a recorded reference trajectory, we apply non-
linear least-squares optimization to accurately approximate
the trajectory using a parametric spline. The fitting process
is carried out without fixed correspondences between data
points and points along the spline, which improves the fit
especially in sharp curves. By using a specific path model,
our approach requires substantially fewer free parameters
than standard approaches to achieve similar residual errors.
Thus, the generated paths are ideal for subsequent optimization
to reduce the time of travel or for the combination with
autonomous planning to evade obstacles blocking the path. Our
experiments on real-world data demonstrate the advantages of
our method in comparison with standard approaches.

I. INTRODUCTION

In the recent years, mobile transportation platforms be-
came more and more popular in industrial applications. The
majority of them are so-called automated guided vehicles
(AGVs) designed to carry loads on predefined paths, often
marked by magnetic or optical strips. Using path planners
for autonomous motion, however, is usually more flexible
because vehicles can easily be assigned to new goals and
directly cope with unexpected obstacles. The commercial
KIVA system, for example, uses A* planning on a grid to
control autonomous vehicles in warehouses and distribution
centers [1]. However, compared to AGVs, the movement of
such autonomously navigating systems is less predictable,
which is sometimes not desired in production sites shared
with human workers.

Automation of flexible production processes with small
lot sizes often requires systems that can easily be assigned
to new paths — even by non-experts and without changing
the environment. A natural approach is to record reference
trajectories and to fit continuous paths to them. If desired,
the paths can be further optimized to reduce travel time or
to allow the robot to autonomously deviate from the path
in exceptional circumstances, such as unexpected obstacles
blocking it. To facilitate efficient optimization and to achieve
robustness to noise, a key challenge is to achieve accurate
path fits with a small number of parameters in the model.

This paper presents a novel approach to improved trajec-
tory teaching for mobile robots by non-linear fitting of a
specific path model (see Fig. 1). It substantially reduces the

All authors are with the computer science department at the University
of Freiburg, Germany, {sprunkc, lau, burgard}@informatik.uni-freiburg.de.

This work has partly been supported by the European Commission under
FP7-248258-First-MM, FP7-248873-RADHAR, and FP7-260026-TAPAS.

1m

Our non-linear spline fitting with BIC selection
8 segments, 23 parameters, E=0.007 m

Fig. 1. Fitting our path model (red) to a reference trajectory (blue). Our
non-linear optimization places control points in curve apices and adjusts
their position (crosses) and tangents (circles).

number of parameters required to achieve the same fitting
accuracy as standard approaches. We describe our model and
the method to efficiently fit it to reference paths, to optimize
the number and location of control points, and to refine spline
fits with non-linear optimization.

After discussing related work in Sect. II, we formalize ba-
sic spline fitting in Sect. III. While Sects. IV–VI present our
novel methods for non-linear spline fitting, control point op-
timization, and path refinement, Sects. VII and VIII present
experimental results and discuss application scenarios.

II. RELATED WORK

Trajectory teaching has received considerable attention in
areas like programming by demonstration, manipulation, and
humanoid robots. Calinon et al. for example combine Hidden
Markov Models with Gaussian mixture regression to general-
ize from multiple gesture demonstrations [2]. Several authors
have applied spline fitting to generate smooth trajectories
from discrete reference data points, e.g., for manipulation
imitation [3], foot step planning [4], to represent handwriting
motions [5], or to analyze human trajectories [6].

Basic spline fitting can be performed using linear least-
squares minimization given fixed correspondences between
the reference data points and the internal parameter of the
spline, which drastically limits the expressiveness of the
spline. Wang et al. presented an error measure to fit B-splines
to point cloud data without such correspondences [7]. For
our application, we propose a novel error measure especially
suited for non-linear spline-fitting with sparse control points.

For baseline comparison we use basic spline fitting, as
done by Hwang et al. for manually drawn robot paths [8].
This paper presents an approach to non-linear spline fitting
of a specific path model. Compared to standard approaches,
it requires substantially fewer parameters to achieve the same
accuracy. We also present several application scenarios that
exploit this property to further optimize the fitted paths.
Like the approach by Macfarlane and Croft, our model uses
quintic splines to avoid curvature discontinuities [9].

III. BASIC SPLINES AND LINEAR FITTING TECHNIQUES

In mobile robotics, odd-ordered Bézier splines are a pop-
ular parametric path representation, since they can be used
to smoothly connect a set of waypoints as shown in Fig. 2.

A spline segment ŝ(u) is a polynomial curve of order
n, defined over an internal parameter u ∈ [0, 1]. In the
Hermite form, a spline segment is defined by control points
pi at its start (ps) and end (pe). Each pi has K = n+1

2
parameters pk

i , with k = 0, . . . ,K− 1. The pk
i are vectors

with one component per spline dimension, and specify the
k-th derivative of ŝ(u) at the start (u=0) and end (u=1) of
the segment. ŝ(u) is then given by the linear combination

ŝ(u) =
∑K−1

k=0
hks(u) · pk

s + hke(u) · pk
e , (1)

where hks(u) and hke(u) are polynomials called Hermite basis
functions. They are obtained by solving

ŝ(k)(0) = pk
s , ŝ(k)(1) = pk

e , k = 0, . . . ,K−1, (2)

where ŝ(k) is the k-th derivative of the polynomial ŝ. By
factoring out the pk

s ,p
k
e we obtain the basis functions for

cubic, quintic and septic splines shown in the following table.

Cubic (K=2) Quintic (K=3) Parameter

h0
s 2u3 − 3u2 + 1 −6u5 + 15u4 − 10u3 + 1 p0

s

h1
s u3 − 2u2 + u −3u5 + 8u4 − 6u3 + u p1

s

h2
s − 1

2u
5 + 3

2u
4 − 3

2u
3 + 1

2u
2 p2

s

h0
e −2u3 + 3u2 6u5 − 15u4 + 10u3 p0

e

h1
e u3 − u2 −3u5 + 7u4 − 4u3 p1

e

h2
e

1
2u

5 − u4 + 1
2u

3 p2
e

Septic (K=4)

h0
s 20u7 − 70u6 + 84u5 − 35u4 + 1 p0

s

h1
s 10u7 − 36u6 + 45u5 − 20u4 + u p1

s

h2
s 2u7 − 15

2 u6 + 10u5 − 5u4 + 1
2u

2 p2
s

h3
s

1
6u

7 − 2
3u

6 + u5 − 2
3u

4 + 1
6u

3 p3
s

h0
e −20u7 + 70u6 − 84u5 + 35u4 p0

e

h1
e 10u7 − 34u6 + 39u5 − 15u4 p1

e

h2
e −2u7 + 13

2 u6 − 7u5 + 5
2u

4 p2
e

h3
e

1
6u

7 − 1
2u

6 + 1
2u

5 − 1
6u

4 p3
e

Typically, a spline curve is a concatenation of multiple spline
segments. When joining M segments ŝi, i ∈ 0, . . . ,M−1,
the resulting curve s(u) is defined over [0,M] and given
by s(u) = ŝi(u − i). Here, ŝi with i = buc is the “active”
segment for a certain u, and specified by pk

s =pk
i and pk

e =
pk
i+1. Since adjacent segments share control points, the curve

and its derivatives are continuous up to the K−1-th derivative.

A. Linear least-squares spline fitting

Given a reference path z(t), we want to find an accurate
parametric approximation with as few parameters as pos-
sible. z(t) is given by the robot position zt = 〈xt, yt〉 at
each discrete time step t = 0, . . . , N −1. We compute the
cumulative length of the piecewise linear path given by z(t)
as lt =

∑t
i=1 ‖zi− zi−1‖. We assume that the zt have been

pruned to have a minimum distance lt− lt−1 > τl for all
t. To approximate z(t) with a spline, we assign each zt a
corresponding ut by linear interpolation with respect to the
arc length, ut =M · (lt/lN−1).

Basic cubic spline fitting with constrained ends
6 segments, 22 parameters, E=0.052 m

1m

Basic cubic spline fitting with constrained ends
13 segments, 50 parameters, E=0.008 m

1m

Fig. 2. Linear least-squares fitting of cubic splines with constrained
start/end points. With 22 parameters (top) this overly smoothens the corners,
causing a high residual error. With 50 parameters (bottom) the error is
comparable to our method with 23 parameters, as shown in Fig. 1.

For the basic linear least-squares fit we construct a matrix
X with one row xt for each data point zt. The rows contain
the Hermite basis functions for the corresponding ut. For
one-dimensional splines these rows are given by

xt =
(
0 . . . 0︸ ︷︷ ︸
i·K

h0s . . . h
K−1
s h0e . . . h

K−1
e 0 . . . 0︸ ︷︷ ︸
(M−i−1)·K

)
,

where each hk is a function of ut − i and i=buc the index
of the segment active for ut. For splines with two or more
independent dimensions, xt is expanded accordingly. The
spline s(u) at u=ut is then given by s(ut) = xt · p, where

p =
(
p0
0. . .p

K−1
0 . . . p0

M . . .p
K−1
M

)T
(3)

is the vector of control point parameters. To fit the spline to
the reference path z, we can solve the corresponding linear
least squares problem in closed form,

p̃ = argminp ‖z−Xp‖ =
(
XTX

)−1
XT z . (4)

The parameters p̃ define a spline s(u) that minimizes the sum
of the squared residual errors, r2 =

∑N−1
t=0 ‖zt − s(ut)‖2.

B. Constraining start and end of the fitted paths

Applications like mobile manipulation can require high
accuracy for the start and end positions. We constrain the
spline by removing the corresponding model parameters p0

0

and p0
M from p and the respective columns from X . Instead,

the locations z0 and zN−1 are put in a constant vector b for
a modified spline fit, p̃ = argminp ‖z− (Xp+ b)‖. The
elements of b depend on the ut, and are given by

bt = δi=0 · h0s(ut − i) · z0 + δi=M−1 · h0e(ut − i) · zN−1 ,

where δC = 1 if the condition C in the index is true,
and zero otherwise. Furthermore, to constrain the start and
end orientations to specified values θ0 and θN−1, the first
derivative s′(u) at the start and end has to meet the conditions

s′(0) = e0

(
cos θ0

sin θ0

)
, s′(M) = eM

(
cos θN−1

sin θN−1

)
, (5)

where e0, eM are scalar elongation factors that scale the
tangent length. Now, p1

0 and p1
M are removed from the

F

Fit with un-
constrained u

E

Final fit with
relaxed u

D

Adjusted
control points

C

Control points
at curve apices

B

Equidistant
control points

A

Cubic linear fit

Fig. 3. Spline fits (red) and residual errors (gray lines) for a given reference path (crosses). The plots show the bottom-right corner (1.7×1.8m) of the
map in Fig. 1. (A): linear fit of a basic cubic spline. (B)-(E): different stages of our spline fits. (F): problem when fitting without any constraints on u.

parameter vector p, and replaced by e0 and eM . The cor-
responding coefficients in X are δi=0 · h1s(ut− i) · s′(0) and
δi=M−1 · h1e(ut − i) · s′(M), respectively. Since e0 and eM
are the same for x and y, the rows and columns of z, p,
and X are interleaved for x and y, and the entries for the
elongation factors are unified.

Solving the least squares fit for the modified X , p, and b
yields a spline that obeys the constraints mentioned above.
Nevertheless, the accuracy of the fit depends on the number
of spline segments as shown in Fig. 2. Especially in sharp
corners and curves with small radii, the errors can be very
high as shown in Fig. 3 (A). In the next sections we propose
improvements over the basic spline fitting to reduce the
number of parameters and the fitting error at the same time.

IV. NON-LINEAR FITS WITH OUR PATH MODEL

This section proposes least-squares fitting for the path
model introduced by Lau et al. [10]. It is based on quintic
splines and reduces the number of parameters with heuristics.
For 2D splines it needs 3 instead of 6 parameters per control
point, which substantially reduces the computational load for
optimization.

Similar to the basic splines, the segments of this model
connect a set of consecutive waypoints p0

i . The first deriva-
tive, i.e., the tangent of the spline at the waypoints, is
controlled by a heuristic and given by

p1
i = ei · 12

(
di−1

‖di−1‖
+

di

‖di‖

)
· 12 min{‖di−1‖, ‖di‖} , (6)

where di = p0
i+1 − p0

i is the vector between the start and
end point of segment i. The ei are scalar elongation factors
that scale the normed tangents at each control point.

The parameters p2
i specifying the second derivative are

determined by a heuristic that mimics the behavior of cubic
splines, but overcomes their curvature discontinuities:

p2
i =

‖di‖
‖di−1‖+‖di‖

lim
u↗i

s′′h(u)+
‖di−1‖

‖di−1‖+‖di‖
lim
u↘i

s′′h(u) ,

(7)
where s′′h is the piecewise linear second derivative of the
cubic spline given by p0

i and p1
i . With these heuristics, a

quintic spline is fully specified by the waypoints p0
i and the

elongation factors ei. Thus, it has 3 parameters per control
point in the 2D case, whereas a generic cubic spline has
4, and a quintic spline has 6 parameters per control point.
Adding constraints for the start and end pose is done in the
same way as for the basic splines.

Interpolation of u Linear fit (III-A) Non-linear fit (IV)

initial
guess

arc lengths lj
of control points

fitted
path

Non-linear fit (Sect. IV)

Fig. 4. Non-linear fit of our path model. After interpolating u, we perform
a linear least-squares fit of a basic spline. The resulting control points are
used as initial guess for the non-linear optimization of our path model.

This quintic path model has shown to be effective in the
context of path optimization in various environments and
applications. For more details please refer to [10], [11].

A. Fitting with non-linear optimization
To compute splines with our path model, we define a

conversion function f , that transforms the parameter vector
p+ =

(
p0
1 . . .p

0
M−1 e0 . . . eM

)T
to a basic quintic param-

eter vector according to Eq. (6) and (7). The least-squares
fit with start and end constraints as before is then given by

p̃+ = argminp+

∥∥z−X · f(p+) + b
∥∥ . (8)

Since f is non-linear, the problem cannot be solved in
closed form anymore. Instead, we employ optimization using
the Levenberg-Marquardt algorithm. A good initial guess is
obtained by computing a linear fit as described in Sect. III-A
to initialize the p0

i and ei. The ei are determined from the
p1
i by solving Eq. (6) accordingly. For an overview, see also

Fig. 4. An exemplary output is shown in Fig. 3 (B).

V. CHOOSING CONTROL POINTS

The spline fits in Sections III-A and IV-A optimize the
parameters of the control points pi, but their position along
the spline has been determined by the linear interpolation
of u for the whole path. This section proposes a method to
place the control points of our path model in curve apices,
which substantially improves the fit quality.

A. Estimating the location of curve apices
We seek to automatically find curve apices in our training

data and denote their increasing cumulative arc length by
lj , j = 1, . . . , J . To detect these points, we fit a basic spline
sc(u) to the data, and compute its curvature function c(u),
which is the reciprocal value of the curve radius at every
point on the spline. The curve apices correspond to extremal
values of c(u), which are identified by sign changes in the
derivative c′(u) where |c(u)| > τc, as shown in Fig. 5. The
curvature and its derivative are given by

c(u) =

(
s′c×s′′c
‖s′c‖3

)
, c′(u) =

s′c×s′′′c
‖s′c‖3

− 3 (s′c×s′′c) (s′c · s′′c)
‖s′c‖5

,

0 5 10 15 20
−2

0

2

4

l0 l3 l6 l9 l12 l15 l18 l21 l24

arc length [m]

cu
rv

at
ur

e
[1

/m
]

Fig. 5. Curvature of a septic spline sc(u) that was linearly fitted to the
data points shown in Fig. 1. The crosses mark the detected extrema lj after
thresholding and approximate the position of curve apices along the spline.

where a×b = axby − bxay for the x and y components of
the 2D spline sc(u) and its derivatives. Again, we dropped
the dependency of sc(u) on u for readability.

Since c′(u) depends on the third derivative s′′′c (u), we use
a septic spline for sc(u), for which s′′′c (u) is continuous.

We associate the location of each curve apex j with the
arc length lj of the closest point on the piece-wise linear
interpolation of the reference data zt. The start and end point
are treated like curve apices with l0 = 0 and lJ+1 = lN−1,
respectively (see Fig. 5). We can “anchor” control points
of our spline to these lj by associating them with integer u
values. Then, the spline parameter ut for a data point zt at arc
length lt between two anchored control points with indices
j, j+1 and arc lengths lj , lj+1 is given by the interpolation

ut = j +
lt − lj
lj+1 − lj

,with lj ≤ lt < lj+1 . (9)

B. Bayesian Information Criterion for control point selection

Creating control points for all detected curve apices can
yield an overly complex spline model. To find a good trade-
off between the number of control points and accuracy,
we propose an error-driven model selection procedure. It is
based on the Bayesian Information Criterion (BIC),

BIC = −2 logL+ K̂ logN, (10)

where L is the data likelihood given the model, K̂ is the
number of free parameters in the model, and N the number
of data samples. The likelihood of a spline fit is a function
of the fitting error r2 =

∑N−1
t=0 ‖zt − s|zt‖2. It measures

the distance from each data point zt to the closest point on
the spline s|zt , as computed by Schneider [12]. Assuming
Gaussian noise and i.i.d. data points, the likelihood is

L=

N−1∏
t=0

1√
2πσ2

e−
‖zt−s|zt‖

2

2σ2 =

(
1√
2πσ2

)N

e−
r2

2σ2 . (11)

The number of free model parameters K̂ obviously de-
pends on the number of control points used to model
the spline. Since each control point in our model has 3
parameters and the start and end positions p0

0 and p0
M are

given, our model has a complexity of K̂ = 3(M+1) − 4
parameters. In comparison, the constrained basic 2D splines
of order n have K̂ = 2K(M+1) − 6 parameters, and the
unconstrained ones have K̂ = 2K(M+1) parameters, with
K = n+1

2 . The BIC is used to choose control points from an
initial list using the procedure described in the next section.

Curve apices estimation (V-A)

Control point selection via BIC (V-C)

Control point adjustment (VI-A)

Non-linear fit, relaxed u (VI-B)

Non-linear fit, fixed u (IV)

Non-linear fit, fixed u (IV)

Fig. 6. Overview of our approach. The individual steps are described in
the indicated sections. For the non-linear fit (dashed) see also Fig. 4.

C. Optimization procedure

Using a septic spline fit to find curvature extrema, we
obtained a set of arc lengths L = {lj} where control points
should potentially be placed. By iteratively applying the
following procedure we aim to find a subset L∗ ⊆ L that
minimizes the BIC for the corresponding spline fit.

We obtain L∗ by iteratively removing elements from L. In
each step, we tentatively remove each element and perform
a non-linear spline fit for the remaining control points.
The element whose removal improves the BIC the most
is permanently removed. The procedure terminates when
no removal improves the BIC. Based on the control point
locations in the subset L∗, we refine spline paths as described
in Sect. VI. See Fig. 6 for an overview.

VI. REFINING SPLINE FITS

All the least-squares techniques for spline fitting described
above exploit a fixed correspondence between data points zt
and internal parameters ut. This allows for solving the fit in
closed form or with a few steps of non-linear optimization,
but also limits the expressiveness of the spline. We therefore
propose two additional steps to further refine the spline fits.
Firstly, we optimize the correspondences, i.e., the position
of control points along the spline, which improves the spline
fit in sharp curves as shown in Fig. 3 (D). Secondly, we
perform an additional optimization step that relaxes the
internal parameter u, which allows the spline to vary its
“velocity”, i.e., the arc length per internal parameter. This
way, the spline can use short tangents to achieve accurate
fits even in sharp curves as shown in Fig. 3 (E).

A. Adjusting control point correspondences

In Sect. V-A we defined the set L of arc lengths along
the spline where control points are placed. The method
in Sect. V-C prunes L to a subset L∗. By increasing or
decreasing an lj ∈ L∗, the corresponding control point
moves forwards or backwards along the spline. Thereby,
the correspondence between the points on the spline and
the training data points is changed. We employ non-linear
optimization using the Levenberg-Marquardt algorithm to
perform these changes. In every iteration, the optimization
adjusts the elements of L∗ and performs new non-linear
spline fits to minimize the residual error as shown in Fig. 6.

An example is shown in Fig. 3 (D), where adjusting the
location of the upper control point reduces the tension around
the control point in the corner visible in (C).

zt

s(u) ‖zt − zt−1‖ ‖zt − zt+1‖
s|zt−1

s|zt+1

zt−1 zt+1

‖zt − zt−1‖ ‖zt − zt+1‖

s
(
1
2
u− + 1

2
u+

)s(u−) s(u+)

Fig. 7. Our method for computing the fitting error for zt. We locate
the spline points s|zt−1

, s|zt+1
closest to the data points zt−1, zt+1.

Projecting the arc length between the data points onto the spline yields
s(u−), s(u+). Their average is used to determine the error for zt.

1m

Fig. 8. The 20 reference trajectories recorded for our experiments.

B. Relaxing the internal parameter u

In the previous sections, the splines were fitted using error
measures with fixed correspondences between s(ut) and zt.
In this way, the “velocity” of a spline segment, i.e., the arc
length per u-interval, remains roughly constant. Relaxing this
constraint requires extra effort in the computation of the fit
errors, but allows for more accurate spline fits.

A simple error measure for least-squares fitting without u
correspondences is the closest distance from each data point
to the fitted spline. In this case, however, the spline could be
close to all data points and still contain deviations and loops
without being penalized as shown in Fig. 3 (F). We propose
a novel approach that overcomes this problem.

To compute the fitting error for a data point zt and a
spline s(u), we consider the neighboring points zt−1 and
zt+1 and the spline points s|zt−1

and s|zt+1
closest to them,

as illustrated in Fig. 7. Starting from s|zt−1
we move the

distance between zt−1 and zt along the spline to the point
denoted by s(u−). Similarly, from s|zt+1

we move to s(u+).
The points s(u−) and s(u+) both approximate the point
on the spline corresponding to zt, and we use the average
s
(
1
2u− + 1

2u+
)

to compute the fit error for zt.
When performing the non-linear spline fitting using this

error measure, the spline is not restricted by the correspon-
dences of u and can be fitted to sharp corners with much
higher accuracy as shown in Fig. 3 (E). At the same time,
using two neighbors for the closest point search effectively
suppresses the degeneration of the fitted spline.

VII. EXPERIMENTS

To evaluate our approach we recorded 20 trajectories with
a real robot driven by joystick in an office building, as shown
in Fig. 8. As described in Sect. III-A, the data was pruned
with a minimum distance threshold τl = 0.05m, which
corresponds to the map resolution of the robot localization.

Candidate control point locations were identified by the
curvature of a septic spline with 0.5 segments per meter,
and thresholded with τc = 0.1 1

m (see Sect. V-A). These

0 10 20 30 40 50
0

0.1

0.2

σ = 0.15
σ = 0.2

Number of free parameters K̂

A
ve

ra
ge

fit
er

ro
r

[m
]

Cubic constrained
Quintic constrained
Our path model

Fig. 9. Residual fitting errors for varying model complexity of the
compared approaches. The splines were fitted to the data in Figs. 1 and 2,
which also show the fits for the marked combinations (circles).

0

0.02

0.04

0.06

σ = 0.15

Average fit error [m]

σ = 0.2
0

0.1
0.2
0.3
0.4

σ = 0.15

Maximum fit error [m]

σ = 0.2

Our model Cubic Cubic constrained Quintic Quintic constrained

Fig. 10. Average (left) and maximum (right) residual fitting errors for the
20 trajectories used in the experiments. We have selected the linear fits that
maximize the BIC for the indicated value of σ.

values are appropriate for paths in human environments, but
can easily be scaled to miniature or large-size robots.

We fitted our path model to all recorded trajectories.
Depending on the value for σ in Eq. (11), our method
balances the number of model parameters with the residual
fit error. For comparison, we computed constrained and
unconstrained linear least-squares fits of cubic and quintic
splines (see Sect. III-A). Here, we manually varied the
number of segments to achieve different trade-offs.

All of the fitted trajectories were appropriate spline fits and
did not suffer from extra loops. To compare the fit quantita-
tively across trajectories and approaches, we computed the
fitting error as average distance from the data points to the
fitted path, E = 1

N

∑N−1
t=0 ‖zt − s|zt‖.

Fig. 9 shows errors of different fits for one trajectory.
As expected, a higher number of parameters leads to lower
errors for all approaches. For our application, σ = 0.15
or σ = 0.20 yields a good compromise. In all cases, our
approach achieves a lower error for a comparable number
of parameters, and needs fewer parameters for comparable
errors. The biggest improvements occur in sharp corners, see
Fig. 3, (E vs. A). Results for the other trajectories are similar.

Fig. 10 shows the average and maximum fit error per
data point over all trajectories. For the baseline approaches,
we also computed the BIC for different numbers of control
points, and for each trajectory selected the number that
maximized the BIC. The fitted curves are therefore the
optimal balance between fit error and model complexity
for each approach and a given σ. The plot shows that our
approach generates substantially lower average and maxi-
mum fit errors. The baseline approaches have no significant
difference in fit quality for cubic vs. quintic and constrained

1m

Sharp angle

1m

Missing data

Fig. 11. Our placement of control points and the resulting spline fits are
robust to very sharp angles and missing values in the reference data.

vs. unconstrained ones, since the BIC selection uses fewer
control points for models with more parameters per point.

Fig. 11 demonstrates the robustness in challenging situ-
ations. Neither extreme directional changes nor a consid-
erable amount of missing data deteriorate our spline fits.
With increasing values for σ, the fits account for noise in
the reference data. Extreme outliers can be filtered out or
compensated with robust statistics in the least-squares fits.

Naturally, the computation time for a spline fit depends on
the size of the input data. A crucial factor is the number of
curvature maxima used in the combinatorial control point
selection, see Sect. V. Since relaxed fitting (Sect. VI-B)
requires substantially more time to compute residual errors,
it is only used in a post-processing step, see Fig. 6.

VIII. APPLICATIONS

As shown in the experiments, our approach generates
accurate spline fits with a small number of parameters. This
section presents several applications based on this property.

After fitting the path model, a robot can follow the path
using ad-hoc velocities set by a controller. One can also
compute a velocity profile for the path using the method
by Lau et al. [10]. This minimizes the traversal time by
maximizing the translational velocity, while obeying a set
of constraints, e.g., maximum speed and acceleration of the
hardware platform, or a bound on the centripetal force. In
this case, the path shape remains unchanged. Additionally,
one can also employ the optimization procedure in [10] to
optimize the path shape as well, e.g., with user-specified
bounds on the allowed deviation from the reference path. The
small number of parameters in the fitted trajectory makes this
problem computationally feasible. In this way, a suboptimal
shape of the reference trajectory can be optimized to yield
faster travel times as well, while retaining the topology of
the path and avoiding collisions with mapped obstacles.

When combining our spline fitting method with the au-
tonomous trajectory generation in [10], the robot can be
programmed by demonstration to follow a path. If the path is
blocked during execution, it can leave the path to circumvent
the obstacle and then return to the assigned path.

This approach can also be used to autonomously plan a
trajectory that leads back to the reference path, e.g., to reduce
accumulated errors when using the odometry for trajectory
execution, or to recover after detecting a localization failure.
Therefore, we have to create a new spline segment snew that
connects the current robot pose to the existing spline s(u).
To achieve a smooth join at a given point s(ud) on s(u),
we subdivide the segment of s(u) that is active at ud by
inserting an extra control point pd at ud. Its parameters pk

d

are determined by the old segment and its derivatives at that
point, after rescaling u to account for the new length of the
subdivided segment.

Finally, the new segment snew and the location of the join
point ud can be optimized. This is done using the time
of travel as cost function with an additional penalty for
prolonged deviation from the target path. As the segment
snew should join the divided segment of s(u) with continuous
curvature, the tangent orientation p1

d of pd does not use our
heuristic but is fixed to the one given by s′(ud).

IX. CONCLUSION

We presented an approach to robustly fit parametric mobile
robot paths to reference trajectories recorded by a user.
Our method uses a specific path model that needs fewer
parameters than standard approaches to achieve similar ap-
proximation results. We employ the Bayesian Information
Criterion in the optimization procedure to calculate the
best trade-off between model complexity and accuracy. The
experiments carried out on real-world data show that our
approach clearly outperforms basic spline fitting methods.

We believe that the presented approach allows for intuitive
and flexible teaching of robot paths and supports several ap-
plications: fitted paths can be augmented with time-efficient
velocity profiles and further optimized to minimize the time
of travel. In addition, our method can be combined with
trajectory optimizers, e.g., to avoid unexpected obstacles.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Magazine,
vol. 29, no. 1, pp. 9–19, 2008.

[2] S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, and A. Billard,
“Learning and reproduction of gestures by imitation: an approach
based on Hidden Markov Model and Gaussian mixture regression,”
IEEE Robotics and Automation Magazine, vol. 17, pp. 44–54, 2010.

[3] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng, “Discover-
ing optimal imitation strategies,” Robotics and Autonomous Systems,
vol. 47, pp. 69–77, 2004.

[4] J. Kolter and A. Ng, “Task-space trajectories via cubic spline opti-
mization,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
Kobe, Japan, May 2009, pp. 1675–1682.

[5] C. Lee, “A phase space spline smoother for fitting trajectories,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 34, no. 1, pp. 346–356, Feb. 2004.

[6] P. Baiget, E. Sommerlade, I. Reid, and J. Gonzáles, “Finding proto-
types to estimate trajectory development in outdoor scenarios,” in Intl.
Workshop on Tracking Humans for the Evaluation of their Motion in
Image Sequences (THEMIS), September 2008.

[7] W. Wang, H. Pottmann, and Y. Liu, “Fitting b-spline curves to
point clouds by curvature-based squared distance minimization,” ACM
Transactions on Graphics (TOG), vol. 25, pp. 214–238, April 2006.

[8] J.-H. Hwang, R. C. Arkin, and D.-S. Kwon, “Mobile robots at your
fingertip: Bezier curve on-line trajectory generation for supervisory
control,” in Intl. Conf. on Intelligent Robots and Systems (IROS), 2003.

[9] S. Macfarlane and E. Croft, “Design of jerk bounded trajectories for
online industrial robot applications,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), vol. 1, 2001, pp. 979–984.

[10] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning
for mobile robots using splines,” in IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS), St. Louis, MO, USA, 2009.

[11] C. Sprunk, B. Lau, P. Pfaff, and W. Burgard, “Online generation of
kinodynamic trajectories for non-circular omnidirectional robots,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai, 2011.

[12] P. J. Schneider, “Solving the nearest-point-on-curve problem,” in
Graphics Gems, A. S. Glassner, Ed. Academic Press, Inc., 1990.

