
Lidar-based Teach-and-Repeat of Mobile Robot Trajectories

Christoph Sprunk* Gian Diego Tipaldi* Andrea Cherubini‡ Wolfram Burgard*

Abstract— Automation of logistics tasks for small lot sizes and
flexible production processes requires intuitive and easy-to-use
systems that allow non-expert shop floor workers to naturally
instruct transportation systems. To this end, we present a
novel laser-based scheme for teach-and-repeat of mobile robot
trajectories that relies on scan matching to localize the robot
relative to a taught trajectory, which is represented by a
sequence of raw odometry and 2D laser data. This approach
has two advantages. First, it does not require to build a globally
consistent metrical map of the environment, which reduces
setup time. Second, the direct use of raw sensor data avoids
additional errors that might be introduced by the fact that
grid maps only provide an approximation of the environment.
Real-world experiments carried out with a holonomic and
a differential drive platform demonstrate that our approach
repeats trajectories with an accuracy of a few millimeters. A
comparison with a standard Monte Carlo localization approach
on grid maps furthermore reveals that our method yields lower
tracking errors for teach-and-repeat tasks.

I. INTRODUCTION

Autonomous transportation platforms are increasingly em-
ployed for logistics applications in industrial contexts. Ini-
tially, these systems were relying on guidance wires or
optical markers to couple the robot to routes [1], [2]. In the
last years, the paradigm shifted to the use of on-board sensors
for localization and navigation, but for the most part still
augmenting the environment with artificial markers [3]–[5].
While the well established systems are bound to their routes
by the physical location of markers in the environment, more
recent systems do not require such an augmentation of the
environment and rather rely on a globally consistent metrical
map to allow more flexible route planning.

However, all these systems require an expert user to
adapt to changes of the environment or transportation routes.
The global map has to be rebuilt and docking positions
at route destinations have to be re-taught, e.g., using the
approach of Röwekämper et al. [6]. At the same time, to
make automation profitable for small lot sizes and frequently
changing production processes one requires systems that can
be intuitively used by non-expert shop floor workers. The
system proposed in this paper is targeted towards a natural
one-button approach that lets the user remotely control the
robot to demonstrate a new trajectory that is then reproduced
with high accuracy and precision.

In this paper we describe an approach that provides an
intuitive teach-and-repeat framework for robot navigation.
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Fig. 1. Time-lapsed view of the holonomic omniRob robot reproducing
the user-taught reference trajectory FigureEight with our approach without
a globally consistent metrical map.

Our method represents user-taught trajectories by so-called
anchor points consisting of raw odometry and 2D laser data.
It applies a scan matching routine to estimate the actual
offset of the current robot position from these anchor points.
By comparing the reference offset with the actual offset,
our algorithm calculates the error in the configuration space
of the robot, which is then used for any desired feedback
controller, e.g., a linear quadratic regulator or dynamic
feedback linearization. With respect to standard appearance-
based navigation, our approach differs in the sensor modality
(laser scans vs. camera images) and in the feedback (in con-
figuration space vs. in sensor space). Practical experiments
carried out in complex real-world scenarios demonstrate
that with our navigation scheme, robots can repeat taught
trajectories more accurately than with the standard Monte
Carlo localization approach using a global grid map.

II. RELATED WORK

The most widespread approaches to mobile robot nav-
igation are model- and appearance-based approaches [7].
Model-based approaches usually rely on a map of the
environment, whereas appearance-based approaches do not
require such a model and work directly in the space of
the sensor data. The environment is usually described by a
topological graph, in which each node corresponds to the
description of a position, and a link between two nodes
defines the possibility for the robot to move autonomously
between the two positions that the link connects. Our focus
here is on appearance-based navigation.

Recently, many researchers [7]–[14] have developed
appearance-based frameworks for realizing teach-and-repeat
navigation. During a preliminary teach phase, the robot
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Fig. 2. During the teaching phase, we record the velocities v∗(ti) at
discrete time steps ti, and use them to derive the taught trajectory poses
x∗(ti) (black dots). Along this trajectory, we insert anchor points. This
schematic figure also illustrates the used coordinate systems.

motion is controlled by a human operator, and a sequence of
sensor data is acquired and stored in a database. Then, during
the repeat phase, the robot is required to repeat the same
path, by comparing the currently observed and the previously
recorded sensor data, relying on visual data in most works.

Pioneering work [8] associated a particular motion (e.g.,
“go forward”, “turn left”) to each recorded image, in order
to move from the current to the next image in the database.
In [9], a three dimensional representation of the taught path is
built from the image sequence, and a classic path following
controller is used for navigation. A similar approach, but
using omnidirectional cameras, has been proposed in [10].
There, a path is represented by a sequence of images and
a local 3D map is reconstructed from them. Path following
is then done with a sequence of homing vectors to each
image and feature tracking is used to localize the robot.
The controller presented in [11] exploits angular information
regarding the features matched in panoramic images. In [12],
a novel varying reference based teach-and-repeat framework
is proposed for outdoor navigation with a monocular camera.

In industrial applications, impressive results have been
obtained with an infrastructure-free robot that uses three
cameras to navigate with naturally occurring visual cues
learned during operation [13]. Another teach-and-repeat
framework for a mass customization manufacturing scenario
relies on high-intensity visual markers and stereovision to
enable quick and easy use and configuration for non-skilled
users [14]. Furthermore, camera images have been replaced
by a laser reflectivity image in [15], which extends the
authors’ previous work on visual teach-and-repeat [16].

While all these works rely on images, our objective here is
to validate a similar approach, based solely on odometry and
2D laser scanners, that are generally mounted on industrial
robots for safety reasons. Closely related is the approach
of Marshall et al. [17]. The main idea of their work is to
construct a sequence of local grid maps rather than having a
globally consistent, monolithic map. During the teach phase
the maps are built and a path is recorded. The recorded path
is then repeated by localizing the robot in the local maps
using the unscented Kalman filter. Our approach differs from
this method as we do not rely on grid maps and instead
operate directly on the sensor data.

In previous work [18], we also considered teach-and-

repeat tasks with mobile robots. There, however, we ex-
pressed the paths as splines in a global coordinate frame
and applied Monte Carlo localization to localize the robot in
a global grid map. Here, we strive to repeat the user input as
exactly as possible, without relying on a global, metrically
consistent map of the environment.

III. PROBLEM DEFINITION

The objective of our work is to repeat, with a wheeled mo-
bile robot and no map, a time trajectory previously taught by
user demonstration. The ground is assumed planar, and the
robot may be either holonomic or subject to nonholonomic
constraints (e.g., a differential drive robot), and it is equipped
with a laser scanner mounted parallel to the ground.

We name r the robot center of rotation, which should track
the trajectory. With reference to Fig. 2, we define the world
frame F (O, x, y, z). The robot configuration is:

x = [x, y, θ]
> ∈ SE (2) , (1)

where x and y represent the Cartesian position of r in F ,
and θ ∈ (−π, π] is the positive counterclockwise orientation
of the robot with respect to x. The control inputs are:

v = [vx, vy, vθ]
> ∈ R3 . (2)

These are respectively the longitudinal translational, lateral
translational, and rotational velocities, with sign conventions
as shown in Fig. 2. For a differential drive robot, vy = 0.

The goal of this work is to drive, at time t ∈ [0, T ], the
robot configuration x(t) to the taught trajectory x∗(t). This
trajectory is defined using the robot recorded odometry, as
explained below. To realize this task, we rely on two sensors:
Wheel encoders: Measurements of the revolutions of the

robot’s wheels are available at discrete timesteps ti
(t0 = 0). The robot velocities v are estimated by dif-
ferentiating the encoder readings.

Laser scanner: The robot on-board laser scanner provides,
at discrete timesteps tj , a local 2D scan of the environ-
ment surrounding the robot.

The robot velocities estimated from the wheel encoders
can be used to localize the robot at any time t ∈ (ti, ti+1],
employing the well known odometry equation [19]:

x(t) = x(ti)⊕ Rz(θ(ti))v(ti) (t− ti) , (3)

with Rz the rotation matrix about the z axis, and ⊕
the compounding operator [20]. During the teach phase,
the estimated robot velocities are recorded. By plugging
these recorded velocities v∗(0),v∗(t1),v∗(t2), . . . ,v∗(T ),
and the initial pose x(0) into Eq. (3), we obtain the taught
trajectory x∗(t) to track. Although it has piece-wise constant
velocity, this trajectory will provide a sufficiently accurate es-
timation of the real user-taught one, if the encoder frequency
is sufficiently high. A schematic illustration of a recorded
reference trajectory is given in Fig. 2, in which the black
dots correspond to the poses x∗(ti) at timesteps ti.

The local 2D scans of the environment are used by our
approach in conjunction with a scan matcher to provide
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Fig. 3. During the repeat phase, the reference pose of the robot (hollow
dart) at time t, x∗(t), is expressed as relative offset oak (t) with respect
to the current anchor point ak , see Eq. (5). The actual offset sak (t) of
the current robot pose x(t) (shaded dart) from the anchor point ak is
measured by a scan matcher (Eq. (6)) and used to compute the error eak (t)
as in Eq. (7). In the figure, the indices of these vectors have been dropped.

relative estimates of the robot’s pose. Note that in our
approach, those estimates are not integrated and therefore not
prone to accumulating drift. During the teach phase, scanner
readings are recorded at regular intervals along the trajectory:
we record a new scan as soon as the distance covered since
the last one exceeds a fixed threshold τl > 0 or the angular
displacement exceeds τθ > 0. The rationale behind this is
that we want to limit the required memory resources, while
uniformly scanning the environment (e.g., avoiding multiple
scan recordings with a standing robot). Based on these scans,
we construct the anchor points that will be used for the
repeat phase. An anchor point ak = (lk,x(tk)) consists of a
laser scan lk with the associated robot pose x(tk), computed
via Eq. (3). Fig. 2 shows two anchor points along a recorded
trajectory. During the repeat phase all available laser scans
lj are used. They are matched against the scans associated
with the anchor points to compute the feedback error.

IV. REPEATING THE TAUGHT TRAJECTORY

In this section, we explain how the error signal is com-
puted and utilized in our trajectory tracking controller. The
proposed task is to regulate to zero, at all times, the error
between the current and the taught reference poses:

e(t) = x(t)	 x∗(t) , (4)

where 	 is the reverse compounding operator [20].
The computation of this error signal requires precise

localization of the robot at time t, i.e., a precise estimate
of x(t). However, as mentioned before, one of the main
objectives of this paper is the realization of an intuitive
map-free navigation procedure. An alternative to map-based
localization consists of estimating x(t) from odometry alone,
i.e., dead reckoning. However, this approach is subject to a
drift, which becomes significant over long paths.

To deal with this issue, we exploit the anchor points
introduced in the previous section. More specifically, during
navigation, we rely on the anchor point, noted a, closest
to the current robot pose. Fig. 3 shows a schematic example
with the actual robot pose indicated by a shaded dart and the
reference pose on the taught trajectory indicated by a hollow
dart. Here, anchor point ak is selected as the nearest to the
robot. In the following, we drop the index k for readability.

Given the current anchor point a = (la,xa), two steps are
required to estimate the task error e(t) = ea(t). First, we
define the reference offset oa(t) between the reference pose
x∗(t) and the pose of a at time t as:

oa(t) = x∗(t)	 xa . (5)

This vector is outlined in Fig. 3 by the arrow pointing to the
hollow dart. Second, a scan matcher compares the current
laser scan with the anchor point scan. Given anchor point a =
(la,xa) and the current laser scanner reading l, the output of
the scan matcher is the offset between the respective robot
poses at which the scans were taken:

sa(t) = x(t)	 xa . (6)

This vector is the arrow pointing from the anchor to the
shaded dart in Fig. 3. We initialize the scan matcher by
compounding the previously computed offset with the robot
motion, to ensure quick convergence to the correct minimum.

Analyzing Eq. (5) and Eq. (6), we see that the reference
offset oa(t) and the measured one sa(t) now represent the
reference pose x(t) and the estimated pose x∗(t) in the
reference frame of the same anchor point a. Combining
these equations with Eq. (4), we obtain the final expression
required for the feedback control:

e(t) = sa(t)	 oa(t) . (7)

This vector is represented by the red arrow connecting the
two darts in Fig. 3. This error measure does not require
a precise global grid map, but relies on the closest anchor
point. Therefore, drift cannot accumulate between more than
two consecutive anchor points. To choose the closest anchor,
we keep track of the offsets between subsequent anchors
during teaching. This way, given the offset to the current
anchor, we can determine the offset to the next few anchor
points and switch to the closest one.

A. Controllers for repeating the taught trajectory

The task error defined above can be used by a cornu-
copia of controllers and the achievable tracking performance
will obviously depend on the chosen controller and on its
parametrization. The choice of the controller is orthogonal
to the proposed feedback error scheme and out of the focus of
this work. Nevertheless, to test our feedback control scheme,
we implemented two classical controllers, one for holonomic,
and one for nonholonomic kinematics.

For both controllers, we use the velocities v∗(ti), recorded
during teaching, as the feedforward part. For t ∈ [ti, ti+1],
we get v∗(t) by linear interpolation of v∗(ti) and v∗(ti+1).
For the holonomic robot, we employ linear feedback:

v = v∗ − Λe , (8)

with Λ a positive definite gain matrix. Plugging this into the
derivative of (4) yields ė = −Λe, for which, as desired, x∗

is a globally asymptotically stable equilibrium.
For the nonholonomic robot we use:{

vx = v∗x cos eθ − λxex
vθ = v∗θ − λyey − λθeθ ,

(9)
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Fig. 4. The six different taught reference trajectories from our experiments.
The darts indicate robot configurations and are drawn every second to
convey velocity. All paths are drawn with the scale indicated in the bottom.

with λx, λy and λθ positive scalar gains. This controller is
known to give good performance for trajectory tracking [19].

For the implementation on our robots, we choose odome-
try as the heartbeat of our controllers. As it is not synchro-
nized with the laser on our robots, we compound the offset
for the last processed scan with the subsequent motion of the
robot to retrieve the offset for the current odometry reading.

V. EXPERIMENTS

We implemented the proposed algorithms in C++ and
tested them on two real robots: a holonomic KUKA omniRob
(shown in Fig. 1) and a differential drive Pioneer P3-DX
robot (shown in Fig. 4). Both robots are equipped with laser
scanners, calibrated to the robot center. The omniRob is
equipped with two Sick S300 with a 270 degree field of
view and 541 beams. The scanner on the Pioneer is a Sick
LMS 291 with a 180 degree field of view and 181 beams. To
highlight the performance of the proposed system, we chose
to use only the front laser of the omniRob. The approach,
however, can easily be extended to multiple laser scanners.

For scan matching we rely on a variant of the iterative
closest point algorithm with a point-to-line metric as pro-
posed by Censi [21]. We chose this approach for its high
accuracy and its ability to work in complex environments
with a moderate amount of changes [6].

The environment in which the experiments were conducted
is shown in Fig. 1. The ground truth for our evaluations
is provided by a MotionAnalysis motion capture studio
with 10 Raptor-E cameras. During both teaching and re-
peating, the system tracks our marker-equipped robots at
100 Hz, typically with sub-millimeter precision. We repeat
the trajectories, using respectively controllers (8) for the
omniRob, and (9) for the Pioneer, with the error calculated
using Eq. (7). We compare the performance with the same
controllers when e is derived from Monte Carlo localization
in a global grid map [6], and from wheel encoders alone.

To account for communication and execution delays en-
countered with our robots, we retrieve the feedforward

component from the taught trajectory with a lookahead of
∆tdelay into the future, i.e., we use v∗(t+ ∆tdelay) instead
of v∗(t) in controllers (8) and (9). Unless stated otherwise,
we used the following parameters for our controllers: for the
omniRob, the gain matrix was set to Λ = diag (2.0, 2.0, 1.0)
and ∆tdelay = 0.15, whereas for the Pioneer we used
λx = 0.6, λy = 14, λθ = 3.5 and ∆tdelay = 0.2.

For the omniRob, we inserted anchor points every
τl = 0.07 m or τθ = 0.05 rad (2.9 degrees) along trajectories.
For the Pioneer, laser data was available at a higher fre-
quency allowing to insert anchor points approximately every
τl = 0.03 m or τθ = 0.05 rad (2.9 degrees).

To assess the quality of trajectory reproduction with our
proposed error design from Eq. (7), we compare the mo-
tion capture studio recordings of the repetitions with the
recordings of the user demonstrations. Since sufficiently
accurate time alignment of capture data from teach and
reference trajectories was not available, we compute the
minimal distance to the polyline path given by the captured
points of the reference trajectory as error measure. We then
report statistics on these minimal distances over multiple
repetitions. To show that our approach is indeed able to track
a trajectory and not only a path, we manually aligned the
recordings for one set of runs to also show the evolution of
the error over time.

A. Experimental setup

We test our approach on three different reference trajecto-
ries for the omniRob and the Pioneer, yielding a total of six
different trajectories. The reference trajectories as recorded
by our motion capture studio are shown in Fig. 4 and are
named FigureEight, PointToPoint, and Fast for future refer-
ence. The trajectories last between 36 and 70 seconds with
velocities of up to 1 m/s (omniRob) and 0.5 m/s (Pioneer).

The chosen trajectories aim at representing typical naviga-
tion patterns for different tasks. The FigureEight represents
a general navigation pattern in which the robot is required
to navigate smoothly for long distances, or tasks such as
patrolling or monitoring, in which continuous operation is
needed. The reference trajectory PointToPoint is less smooth
than the FigureEight and contains turns on the spot. The idea
behind this type of trajectory is to represent typical pick-
and-place tasks or more general point-to-point navigation, in
which the robot is required to reach a predetermined location,
perform a manipulation task and then move to the next
location. Finally, we wanted to test the performance of the
proposed system when the robot travels near its maximum
controllable speed and with more dynamic maneuvers. This
test is performed with the Fast reference trajectory.

We also compare our feedback error scheme to the one
based on Monte Carlo localization (MCL) and to the one
based only on wheel encoders. For these schemes, we only
change the way of measuring the offset sa to the current
anchor point. For the MCL scheme, we built a global
gridmap of the robot environment with a resolution of 0.01 m
and augmented the anchor points with the respective MCL
estimate of the robot’s location during the teach phase.
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Fig. 6. Taught and repeated FigureEight trajectories for each approach to
feedback error computation with the omniRob and the Pioneer.

During repetition, the system then determines sa through
the current MCL localization. Note that this latter scheme
corresponds to the widespread approach for laser-based nav-
igation. For repeating the trajectory with odometry alone,
only one anchor point at the start of the trajectory is used.
The offset to this anchor is determined by keeping track of
the relative motion of the robot since the start.

B. Comparison with Monte Carlo localization

Statistics over the minimum distance error measure (in-
troduced above) for trajectory reproduction are shown in
Fig. 5 for both robots and all reference trajectories. In total,
190 runs have been executed to gather the data reported in
this figure. To avoid biasing the evaluation with the user
errors made in positioning the robot at the start point of
the trajectory, we discard data generated in the first 1.0 s
(omniRob) and 2.0 s (Pioneer) of the trajectory reproduction.

Fig. 6 shows example paths taken by the omniRob and the
Pioneer for the FigureEight reference trajectories. For these
particular examples, Fig. 7 depicts the norm of the tracking
error over time as a result of a manual time alignment of mo-
tion capture data from the teach and repeat phases. The low
errors over the whole trajectory indicate that we are indeed
tracking the reference trajectory and not just the geometric
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Fig. 7. Norm of the tracking error over time for FigureEight for omniRob
(left) and Pioneer (right) as measured by the motion capture studio for the
runs also shown in Fig. 6.

path, i.e., that our approach is also accurate with respect to
the demonstrated velocities. Typically, the errors computed at
a specific point in time are higher than the ones considering
only the geometry of the tracked path. Moreover, the figure
also includes the very start of the trajectory reproduction. As
can be seen, especially in the omniRob experiments, there
are higher errors at the beginning, which were introduced by
the user who could not accurately position the robot.

The plots show that both our approach and a Monte Carlo
localization based computation of the feedback error (MCL)
are able to track the trajectory with considerable accuracy.
However, when analyzing the error, we can see that our
scheme achieves an accuracy that is higher by one order of
magnitude compared to MCL. For the Pioneer PointToPoint
experiment, the higher errors made it necessary to adapt the
controller gains to λy = 4.0, λθ = 1.0 for MCL, as the
original values lead to oscillation and worse results.

As the plots show, the proposed approach is able to
reproduce the taught trajectories with high accuracy and
precision, not only on average but also in the worst case.
These results are general and do not depend on the type
of the robot or on the specific path driven. In other words,
our feedback error scheme is able to effectively solve the
desired task without relying on a globally consistent metrical
map. The reference trajectories taught by the user are tracked
with high precision for both, a holonomic and a differential
drive robotic platform. The higher tracking errors of the
MCL tracking scheme can be attributed to the discretization
introduced by the grid map and to the local residual inaccura-
cies resulting from the optimization process for establishing
global consistency in the map.

C. Comparison with wheel encoders

For further analysis and insight, we also compare against
the tracking performance of 31 runs with a purely odometry
based feedback error computation (ODO) for the FigureEight
experiments. The drift of odometry becomes apparent in
Fig. 6 and explains the substantially larger errors in the
boxplots in Fig. 8 and in the tracking error in Fig. 7. That
the errors still remain moderate can be explained by the path
shape of the FigureEight experiment: the errors introduced by
odometry drift tend to cancel out by the maneuvers, leading
to longer periods of moderate tracking error. The analysis
of pure wheel encoder based tracking also confirms that the
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Fig. 9. Boxplot comparing the performance of our approach (SM) against
a version with a substantially reduced number of anchor points (SM sparse).

high accuracy achieved by our approach is not simply caused
by decent wheel encoders and floor conditions.

D. Evaluation with respect to anchor point density

In this experiment we analyze the effects of substantially
reduced anchor point density along the taught trajectory.
The experiment was performed with seven runs each for the
Pioneer reference trajectories with anchor points reduced to
occur approximately every τl = 0.5 m or τθ = 0.5 rad (29
degrees). This decreased the number of anchor points from
810 to 46 for FigureEight, from 567 to 40 for PointToPoint,
and from 444 to 41 for Fast. The results of this evaluation
are shown in Fig. 9. Despite the reduction of anchor points
by an order of magnitude, the tracking errors increase only
moderately. The increase is the highest for the PointToPoint
trajectory which contains prominent turns on the spot. Here,
the new rotational offset of 29 degrees between anchor points
has the highest impact, since it severely reduces the overlap
between laser scans for the scan matcher.

The stable results for reference trajectories with substan-
tially sparsified anchor points show that the high performance
of the proposed approach is due to the underlying principle
and cannot simply be explained by a huge amount of data
expended to tackle the task.

VI. CONCLUSION

In this paper, we presented a framework for intuitive
specification of teach-and-repeat robot navigation tasks. With
our approach, the user only needs to demonstrate the desired
trajectory once during a teaching phase and does not need
to build a globally consistent map of the environment. Our
approach stores 2D laser data and raw odometry in anchor
points during teaching and then uses them for feedback

control of the robot during the repeat phase. We evaluated
our approach with real robots and compared it to alternative
ways of feedback error generation for several trajectories.
Our approach is able to track the taught trajectories with
millimeter accuracy and outperforms feedback generation by
Monte Carlo localization based on a grid map.
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