
Autonomous Robots (2016), Preprint
The final publication is available at Springer via http://dx.doi.org/10.1007/s10514-016-9557-1

An Accurate and Efficient Navigation System for
Omnidirectional Robots in Industrial Environments

Christoph Sprunk · Boris Lau · Patrick Pfaff · Wolfram Burgard

Received: 22 January 2015 / Accepted: 15 February 2016

Abstract Enhanced logistics is widely regarded as a

key technology to increase flexibility and cost efficiency

of today’s factories. For example, fully autonomous

transport vehicles aim to gradually replace conveyor

belts, guided vehicles, and manual labor. In this con-

text, especially omnidirectional robots are appealing

thanks to their advanced maneuvering capabilities. In

industrial applications, however, accuracy as well as

safety and efficiency are key requirements for success-

ful navigation systems. In this paper, we present an

accurate navigation system for omnidirectional robots.

Our system includes dedicated modules for mapping,

localization, trajectory generation and robot control. It

has been designed for accurate execution by devising

smooth, curvature continuous trajectories, by planning

appropriate velocities and by accounting for platform
and safety constraints. In this way, it completely uti-

lizes the maneuvering capabilities of omnidirectional

robots and optimizes trajectories with respect to time of

travel. We present extensive experimental evaluations in

simulation and in changing real-world environments to

demonstrate the robustness and accuracy of our system.

This work has partly been supported by the European Commis-
sion under grant agreement numbers FP7-248258-First-MM,
FP7-260026-TAPAS, and FP7-248873-RADHAR.

Christoph Sprunk, Wolfram Burgard
Department of Computer Science, University of Freiburg, Ger-
many,
E-mail: {sprunkc,burgard}@informatik.uni-freiburg.de

Boris Lau
E-mail: mail@borislau.de

Patrick Pfaff
KUKA Laboratories GmbH, Augsburg, Germany,
E-mail: patrick.pfaff@kuka.com

Fig. 1 The KUKA Moiros robot using our system for accurate
omnidirectional navigation during a demonstration at the
Hannover Messe 2013 fair. Our system accounts for platform
and safety constraints and reliably navigated for several days
in this inspection task for wind turbine blades.

1 Introduction

Automated transportation is a cornerstone functional-

ity for logistics in today’s highly automated factories.

Starting from conveyor belts, industry is gradually mov-

ing to automated ground vehicles (AGVs) that provide

high logistic flexibility and a reduced infrastructure foot-

print. However, many of such AGVs require additional

infrastructure to travel along their predefined routes on

the shop floor. This includes optical markers or guid-

ance wires mounted on the floor. With industry pushing

automation from mass products towards more flexible,

changing production processes, the high set up costs

for reconfiguring AGV routes tend to make automa-

tion of logistics with these platforms impractical. To

make automation worthwhile in changing production

http://dx.doi.org/10.1007/s10514-016-9557-1

2 Christoph Sprunk et al.

environments, mobile robots have to autonomously and

accurately find their route to the designated goal.

Omnidirectional platforms can perform complex ma-

neuvers in confined spaces due to their ability to drive

in any direction. Therefore, we target this work towards

omnidirectional robots. We present an all-around system

for accurate autonomous navigation for omnidirectional

robots that includes a robot localization module, a tra-

jectory generation module and a robot control module.

Our system is tailored to leverage the characteristics of

omnidirectional robots, from path planning to trajec-

tory execution. The core factors in industrial shop-floor

navigation are navigation accuracy, safety, and efficiency.

High navigation accuracy is a prerequisite for safety and

means that the robotic platform will closely follow its

planned motions. It needs to keep deviations from the

planned behavior like cutting or overshooting corners to

a minimum. For our system, we target deviations with

respect to the global reference frame in the range of a

few centimeters, which is well within the typical noise

of global localization.

We address navigation accuracy by planning tra-

jectories with velocities, accounting for platform con-

straints such as acceleration and maximum wheel veloc-

ities. Thereby, our system can accurately follow these

planned trajectories. The trajectories are smooth and

curvature continuous, this is a key factor for accurate

execution and to reduce wear and tear on mobile robots

that work on an industrial factory floor for extended

periods of time. We address navigation safety by consid-

ering safety constraints for the trajectories. In particular,

we impose obstacle-dependent speed limits. The closer

the robot navigates to obstacles, the slower it is allowed

to drive. This is an important behavior to avoid damages

to the robot or its environment. Furthermore, driving
slower near close obstacles enables higher accuracy in

trajectory execution.

In large robotic platforms, like the one shown in

Fig. 1, even low rotational velocities generate large tan-

gential velocities of the robot chassis. In this work, we

take into account the footprint of the robot chassis and

constrain, during the motion planning, the maximum

velocity achievable by any point on the chassis.

In addition to accuracy and safety, another objec-

tive of our system is navigation efficiency. Our system

performs optimization of travel time while satisfying all

of the above constraints. Our optimization procedure

works by alternating adaptation of the path shape with

recomputing the velocity profile. For increased efficiency,

we also explicitly take into account the ability of omnidi-

rectional robots to independently translate and rotate. It

is important that autonomous robots that share the fac-

tory floor with human workers can cope with changing

environments and unmapped obstacles. Therefore, our

system regularly updates trajectories whilst the robot

is moving. It smoothly joins the updated trajectory

with the current trajectory and performs the necessary

planning within a given short time deadline. For time

efficiency in planning and optimization, we rely on a

recursive collision checking approach for circular and

rectangular elements. The approach leverages distance

transforms and has not been reported in the literature

to the best of our knowledge.

The system presented in this paper has been experi-

mentally evaluated and quantified in all its key compo-

nents showing high accuracy with efficient computation.

We present also a real-world experiment consisting of

almost 3 km navigation in 2 hours. Additionally, this

work had direct impact in the industry and is currently

embedded on the industrial mobile omnidirectional plat-

form KUKA omniRob.

This manuscript is an extension of the work pre-

sented by Lau et al. [25] and Sprunk et al. [43]. We here

describe the complete navigation system with a more

detailed presentation of our trajectory generation and

report additional extensive experiments.

The remainder of this paper is organized as follows.

We first discuss related work in Sec. 2. Then, Sec. 3

presents an overview of the proposed system. We present

our approaches for mapping and localization in Sec. 4.

Sec. 5 describes the trajectory generation and optimiza-

tion. The resulting trajectory is sent to the error feed-

back controller for execution, Sec. 6. We present the

experimental evaluation of the system in Sec. 7.

2 Related Work

In this work we present a navigation system for omnidi-

rectional robots in the context of industrial applications.

Our trajectory generation module employs optimiza-

tion techniques. We therefore discuss related work from

the areas navigation systems, trajectory optimization,

omnidirectional robots and industrial applications.

A successful navigation system for mobile robots

from academia is the open source framework Carmen [6]

initiated by Montemerlo et al. [31]. It localizes the robot

in a grid map of the environment with the help of

range sensors and Monte Carlo localization as proposed

by Thrun et al. [47]. Carmen generates velocity com-

mands for the robot by either following a global gradient

field computed on the grid map or through waypoint

following algorithms applied to a sequence of cells on

the grid map.

The ROS navigation stack for the PR2 is a more

recent system for which Marder-Eppstein et al. [29]

Accurate and Efficient Navigation for Omnidirectional Robots 3

demonstrated robust performance. The system performs

navigation in the plane but performs collision checks in

3D. It generates paths by an A* search on a costmap

of the environment and uses the Dynamic Window Ap-

proach by Fox et al. [12] to generate velocity commands

that follow the path to the goal. The system employs

the adaptive Monte Carlo localization by Fox [11] which

we also use in the system proposed in this paper.

Kümmerle et al. [23] present a navigation system

for a differential drive robot in pedestrian zones that

also performs traversability analysis of the environment.

The system employs Monte Carlo localization on a grid

map that it generates with a graph-based formulation

of the simultaneous localization and mapping (SLAM)

problem also employed in the proposed system. Since

their application scenario is of larger scale, Kümmerle

et al. propose to use tiled maps in their system. They

realize navigation to a goal configuration with a three-

tiered approach. On the highest level a topology planner

operates on the map tiles while on the middle level a

planner based on Dijkstra’s algorithm generates way-
points within the map tiles. These waypoints serve as

subgoals for a local planner that operates on a state

lattice that includes the velocity of the robot in the

plan [40].

The DARPA Grand and Urban Challenge triggered

a considerable amount of research for navigation systems

for autonomous cars [27, 30, 49, 54, 57, 58]. The systems

developed for these challenges are tuned specifically to

car-like vehicles driving within a given road network or

maneuvering on a parking lot. Thrun et al. [49] present

the system that won the Grand Challenge. They propose

a separate velocity and steering controller to keep the

robot at a lateral offset from the previously smoothed

road description. The velocity controller slows the car
down for lateral changes or when hitting bumps. Also

the system for the Grand Challenge proposed by Ziegler

et al. [58] and Werling and Gröll [54] relies on separate

controllers for velocity and heading to track a geometric

path.

Likhachev and Ferguson [27] present the system that

won the Urban Challenge. The system generates curva-

ture discontinuous geometric paths with Anytime Dy-

namic A* on a multi-resolution lattice with 32 discrete

orientations. It tracks the path with a local planner

and reduces the maximum speed for higher curvature

sections to cope with the curvature discontinuities in

practice.

While all of the above approaches determine veloci-

ties with controllers during execution, the systems for

the Urban Challenge presented by Ziegler and Stiller [57]

and Maček et al. [30] plan for velocities. Maček et al. [30]

rely on partial motion planning that grows a tree of suit-

able velocity commands within a horizon and Ziegler

and Stiller [57] use quintic splines to represent lane

changing maneuvers in a spatio-temporal state lattice.

Similar to Ziegler and Stiller we plan for velocities on

paths based on quintic splines, however we consider

an omnidirectional robot that is not restricted to lane

changes.

Similar to our system, a number of approaches em-

ploy parametric path representations to inherently plan

smooth paths. By modifying the parameters of such

representations, one can deform these paths to account

for obstacles [4, 7, 13, 24, 35, 56]. The elastic bands by

Quinlan and Khatib [35] adjust such paths to evade dy-

namic obstacles using circular approximations of the free

space around the robot. Brock and Khatib [4] adapted
this idea to more complex robots with multiple degrees

of freedom. Yang and Brock [56] extended the approach

to elastic roadmaps that they deform to account for the

motion of obstacles in the environment. Connors and

Elkaim [7] proposed to model possibly colliding trajec-

tories using splines and to establish collision-freeness

by iteratively moving control points off the obstacles.

However, their approach cannot guarantee to find a

collision-free solution. Lamiraux et al. [24] also deform

paths to evade obstacles, but specifically consider non-

holonomic constraints. Fraichard and Delsart [13] also

deform trajectories to restore collision-freeness after dy-

namic obstacles invalidated them.

There are also approaches that deform trajectories

by optimization [5, 19, 36, 41]. Ratliff et al. [36] pro-

pose CHOMP, a gradient descent approach to compute

collision free trajectories of a predetermined duration.

They optimize with respect to the workspace integral
of an obstacle distance dependent cost function. Byra-

van et al. [5] present T-CHOMP, an approach that

extends this concept to time-dependent cost functions

and also optimizes the timing of trajectories. Kalakr-

ishnan et al. [19] propose a stochastic, gradient-free

optimization to compute collision free trajectories for a

fixed duration. Their cost function is a combination of

smoothness, a minimum distance to obstacles, torque

limits and constraints on the end effector pose. Schul-

man et al. [41] propose to find collision free paths with

sequential convex optimization, repeatedly increasing
penalties for violated constraints. In contrast to the

above approaches our system starts optimization from a

feasible initialization and uses the time of travel as cost

function to balance curve radii, closeness to obstacles

and arc length of the path while respecting constraints

on velocity and acceleration.

Previous work on omnidirectional robots mostly cov-

ers fundamental control topics like position and velocity

control [39, 53] and trajectory tracking [28]. Balkcom

4 Christoph Sprunk et al.

et al. [2], Kalmár-Nagy et al. [20], as well as Purwin and

D’Andrea [34] proposed approaches to determine short

time-optimal trajectories without considering obstacles.

These approaches can be applied to generate motion

primitives or to implement smooth ad-hoc waypoint

following. In this paper, we resort to a family of paths

that we deform according to a cost function that also

depends on the obstacles in the environment.

The work by Hornung et al. [18] for the omnidirec-

tional PR2 robot employs Anytime Repairing A* search

on a discrete set of motion primitives to generate smooth
paths. As for most of the navigation systems discussed

so far, these paths are executed by a trajectory rollout

controller that follows their geometry but determines

velocities ad-hoc when executing the path.

In the industrial context there are a variety of navi-

gation systems for mobile robots available on the market

today. The well-known approach by KIVA Systems con-

sists of a fleet of mobile robots that fetch shelves to

human workers to let them perform the necessary pick

operations in warehouse automation. The robots navi-

gate on a grid with the help of optical markers on the

warehouse floor [16, 55]. Frog AGV Systems offers robots

that rely on a grid pattern of magnets embedded in the

shop floor for navigation [14]. There are also systems

that do not rely on external infrastructure for navigation.

The TransCar system sold by swisslog [46] is capable of

laser-guided navigation in the context of hospital logis-

tics. The BlueBotics ANT navigation system described

by Tomatis [52] localizes itself with a Kalman Filter by

matching previously mapped features that appear in

laser scans of the environment. The system follows paths

computed on a graph representation of the environment
with the help of the Dynamic Window Approach by Fox

et al. [12]. The ARNL navigation stack by adept mo-

bilerobots [1] also uses this approach and computes the

followed paths on a grid map built with range sensors.

Our system, instead, is an all-around robot naviga-
tion suite that includes mapping, localization, trajectory

generation, and robot control. We tailored our system

to exploit the capabilities of omnidirectional robots and

to compute smooth trajectories that can be executed

with high accuracy.

3 Overview

Our navigation system includes a mapping and local-

ization module, a trajectory generation module and a

motion execution module. For operation, the robot relies

on a map of the environment. This is used for localiza-

tion and robustly updated during operation (see Sec. 4).

We outline the different steps and components used for

computing and executing trajectories in Fig. 2.

Geometric path planner

Initial path

Path model

Velocity profile

Optimized trajectory

Error feedback controller

gradient

descent

Optimization

Odometry

Map

Localization

Fig. 2 Overview of our system for accurate navigation of
omnidirectional robots. The dashed line marks the separation
between trajectory generation and execution. The feedback
loop for trajectory execution runs at a higher frequency than
the (re-)planning of trajectories.

In a first step, our system employs a geometric path

planner to find a collision free path from the current

robot configuration to the goal (see Sec. 5.1). After

expressing the initial path with our spline-based path

model (see Sec. 5.3), an optimization procedure iter-

atively improves the shape of the path (see Sec. 5.5).

We compute a velocity profile for a geometric path (see

Sec. 5.4) that respects vehicle and safety constraints to

generate a feasible time-parameterized trajectory suit-

able for accurate execution. The velocity profile also

provides the time of travel of the current trajectory

which is incorporated in the cost function for the opti-

mization. Once the current trajectory cannot be further

improved by the optimization or there is no time left,

the optimized trajectory is sent to an error feedback

controller for execution.

We decouple the generation of trajectories and their

execution such that the feedback controller is executed

at a higher frequency (e.g., 35 Hz) while updated trajec-

tories are generated at a lower frequency (e.g., 1.5 Hz),

see the dashed line in Fig. 2. This way, trajectory exe-

cution in the odometry frame of the robot can achieve

high accuracy through a high-frequency feedback loop.

Regular re-planning of trajectories in the global-frame

accounts for accumulating drift in the odometry frame,

localization noise and changes in the environment.

When our system plans an updated trajectory for

the already moving robot, it first decides on the time

frame within which the new trajectory should be ready.

Then, using localization and the currently executed

trajectory, it predicts the configuration of the robot

at that point in time, including position, orientation,

velocity, and curvature. To ensure a smooth transition

to the new trajectory, we use this future configuration

Accurate and Efficient Navigation for Omnidirectional Robots 5

of the robot as starting configuration of the robot in the

new trajectory. Therefore, it is important that our path

model supports setting the curvature at the start of the

path, see Sec. 5.3.

4 The Mapping and Localization Module

The map used by our system consists in a 2D grid map of

the environment. We employ a graph-based formulation

of the simultaneous localization and mapping (SLAM)

problem to build a grid map from sensor data as pro-

posed by Dellaert and Kaess [8] and Grisetti et al. [15]. In

this formulation, the poses of the robot are represented

by nodes in a graph and edges represent constraints

between poses. These originate either from wheel en-

coders or are extracted from sensor measurements. In

our case, we compute incremental motion constraints

from laser range readings with a scan matcher as detailed

by Olson [33]. We detect constraints that correspond

to re-visited places in the environment (loop closures)
by employing FLIRT features as proposed by Tipaldi

et al. [50, 51]. We optimize the resulting graph with the

g2o framework by Kümmerle et al. [22].

For localization during operation, our system uses a

Monte Carlo localization (MCL) approach as proposed

by Dellaert et al. [9]. MCL uses a set of samples called

particles to represent the belief of the system about its

state. Whenever the robot moves, the approach propa-

gates the particles according to the motion model of the

robot. Whenever the robot takes a measurement of its

environment, the particle weights are updated according

to the likelihood of the measurement for the respective

particle. In particular, our particle filter employs an

odometry motion model and a beam-endpoint model, as

defined by Thrun et al. [48]. The performance of MCL

depends on the number of particles used to represent

the belief. For efficiency and robustness, we apply the

KLD sampling suggested by Fox [11]. This approach

performs online adaptation of the number of employed

particles to save computational resources meanwhile

limiting the error introduced through the sample-based
representation.

To account for dynamic changes in the environment,

we continually update the map during robot motion. We

use a robust and effective strategy that always combines

the initial grid map with the latest range measurements.

Based on the current pose of the robot, we set the

grid cells that correspond to beam end points of the

range measurements as occupied. When new range mea-

surements are available, the changes that originated

from the previous measurements are undone. We propa-

gate these incremental grid map updates to other map

θ00

θ01
θ02

w0
0

w0
1

w0
2

w0
3

Fig. 3 Our system uses an initial path generated by a ge-
ometric path planner as initialization. The paths consist of
translations with constant orientations θ0i alternating with
turns on the spot at the waypoints w0

i of the initial path. The
darts indicate the orientation of the robot.

representations used for efficient path planning and colli-

sion checking [26]: the distance map and the discretized

Voronoi diagram of the map. The first represents the

distance to the closest obstacle in each cell which we
use for collision checking. The second provides a skele-

tonization of the environment that contains all points

that are equidistant to at least two obstacles. We use

the Voronoi diagram for planning of an initial path.

5 The Trajectory Generation Module

This module is the backbone of the robot navigation

system. It takes care of computing the trajectory shape

and the velocity profile for the robot. This trajectory is

ready to be executed by robot control. The trajectory

generation module computes trajectories for omnidi-

rectional robots and accounts for constraints to enable

accurate and safe navigation while optimizing for time
of travel.

5.1 Path Initialization

As shown in the overview in Fig. 2, we initialize the

trajectory generation system with a path computed by

a geometric path planner. For this step, our system is

independent from the choice of the path planner engine.

The system accepts a path as a sequence of M+1

waypoints w0
i , i∈{0, . . . ,M}, connected by M straight

line segments, see Fig. 3 for a visual explanation. The

path is expected to be traversable without collisions

when moving with constant orientation θ0i between w0
i

and w0
i+1 for all segments. In this initial path, the robot

changes its orientation by turning on the spot at the
waypoints.

In practice, for path initialization, we use an effi-

cient path planner that employs a discretized Voronoi

diagram of the environment. In essence, the Voronoi

6 Christoph Sprunk et al.

diagram is a graph that contains all points in the envi-

ronment that are equidistant to at least two obstacles.

The motivation behind our approach is to efficiently

generate a conservative initialization for the path. Paths

based on the Voronoi diagram are conservative in the

sense that they emphasize distance to obstacles. Using

such paths as initialization, our optimization-based tra-

jectory generation can then decrease obstacle distance

for more efficient paths. If however the planning time

for trajectory optimization ends before the optimization

converges to a balance between efficiency and safety, the
resulting trajectory will be biased towards safety.

In a first step, our path planner connects start and

goal to the discretized Voronoi diagram and searches

the graph for a path that guarantees obstacle clearance

for the incircle of the robot contour. Since the path at

this point consists of a concatenation of grid cells, the

planner converts it to straight line segments based on

the Douglas-Peucker algorithm [17]. In the next stage,

the planner checks for collisions when moving the robot

along this path by following the orientation of its line

segments and turning on the spot at their join points.

Aligning the robot with the orientation of the line seg-

ments is the most conservative variant of augmenting

the path with orientations, however one cannot guaran-

tee the absence of collisions. In cases where the robot

collides with the environment, an A* planner replaces

the colliding segment of the path. This local A* planner

accounts for a configuration space consisting of posi-

tions with orientations. Since the A* planner returns

a sequence of grid cells, we again apply the Douglas-

Peucker algorithm to convert the path into a sequence

of orientation-augmented line segments. Here, in addi-
tion to the approximation error we also rely on collision

checks when deciding whether or not to merge line seg-

ments in the Douglas-Peucker algorithm.

To retain completeness with this planning approach

one can disconnect the corresponding edge of the dis-
cretized Voronoi diagram should the A* planner fail to

resolve a collision for the respective segment and query

the Voronoi diagram for an alternative path. Our path

planner is similar in spirit to the one proposed by Foskey

et al. [10], who bridge segments with a sampling-based

planner in 3D workspaces.

5.2 Collision checking

In our system, not only the path initialization step but

also other components of the trajectory generation make

heavy use of collision checking. Therefore, we propose

an efficient method for collision checking, shown in the

pseudo code and the illustration in Fig. 4. The idea

is to leverage an approximation of the shape of the

collides circ(circle C, distmap D)
(cx, cy)← center(C)
return (D(cx, cy) ≤ radius(C))

collides rect(rectangle R, distmap D)
(cx, cy)← center(R)
if D(cx, cy) ≤ ri then

return true
else if D(cx, cy) > ro then

return false
compute rectangles R1, R2

return (collides rect(R1, D)
∨ collides rect(R2, D))

(cx, cy)

D(cx, cy)

ri

ro

R1

R2

R

obstacle
somewhere
on circle

Fig. 4 Efficient collision checks for circular and rectangular
elements. The drawing shows a rectangular element R with
inner and outer diameter ri and ro. Only if the obstacle
distance D(cx, cy) at the center of R is between ri and ro, the
result depends on recursive collision checks of R’s subparts
R1 and R2. Exceeding recursion can be terminated assuming
collision.

robot and its payload as a set of circles and rectan-

gles. These elements can be efficiently checked against

a dynamically updated distance map D(x, y) of the en-

vironment [26], which contains in each cell (x, y) the

distance to the closest obstacle, D(x, y). Circular ele-

ments with radius r and center (cx, cy) collide with an

obstacle when r > D(cx, cy). For rectangular elements

centered at (cx, cy) we perform collision checking with a

recursive procedure, see Fig. 4: If the obstacle distance

D(cx, cy) (dashed circle) is larger than the circumcir-

cle of the rectangle (radius ro), the rectangle is free

of collisions. If D(cx, cy) is smaller than the incircle of

the rectangle (radius ri), the rectangle collides. In the

remaining case, i.e., D(cx, cy) is in-between the incir-

cle and the circumcircle, two rectangular areas can be

recursively checked for collisions (R1, R2, shaded). For

these, the dimensions and the center points can easily

be determined.

In our system, we also require the distance map

of the environment to determine speed limits for our

trajectories that depend on obstacle distance, re-using

computation. In case of highly complex robot shapes,

it can still be beneficial to employ the incrementally

updatable configuration space proposed by Lau et al. [26]

for faster collision checks at the cost of an increased

memory consumption.

5.3 Compact Path Model

In this section, we present the model we use to represent

paths of the robot in the environment. After describing

our compact path model in general, we provide details on

how we transform the initial path given by the geometric

path planner into our path representation in Sec. 5.3.3.

In practice, a path s(u) ∈ SE(2) is a progression of

robot poses 〈x, y, θ〉 in global coordinates as a function

of an internal parameter u ∈ [0,M] ⊂ R, M ∈ N.

Accurate and Efficient Navigation for Omnidirectional Robots 7

si(ui)

p0

p1
p2

p3
p4

p5

Fig. 5 A segment si of a quintic Bézier spline as used in our
path model. The figure shows a 2D segment along with its
control point p0, . . . ,p5. A Bézier segment passes through its
first and last control point, first and second derivative at start
and end can be influenced through the inner control points as
shown in Eq. (2).

To avoid confusion: the path s(u) determines where

the robot drives in the environment but it does not

determine when the robot arrives at a certain place

and with which velocity. This is determined by velocity

profiles which we introduce in Sec. 5.4.

The goal of our path representation is to model a

path in the environment with a small set of parameters.

With our representation, changes in these parameters

result in modifications of the path and allow for fine

adjustments of its shape. Furthermore, we enforce con-

tinuity in curvature for accurate and smooth execution.

We base our path model on quintic Bézier splines.

We first discuss modeling the position of the robot, i.e.,
s(u) ∈ R2 and then add orientation to our representa-

tion in Sec. 5.3.1, yielding s(u) ∈ SE(2). In the Bézier

formulation, each segment si of a spline is a polyno-

mial of degree five and it is defined for its parameter

ui ∈ [0, 1] by six control points p0, . . . ,p5 ∈ R2:

si(ui)=(1−ui)5p0+5(1−ui)4uip1+10(1−ui)3u2ip2

+ 10(1−ui)2u3ip3 + 5(1−ui)u4ip4 + u5ip5.

(1)

As can be seen from Eq. (1), a segment interpolates

between its control points, starting at si(0) = p0 and

ending at si(1) = p5, see also Fig. 5. The spline segment

is not passing through its intermediate control points.

These directly and independently determine the first

and second derivative of the segment at the start and

end of the segment:

s′i(0) = 5(p1 − p0), s′′i (0) = 20(p0 − 2p1 + p2),

s′i(1) = 5(p5 − p4), s′′i (1) = 20(p3 − 2p4 + p5).
(2)

We ensure continuity at the join points between in-

dividual path segments by requiring control points of

neighboring segments to satisfy si(1) = si+1(0). Sim-

ilarly, we enforce constraints for the first and second

derivative of the path and thereby achieve curvature

continuity along the complete path. When concatenat-

ing the path s(u) from individual segments si(ui), we

map appropriately from the internal parameter u to

w0

w1

w2

w3

w4

Fig. 6 Our path model sets direction of the first derivative at
an inner waypoint to be orthogonal to the bisector of the angle
formed by the adjacent waypoints (arrows). The magnitude
of the first derivative is a free parameter and influences the
wideness of curves.

the respective ui. Through modification of p1 and p2

of the first segment, we have control over the first and

second derivative at the start of the path. Thereby, we

can control the curvature at the start of the path: a
key property of our path model when planning updated

trajectories.

Considering the continuity constraints introduced
above, our path model has as free parameters: the posi-

tion and first and second derivative at its start, end, and

at the join points of path segments, which we call way-

points wi. In practice, we reduce the number of model

parameters by using some heuristics. The first heuristic
determines the direction of the first derivative at an

inner waypoint wi to be perpendicular to the angular

bisector of the angle formed with the adjacent waypoints

wi−1,wi+1, see the arrows in Fig. 6. The magnitude of

the first derivative is a free parameter and represented

through a scalar elongation factor ei in the path model.

As shown in Fig. 6, the elongation factor influences

the radius of the curve performed at waypoint wi. The

second heuristic determines the second derivative at in-

ner waypoints. To achieve smooth curves we mimic the

behavior of cubic splines which minimize the integral

of the second derivative’s absolute value on a segment.

However, cubic splines connect with discontinuities in

second derivative and hence in curvature at waypoints.

To achieve a similar behavior with quintic splines, we

set the second derivatives of the spline segments at a

waypoint as a weighted average of the second derivatives

that adjacent cubic spline segments would yield, if cre-

ated at identical positions and same first derivatives at

start and end of the segment. Fig. 7 visualizes the effect
of the heuristic, it depicts the quintic spline resulting

from our path model as well as the cubic spline used to

compute the second derivative at the join point of the

segments. The second derivative at an inner waypoint

is given by a weighted average:

s′′(i) =
‖di,i+1‖

‖di−1,i‖+‖di,i+1‖
lim
u→i−

s′′cubic(u)

+
‖di−1,i‖

‖di−1,i‖+ ‖di,i+1‖
lim
u→i+

s′′cubic(u),

(3)

8 Christoph Sprunk et al.

Cubic spline

Quintic spline

w0

w1

w2

0 1 2

0

1

2

3

internal parameter

cu
rv
a
tu

re

Fig. 7 Our path model employs quintic splines and deter-
mines their second derivative at inner waypoints with a heuris-
tic: We choose a weighted average of the discontinuous second
derivative of a cubic spline constructed with matching way-
points and first derivatives. This way, we maintain curvature
continuity while mimicking cubic splines.

where di,i+1 = wi+1−wi, and scubic is a cubic spline

constructed with matching waypoints and first deriva-

tives.

So far, we discussed how our path representation ex-

plicitly models the position in the environment. The ori-

entation of the robot could be derived from the first order

derivative of the path. This would be a model suitable

for differential drive and synchro-drive robots where the

first derivative s′(u) of the path uniquely determines the

orientation of the robot as θ(u) = atan2(s′y(u), s′x(u)).

However, we want to fully leverage with our model the

capabilities of omnidirectional robots that can rotate

independently from their translational motion. Thus,

we explicitly represent the orientation of the robot as

an independent component in our path model.

5.3.1 Modeling independent rotation and translation

To explicitly represent the orientation of the robot, we

add a corresponding dimension to the control points

of the quintic Bézier segments, such that p0, . . . ,p5 ∈
SE(2) in Eq. (1). At first glance, augmentation of the

waypoints with a dedicated dimension would suffice to

represent orientation independently from translation.

However, the robot would continuously rotate between

two waypoints as the connecting spline segment inter-

polates between the orientations of adjacent waypoints.

Recall that the representation of the initial path pro-

vided by a geometric planner (see Sec. 5.1) intends for

the robot to travel with constant orientation on a seg-

ment and to perform rotations on the spot only at the

waypoints. We could model rotations on the spot by in-

serting two waypoints with different orientations at the

same position. However, we also want to model simulta-

neous rotation and translation and to smoothly transi-

tion to such behavior from the initial path. Therefore, we

introduce a more flexible concept in our representation

rsi , r
e
i

wi

rei−1 rsi+1θi−1 θi

rsi
rei

wi

rei−1 rsi+1θi−1 θi

Fig. 8 Influencing simultaneous rotation and translation with
rotational-control-points (green diamonds): rsi and rei coincid-
ing with waypoint wi yields a turn on the spot (left). If rsi and
rei move away from wi rotation takes place simultaneously
with translation (right). The darts indicate robot motion with
constant (black) and changing (gray) orientation.

and expose parameters to control the transition to simul-

taneous rotation and translation. To “distribute” the

rotation on the spot from a waypoint over the adjacent

segments, we introduce rotational-control-points rsi and

rei on the incoming and outgoing segments connected to

each waypoint wi. These points mark the beginning (rsi)

and the end (rei) of the robot rotation from θi−1 associ-

ated with the incoming segment of wi to θi related to

the outgoing segment. The idea is visually exemplified
in Fig. 8: On the left, there is a configuration where

rsi and rei coincide with wi, resulting in a rotation on

the spot. On the right, there is a configuration where

rsi and rei are away from wi (green arrows), this causes

a smooth rotation during translation. When rei of way-

point wi coincides with rsi+1 of wi+1, this results in an
uninterrupted rotation on the segment.

Technically, rotational-control-points are realized by

subdividing the spline segments in a way that leaves the

positional part unaffected and affects only orientation to

achieve the desired behavior. For this, we evaluate the

spline segment with its derivatives at the subdivision

point and use these values as end and start parameters
at the new join point. Due to the change in parame-

terization, the derivatives need to be scaled as follows.

Suppose spline segment i, i ∈ {0, . . . ,M − 1} is sub-

divided at internal parameter ud ∈ (i, i+ 1). The new

sub-segments span the entire domain of the internal

parameter: [i, i+1] and [i+1, i+2] instead of [i, ud] and

[ud, i + 1]. To retain the shape of the spline segments

the k-th derivative of the first sub-segment has to be

scaled by (ud− i)k and the k-th derivative of the second

sub-segment by (i+ 1− ud)k.

When subdividing segments at rotational-control-

points, the orientation component of the first and second

derivative is set to zero, as these points mark a transi-

tion between a segment with constant orientation and

a segment with varying orientation. At the waypoints,

we set the first derivative to point into the direction of

rotation, Ti,θ = 1
2eθ (θi − θi−1), where eθ is a parame-

ter of the path model for each waypoint. The second

order derivative of the orientation component follows

Accurate and Efficient Navigation for Omnidirectional Robots 9

θ00

θ01

θ02λθ = 0

θ10

θ11

θ12λθ = 1

Fig. 9 Paths with different rotation behaviors. Top: initial
paths use λθ = 0 to orient the robot as specified by the
waypoint planner. Bottom: minimized change of orientation
with λθ = 1. The optimization can adjust λθ to interpolate
between these two extremes. For reference, the figure also
shows the location of rotation control points (green diamonds).

the same heuristic as its translational counterpart at

every waypoint.

The employed spline segments interpolate between

the orientations at rotational-control-points and the

waypoints. To prevent unintended turns into the wrong

direction, in practice we change the space for the robot

path from SE(2) to R3 and add appropriate multiples

of 2π to the orientation values. For example, we replace
a turn (π−ε)→ (−π+ε) with the turn (π−ε)→ (π+ε)

for 0 < ε < π to model paths with small turns that cross

the −π/π-border.

5.3.2 Influencing the amount of rotation along the path

The rotational-control-points rsi and rei introduced above

determine where on the path the robot rotates. How-

ever, the initial values θ0i for the constant orientation θi
between waypoints given by the geometric path planner

can be conservative. Adjusting the θi to reduce the total

amount of rotation can reduce travel time or energy

consumption. In the example in Fig. 9, the orientation

behavior given by the initial path requires the robot to

drive forward on every segment of the path (top). The

bottom part of the figure shows an orientation behavior

that minimizes the total amount of rotation. Here, we

introduce a parameter for our path model to smoothly

change between the two extremal orientation behaviors.

Usually, the orientation of the robot is predeter-

mined at start and goal. For a path with waypoints

wi, i∈{0, . . . ,M}, we compute the orientations θ1i that

correspond to a minimal change of orientation. They

interpolate the given start and end orientation θstart

and θend of the path, as shown in Fig. 9 (bottom). They

are determined according to

θ1i = θstart + fi (θend − θstart) . (4)

Here, fi ∈ [0, 1] stands for the fraction of path length

up to the middle of the i-th segment, and is computed

as

fi =

∑i
k=1 ‖wk−wk−1‖+ 1

2‖wi+1−wi‖∑M
k=1 ‖wk−wk−1‖

. (5)

We introduce a parameter λθ ∈ [0, 1] that blends

the rotational behavior between the initial (θ0i) and

minimized (θ1i) values according to

θi = (1− λθ)θ0i + λθθ
1
i . (6)

For λθ=0, the initial θ0i orientations are used as shown

in Fig. 9 (top). Choosing λθ = 1 uses the θ1i and thus

achieves a minimal change of rotations as depicted in

Fig. 9 (bottom) which however might not be free of

collisions. The optimization starts with λθ=0 and con-

tinuously changes this parameter to obtain more efficient

paths that are still collision-free. Note that this parame-

ter does not affect whether rotations occur on the spot

or while translating. In Fig. 9 (top vs. bottom), com-

pare the black darts (constant orientation) and gray

darts (changing orientation): their position along the

path is identical, only their heading differs. The ori-

entation component wi,θ of a waypoint wi is set to

the average value of the adjacent segment orientations,

wi,θ = 1
2 (θi−1 + θi).

For longer paths, adjusting the overall orientation be-

havior for the whole path with only one parameter might

not be feasible. A narrow passage along the path might

constrain the orientation of the platform and thereby

prevent any adaptions for the rest of the path. For such
cases, once can split the path and insert individual λθ
for the sub-paths to enable decoupled adjustment of

rotational behavior. In practice, we do not apply this

technique since we limit optimization of longer paths
to the fraction within the field of view of the robot’s

sensors, see also Sec. 7.

5.3.3 Modeling the initial path

As described in Sec. 5.1 and shown in Fig. 2 we initialize

our system with a path generated by a geometric path

planner that consists of straight-line motions alternating

with turns on the spot. To pass this initial path to the

optimization, we transform it into an instantiation of

our compact path model.

The geometric path planner provides a path to the

goal that is free of collisions. To ensure a feasible starting

point for the optimization we need to set the parameters

of our path model in a way that closely approximates the

initial path. We set the waypoints wi of our path model

to the points provided by the path planner, wi = w0
i .

By selecting low values for the elongation factors ei we

achieve a close approximation of a straight-line path

with sharp curves. One can control the approximation

10 Christoph Sprunk et al.

error by subdividing longer segments with additional

waypoints. To correctly model the orientation behavior,

we set the rotational-control-points to coincide with

their waypoints for turning on the spot (see Sec. 5.3.1)

and set all λθ = 0 to enforce the segment orientations

given by the path planner (see Sec. 5.3.2). The initial

scaling factor for the orientational component of the first

derivative at waypoints is set to eθ = 1 for the initial

path. For an example of an initial path represented by

our model, see the top row of Fig. 10.

Starting from the initial path, the optimization moves

inner waypoints to adapt the path to the environment,

widens curves at waypoints by adapting ei, distributes

rotation along the path by moving rsi and rei away from

wi and changes the amount of rotation performed along

the path by adapting λθ. The resulting changes in path

shape influence how fast the robot can travel along the

path to the goal. The velocities along the path and

thereby the total time of travel are determined by the
velocity profile which we present in the next section.

5.4 Velocity Profiles

As introduced in the previous section, a path s(u) defines
a progression of poses for the robot from start to goal.

Together with a mapping u(t) from time t to the internal

path parameter u, the path becomes a trajectory that

defines the configurations of the robot over time t. Thus

u(t), which is strictly monotonically increasing, defines

a velocity profile and the time ttravel required to execute

the trajectory. For a path s(u) defined by the parameters

described in Sec. 5.3, we seek to compute the mapping

u(t) that corresponds to the fastest velocity profile that

respects robot and safety constraints.

The speed at which the robot traverses a path s(u)

is determined by the mapping u(t), such that T (t) :=

s (u(t)) determines the pose and velocities of the robot

over time t. A trajectory T (t) defines velocities by its

first derivative with respect to time t,

Ṫ (t) = s′(u(t)) u̇ (t) , (7)

where the dot and the prime denote derivatives with

respect to t and u, respectively.

We finely discretize s into a set of points, e.g., when-

ever the robot would travel more than 0.02 m or rotate

more than 0.02 rad. For these points we compute the

maximum u̇(t) that satisfies a set of constraints. These

constraints do not necessarily correspond to physical

limitations of the robot but are rather set to more con-

servative values to reduce wear and tear and ensure

safety and comfort for platform load as well as workers

sharing the shop floor.

5.4.1 Maximum velocity

The translational and rotational velocities of the plat-

form can be limited to vmax, ωmax. The resulting con-

straint for u̇(t) is given by

u̇(t) ≤ vmax

‖s′xy(u(t))‖
, u̇(t) ≤ ωmax

|s′θ(u(t))|
. (8)

5.4.2 Obstacle-dependent velocity limit

For safe navigation behavior, we impose an obstacle-

dependent speed limit on the robot. After determining

the distance of the robot contour to the closest obstacle,

we limit its velocity to an upper bound that allows com-

ing to a complete halt before collision with an obstacle.

The computation assumes a constant acceleration and

allows to parameterize a reaction time and a maximum

deceleration for these braking maneuvers.

5.4.3 Maximum velocity of robot contour

When navigating with larger robots and in workspaces

that are shared with humans it can be beneficial to

not only limit the velocity of the robot at its center of

motion as introduced above but also account for the

effect of rotational velocity at the contour of the robot:

we limit the maximum translational speed of any point

of the robot with respect to the environment.

If the center of motion of the robot moves with

velocity v = (vx, vy, vθ)
>, a point p = (px, py)

> on the

robot expressed relative to the robot’s center of motion

moves with velocity

vp = (vx − vθpy, vy + vθpx, vθ)
>. (9)

To enforce a maximum translational velocity of a point

p on the robot, we require

‖vp‖ =
√

(vx − vθpy)2 + (vy + vθpx)2 ≤ vmax. (10)

We obtain the following constraint by substituting v =

(vx, vy, vθ)
> = s′(u(t)) u̇(t) into Eq. (10):

u̇(t) ≤ vmax√
(s′x − s′θpy)2 + (s′y + s′θpx)2

, (11)

where for readability s′ is short for s′(u(t)). For every

discretized path point, the point p of the robot contour

that maximizes the denominator of Eq. (11) gives the

strongest constraint on u̇(t). For a rectangular robot
with width w and length l, we can exploit the symmetry

to formulate a single constraint:

u̇(t) ≤ vmax√
(|s′x|+ |s′θ|l/2)2 + (|s′y|+ |s′θ|w/2)2

. (12)

Accurate and Efficient Navigation for Omnidirectional Robots 11

5.4.4 Wheel turn rate

In addition to limiting the resulting velocity of the robot,

it can also be necessary to account for a maximum

wheel turn rate to model friction or motor saturation

effects that would prevent the accurate execution of

feasible trajectories. A good example are differential

drive robots that have limited wheel turn rates: the

maximum achievable translational velocity depends on

the radius of the driven curve.

Let ψi(u) be the turn rate of wheel i computed from

s′(u). To respect a maximum turn rate ψmax, we need

to constrain u̇(t) by

u̇(t) ≤ ψmax

max
i∈wheels

{ψi(u(t))}
. (13)

For an omnidirectional robot with omniWheels, the

turn rates of the wheels ψi(u) can be computed from

the orientation sθ(u(t)) and the path derivative s′(u(t)).

After rotating s′(u(t)) by −sθ(u(t)) into the robot frame,

the turn rates can be retrieved by application of the

equations of motion, see Eq. (16) together with Fig. 11

and the explanation in Sec. 6 for the ones of the robot

used in our experiments.

5.4.5 Centripetal acceleration

To prevent skidding and protect sensitive payload, a

maximal centripetal acceleration ac can be enforced by

u̇(t) ≤
√

ac
‖s′xy(u(t))‖ · |s′θ(u(t))|

. (14)

We enforce all of the above constraints at each dis-

cretized path point, i.e., we set the maximum u̇(t) that

satisfies all constraints. This implicitly defines the max-

imum translational and rotational velocity at each sup-

port point (this is called velocity limit curve in litera-

ture). In a second step, we further decrease u̇(t) at the
support points to also respect acceleration constraints.

5.4.6 Acceleration

We assume constantly accelerated motion of the robot

between the discretized path points. To ensure safe

transportation of sensitive payload, we limit the range

of allowed acceleration and deceleration in the intervals

between the path points. To determine the minimum and

maximum velocities achievable by limited acceleration,

we compute the arc length and orientation distance of

the respective intervals by numerical integration.

We reduce the values for u̇(t) in two passes originat-

ing from beginning and end of the trajectory to ensure

that the acceleration constraints are met between the

supports points. The procedure is very similar to the

time-scaling algorithm proposed by Bobrow et al. [3] and

Shin and McKay [42]. Given u̇(t), we can now compute

the mapping from time to internal parameter u(t).

5.5 Optimization

We employ optimization to improve the initial trajec-

tory with respect to a user defined cost function, e.g.,

time of travel. As shown in Fig. 2, the optimization is

initialized with the initial path (see, Sec. 5.3.3) and then

iterates between two steps. First, it computes a velocity

profile for the path described by the current parameters.

Then, it uses the inferred time of travel to compute the

cost of the current trajectory. The change in cost then
determines how to change the path parameters for the

next iteration via magnitude-free gradient descent.

The optimization influences the shape of the tra-

jectory through modification of the parameters of the
compact path model, see Sec. 5.3. In particular, the

effect of the optimization is the widening of the sharp

turns of the initial path to a point where the increased

length of the path balances with the higher admissible

velocities in curves with larger radius. The optimiza-

tion also balances path length and distance to obstacles

that impose velocity limits on the robot. Here, the op-

timization changes the location of inner waypoints in

a coordinate system that is oriented along the gradi-

ent of the distance-transformed map. This means that

the two degrees of freedom for moving the waypoint

correspond to getting closer or farther away from the

nearest obstacle and to an orthogonal movement with

respect to it. Finally, the optimization also gradually

changes the orientation behavior of the initial path to a

simultaneous translation and rotation. Additionally, it

reduces the overall robot rotation in the path, as long

as this reduces the time of travel.

We propose an optimization procedure that is based

on the update rule of RPROP [37], which is a derivative-

free optimization algorithm proposed by Riedmiller and

Braun and known for its robust convergence. The pro-

posed procedure is shown as pseudo-code in Alg. 1.

In lines 1–3 the algorithm sets as starting point the

trajectory generated from the initial path and resets

the step size ∆p for all parameters p that are to be

optimized. As long as planning time is left and non-

negligible improvements occur for the cost of the tra-

jectory (lines 4, 5, 23) the algorithm iterates through

the list of tunable path model parameters. First, the

currently selected parameter is changed according to its

current associated step size ∆p and then the trajectory

is updated accordingly (lines 12, 13). Then, we adapt

the step size for the current parameter depending on

12 Christoph Sprunk et al.

Algorithm 1 Trajectory optimization with respect to

the user-defined cost function c.
1: Tbest ← initial trajectory
2: P ← parameters of initial trajectory
3: ∆p ← ∆0

p ∀p ∈ P // reset step size for all parameters
4: repeat
5: ∆c ← 0 // track cost improvement
6: for all p ∈ P do
7: Tcurr ← Tbest
8: ∆p ← ∆0

p // always reset step size
9: i← 0 // track number of iterations

10: repeat
11: i← i+ 1
12: p← p+∆p
13: Tmod ← modifyPathParameter(Tcurr, p)

14: ∆p ←

{
1.2∆p c(Tmod) < c(Tcurr),

−0.5∆p else

15: Tcurr ← Tmod
16: if c(Tmod) < c(Tbest) then
17: ∆c←max{∆c, c(Tbest)−c(Tmod)}
18: Tbest ← Tmod
19: break // continue with the next parameter
20: until |∆p| < εp ∨ i > imax ∨ planning time is up
21: if |∆p| < εp ∨ i > imax then

22: ∆p ← ∆0
p // reset step size when stuck

23: until ∆c < εc ∨ planning time is up
24: return Tbest

whether or not the modified trajectory has a lower cost

than the previous one (line 14). We do this according to

the update rule of RPROP: If the change of parameter

p resulted in an improvement, the step size is increased

by a factor of 1.2, otherwise, we halve the step size and

invert the direction of the step. If at any point in this

procedure an improvement is made over the currently

best trajectory, the cost improvement is recorded for
the abortion criterion (line 17) and the corresponding

parameters are saved (line 18). To avoid local minima,

the optimization also continues with the next parameter
in the list as soon as an improvement has been made

(line 19). In the experiments, we compare versions with

and without this continuing. The optimization of an in-

dividual parameter is also aborted once its step size falls

below a threshold or a maximum number of iterations is

exceeded (line 20). In the experiments, we also compare

several strategies: always resetting the parameter step

size (line 8), never resetting it, or resetting it only when

optimization is stuck (line 21, 22). All lines that are

relevant for this comparison are shaded in Alg. 1.

Fig. 10 shows the progress of the optimization for an

exemplary trajectory. To achieve faster travel times the

optimization increases the magnitude of the tangents

to widen the curves. It furthermore balances the path

length and the distance to obstacles and changes the

overall orientation behavior along the path.

after 0 s, cost 35.96 s

after 0.24 s, cost 14.38 s

after 0.84 s, cost 13.66 s

Fig. 10 Progress of the trajectory optimization over time.
The optimization balances path length, distance to obstacles,
orientation and trajectory shape for faster traversal. The left
part of the figure shows the current trajectory with overlays
of the robot contour in the grid map of the environment. The
right part shows the trajectory with waypoints wi (crosses)
and the first derivatives of the path (arrows) on a distance
transform of the environment. The figure shows obstacles in
black and darker cells are closer to obstacles.

During computation of the velocity profile we also

check for collisions of the robot with the environment.

Trajectories that collide with the environment are as-

signed infinite cost. At each iteration our method returns

feasible trajectories with decreasing cost. As obstacles

that cause collisions repel the optimization via infinite

cost, the optimization cannot “jump” over obstacles.

When planning a trajectory for a robot that is al-

ready in motion, the velocities of the robot at the start

of the trajectory are non-zero. In this context, it can

occur that the shape of the initial trajectory prevents

a transition with continuous velocities, e.g., due to a

sharp curve near its beginning that enforces a low robot

velocity. In such situations, we change the cost function

of the optimization to minimize the amount of velocity

discontinuity between desired and maximum achievable

velocities at the start of the new trajectory. In this way,

the optimization adapts the shape of the trajectory to

allow a smooth fit. As soon as parameters have been

found that match the start velocities, the optimization

switches back to the original cost function for the re-

maining planning time. As the mentioned discontinuities

are mostly fixed by increasing the magnitude of the first

derivative of the starting waypoint, we do not continue

with the next free parameter upon improvement.

Accurate and Efficient Navigation for Omnidirectional Robots 13

ψ3 ψ4

ψ2 ψ1vx

vy vθ

w

l

Fig. 11 Schematic drawing of the robot used in our experi-
ments. The robot is driven by four Mecanum wheels shown
on the right. Their passive rollers are oriented at ±π

4
, the

respective orientation on the floor is shown by diagonal lines
in the drawing on the left.

6 The Robot Control Module

As shown in the lower part of Fig. 2, the final optimized

trajectory is sent to an error feedback controller for

execution. Before execution, we transform the trajectory

from global map coordinates into the odometry frame of

the robot. The error feedback controller then executes

the trajectory solely based on odometry information,

decoupled from global trajectory planning and global

localization. Thereby, the error feedback controller can

run at a higher frequency than the trajectory planning.

We account for accumulating odometry drift and changes

in the environment by planning updated trajectories

while the robot executes the trajectory.

The input for the controller are the planned posi-

tion T (t) and velocities Ṫ (t) for the current time t as

determined by the trajectory T as well as the current

position o(t) in the odometry frame as measured by the

robot’s wheel encoders. The output of the controller is

a velocity v = (vx, vy, vθ)
> that is sent as a command

to the robot. The controller computes the command
velocity as follows:

v = Ṫ (t+∆tdel) + diag(gt, gt, gr) (T (t)− o(t)) , (15)

where gt and gr are the translational and rotational gain,

respectively. The control law consists of two summands,

the first summand is the feed-forward part and the

second summand is the error feedback. The feedforward

part is the velocities as planned in the trajectory. We

retrieve them for a point in time that is shifted by

∆tdel into the future. This accounts for the time delay

that occurs before the robot is actually executing the

command.

For execution by the robot, the commanded velocity

needs to be transformed into wheel turn rates. These

are retrieved from the equations of motion for the par-

ticular robot used. For the omnidirectional robot used

in our experiments, the equations of motions follow [32,

Fig. 12 The mobile manipulator omniRob by KUKA that
we used in our experiments.

Eq. (6.2.13)]:
ψ1

ψ2

ψ3

ψ4

 =
1

r


1 1 0.5 (w + l)

1 −1 −0.5 (w + l)

1 1 −0.5 (w + l)

1 −1 0.5 (w + l)


vxvy
vθ

 , (16)

where r is the wheel radius and w and l are track and

wheelbase, respectively. Fig. 11 shows a schematic draw-

ing that introduces the used quantities. The above equa-

tion is also used when computing constraints regarding

the maximum turn rate of wheels, see Sec. 5.4.

7 Evaluation

We evaluate the core navigation components of our

system: the trajectory generation module and the robot

control module. We start by evaluating the influence of
the initial path planner on the proposed method. Then,

we analyze our trajectory optimization by comparing

the results of several variants on a set of navigation

tasks. On these same set of tasks we also compare the

trajectories of our system with the ones generated by an
approach based on the RRT* path planning algorithm.

We present real-world experiments for evaluating

the robot control module. We examine the influence

of different constraint settings on the system behavior.

Then, we present an evaluation of the system capability

to follow the planned trajectories in a changing environ-

ment. These experiments have been conducted with the

KUKA omniRob platform shown in Fig. 12. The omni-

directional platform has dimensions of ca. 0.7 m× 1.2 m

and perceives its environment with two SICK laser range

finders mounted in a way that yields a 360 degree view.

We performed all computations on a consumer grade

notebook that was mounted on the platform.

When performing trajectory planning in real-world

changing environments, it is not economical to spend

computational resources on optimizing trajectories all

the way to the goal pose for longer navigation tasks. The

14 Christoph Sprunk et al.

A B C

Fig. 13 Omnidirectional platforms are versatile in narrow
spaces. They can rotate freely in open spaces (A), move with
constant orientation in narrow passages (B), and execute
maneuvers (C) where non-holonomic trajectories would lead
to collisions (dashed). For readability, the figure contains the
circumcircle of the rectangular robot.

later parts of a longer trajectory are outside the sensors’

field of view and the environment is likely to change

until the robot arrives there, requiring to update the
trajectory, discarding the initial results. We also require

regular updating of planned trajectories to cope with

localization errors and accumulating odometry drift. In
our experiments we found a good trade-off by using the

first four waypoints of the initial path for trajectory

planning and triggering replanning of updated trajec-

tories every 0.6 s, which is the time allotted for path

planning and trajectory optimization.

At the end of this section, we report on real-world

robotic applications of this work.

7.1 Influence of the Choice of Geometric Path Planner

Our system uses an initial path generated by a geometric

global path planner to generate an initial trajectory as

initialization for the optimization. Naturally, the choice

of planning algorithm can have an influence on the final

result.

2D path planners ignore orientation and therefore

require the circumcircle of the robot to be obstacle-free

along the path, see for example Fig. 13 (A). Waypoint

planners that account for the orientation and shape of

the robot during forward motion are able to find paths

through passages as shown in Fig. 13 (B). Planners oper-

ating in the full holonomic configuration space (C-space)

of the robot can also find paths through passages that

require lateral or diagonal movements as in Fig. 13 (C).

Our approach can generate admissible spatio-temporal

trajectories for all these situations, given a suitable

waypoint planner.

To assess the robustness of our system against the

choice of waypoint planner, we compare the optimization

results for the Carmen 2D value iteration planner, an

A*-based C-space planner, and our hybrid approach

that uses Voronoi diagrams where possible and resorts

to C-space planning when necessary (see Sec. 5.1). We

P1 P2 P3

P4 P5 P6

Fig. 14 Map with start/goal poses used in our evaluation
of different path planners in combination with our trajectory
generation method. The figure also contains selected example
trajectories between the poses.

Table 1 Numerical results of global path planner comparison.

Planner tplan topt ttravel-I ttravel-O
2D value iteration 0.022 s 0.55 s 82.37 s 38.11 s
Voronoi 0.009 s 0.46 s 36.28 s 28.46 s
configuration-space 4.864 s 0.43 s 31.49 s 27.19 s

selected six start/goal poses on a map of a factory floor

as shown in Fig. 14 and let a simulated robot perform

travel tasks for all of the 30 start-goal combinations.

Tab. 1 shows the average times needed for planning

(tplan), optimization (topt), and execution of the ini-

tial and optimized trajectories (ttravel-I and ttravel-O,

respectively). As expected, the C-space planner requires

substantially more time to find an initial path compared
to the others, which prevents its use in most practical

applications. On the other hand, it generates waypoints

that fully exploit the omnidirectional capabilities of the

robot which leads to trajectories with the shortest initial

and optimized travel times. The hybrid planner uses
Voronoi paths which results in substantially different

waypoints. Nevertheless, the optimization results are

comparable, but are achieved in a much shorter planning

time. In contrast, the 2D value iteration plans with the

circumcircle of the robot. Thus, it has to take detours

in some tasks to avoid the narrow passage between P1

and P2 which increases execution times. Additionally,

its waypoints have to maintain a larger distance to ob-

stacles in general, which also causes longer initial paths.

However, our optimization can compensate this draw-

back to a large degree by adjusting the trajectory shape,

which causes a substantial decrease in execution time
as shown in Tab. 1.

In summary, our method is robust to the choice of

initial planner and the Voronoi-based planner offers fast

computation of initial paths that account for the orienta-

tion of the robot. Furthermore, it provides conservative

initial paths with respect to obstacle distance that the

optimization moves closer to obstacles where beneficial

and while there is still planning time left.

Accurate and Efficient Navigation for Omnidirectional Robots 15

Fig. 15 The grid map used for our trajectory optimization
experiments, obstacles are shown in black. The map also shows
the robot contour at start/goal poses that we use to generate
72 navigation tasks.

7.2 Trajectory Optimization

In this experiment we evaluate the convergence of the

trajectory optimization and analyze the effect of dif-

ferent choices in the optimization algorithm. Fig. 15

shows the grid map together with 9 start/goal poses

that we used to generate the 72 navigation tasks for

this experiment. For each start/goal combination we

computed an initial trajectory and optimized it for 1.5 s

using the method proposed in Sec. 5.5. To aggregate

data over the different tasks, we normalize the trajec-

tory cost during optimization by computing a ratio to
the initial cost before optimization. The plot in Fig. 16

shows the average over all 72 tasks for different vari-

ants of the optimization algorithm. In general, there are

bigger gains in the beginning of the optimization and

the convergence rate lowers over time until it reaches a

gain of 30% to 35%. The standard deviation lies within
12% for all data points and is not shown in the plot for

readability. The high variance is caused by the different

potential for optimization in the navigation tasks: for

some start/goal combinations the initial trajectory is

already close to the optimal solution, e.g., for the tasks

that correspond to driving a straight line in the middle

of a corridor.

In Fig. 16 we compare the performance of our al-

gorithm against RPROP [37] and against variants of

our method in Alg. 1 with different behavior regarding

switching to the next parameter upon an improvement

(line 19) and resetting the step length for parameters

(line 8,22). In contrast to our algorithm, RPROP works

on all parameters simultaneously and needs an extra

step to compute the partial derivative for each parame-

ter. After a slightly better convergence in the first few

steps, it converges at a slightly lower rate to an about

5% worse improvement over the initial trajectories than

the proposed method. Since one iteration also takes

longer for RPROP than for our algorithm, it creates

0 0.5 1 1.5

70%

80%

90%

100%

optimization time [s]

ra
ti
o
o
f
co
st

a
n
d
in
it
ia
l
co
st

Our method
No parameter skipping
No reset of ∆p

Reset ∆p when stuck
RPROP

0 0.5 1 1.5

70%

80%

90%

100%

optimization time [s]

ra
ti
o
of

co
st

an
d
in
it
ia
l
co
st

Our method
No parameter skipping
No reset of ∆p

Reset ∆p when stuck
RPROP

Fig. 16 The progress of trajectory optimization over time,
averaged over the 72 navigation tasks defined in Fig. 15. The
plot compares different variants of our proposed method from
Alg. 1 (see text) and RPROP. To average over different navi-
gation tasks with different potential for optimization, the plot
shows the ratio between current trajectory cost and cost of
the initial trajectory over time.

feasible solutions at a lower frequency (but with bigger

improvements between them). This is a disadvantage

when trying to completely exploit an allotted time win-

dow for optimization, in the plot we see that it overshot

the planning time by 0.1 s before creating the next fea-

sible solution. The variant of the proposed method that

performs no reset of the parameter step length ∆p (line 8

and 22 not present) converges to a similar improvement
as RPROP, 5% worse than the variants that reset the

step lengths. After 0.1 s it shows for a short time a

better convergence than RPROP and the variants that

reset the step length. Then, this advantage fades and

after about 1 s it aborts optimization as no further im-

provements could be found. The variants that reset the

step size in every round (line 8) and only when stuck

(line 22) show comparable performance with a slight

advantage for the variant that only resets when stuck.

As can be seen from the plot, convergence behavior

greatly benefits from switching to the next parameter

upon improvement (line 19): the variant without this

manages to converge to a comparable improvement, but

at a slower rate.

In summary, our optimization procedure results in

high improvements on the cost function in the first

few iterations. Furthermore, we observe a beneficial

contribution by continuing with the next parameter as

soon as an improvement has been found and by resetting

the parameter step size in our optimization algorithm.

16 Christoph Sprunk et al.

Our approach RRT* (OMPL)

Fig. 17 Comparison of trajectory generation by our approach (left) and a procedure based on the implementation of RRT* [21]
in OMPL [45] (right). The figure shows the results for a selection of the 72 tasks defined by the start/goal poses shown in 15.
The robot center is shown as blue solid line with an overlay of the robot contour along the trajectory.

We also observe an improvement over direct application

of the RPROP algorithm. In addition, our optimization

better adheres to the time deadline, which is important

to timely deliver updated trajectories for a moving robot.

Exceeding the time deadline means that the robot will

have passed the starting point of the updated trajectory

when it becomes available, resulting in a discontinuous

join.

7.3 Comparison of Trajectory Generation

The goal of our proposed method is to provide smooth,

curvature continuous and time-optimized navigation

that accounts for kinematic and dynamic constraints and

limits the robot’s speed in the vicinity of obstacles. In

this experiment, we compare our method to navigation

based on the widely spread motion planning framework

Open Motion Planning Library (OMPL) [45].

In contrast to our specialized method, the planners

provided in OMPL are very flexible and applicable to
high-dimensional search spaces. To generate smooth,

curvature continuous trajectories with these planners

one needs to resort to sampling in acceleration control

space. However, the planners available for these control

spaces do not optimize an objective, i.e., they stop after

finding a path to the goal. Optimizing planners are avail-

able for the geometric domain, for example the RRT*

planner [21] that converges to shortest paths consisting

of linear connections in the work space, SE(2) in our

case. To generate feasible trajectories from the resulting

paths, we compute a velocity profile as for our approach

(see Sec. 5.4). Due to the curvature discontinuities at the

join points of the linear segments, this profile decelerates

the robot to a brief stop at these points.

For this experiment we also resort to the 72 navi-

gation tasks given by the start/goal poses in Fig. 15.

Both methods were given 1.5 s of total planning time.

A selection of the resulting trajectories for both ap-

90%

95%

100%

105%

p
a
th

le
n
g
th
,
R
R
T
*/
O
u
r

100%

200%

300%

400%

tr
av
el

ti
m
e,

R
R
T
*
/O

u
r

Fig. 18 Comparison of trajectory generation by our approach
and a procedure based on the implementation of RRT* [21] in
OMPL [45]. The plots show the ratio of path length and travel
time of RRT* and our approach for the 72 navigation tasks
in Fig. 15. The boxplots show lower and upper quartile along
with the median (line). The whiskers indicate data within
1.5 times the interquartile range (IQR) of lower and upper
quartile, respectively. Data outside this range is shown as dots.
Examples for the generated trajectories are shown in Fig. 17.

proaches is shown in Fig. 17. As can be seen, the path

generated by RRT* is non-smooth at the join points of

linear segments and it keeps little distance to obstacles

(as RRT* optimizes for path length). In comparison, the

trajectories generated by our method are smooth and

curvature continuous and keep a safe distance to nearby

obstacles.

A quantitative evaluation of the differences between

the two approaches is given by the statistics shown in

Fig. 18. The boxplots show the distribution of values

for the ratios of path length and travel time between

the trajectories generated by RRT* and the proposed

method for the 72 navigation tasks. For the most part,

the paths computed by RRT* are shorter than the

trajectories returned by our method Fig. 18 (left). This

is a direct consequence of the different objectives of the

two methods: While RRT* optimizes for path length,

our method aims to reduce travel time while respecting

a set of kinematic and dynamic constraints as well as

obstacle imposed speed limits. Together with the stops

Accurate and Efficient Navigation for Omnidirectional Robots 17

1m
0 5 10 15 20

0

0.02

0.04

time [s]

tr
a
n
sl
a
ti
o
n
a
l
er
ro
r
[m

]

0 5 10 15 20

0

1

2

time [s]

ro
ta
ti
o
n
a
l
er
ro
r
[d
eg

]

feedforward error feedback error feedback, delay compensation

Fig. 19 Execution of a reference trajectory by a real robot. The left part shows the reference trajectory (dashed), indicating
the orientation of the robot with darts drawn every second. The left part also shows a feedforward execution (solid). The
middle and right plot show the translational tracking error ‖T (t) − o(t)‖ and the rotational tracking error |Tθ(t) − oθ(t)|
over time, respectively. The plots show the errors for feedforward execution (∆tdel = 0, gt = 0, gr = 0), error feedback
(∆tdel = 0, gt = 3, gr = 0.3), and for error feedback with delay compensation (∆tdel = 0.06, gt = 3, gr = 0.3).

at join points of linear segments this explains the higher

travel time for the trajectories generated from the RRT*

paths: Fig. 18 (right) shows that the proposed method

consistently generates trajectories that are 50% faster

than the ones returned by computing a velocity profile

for the paths generated by RRT*.

In summary, the comparison to the RRT*-based

trajectory generation highlights the importance of gen-

erating smooth paths with velocity profiles. Our solution

accounts for these aspects while optimizing travel time

as a cost function. In our system, travel time does not

only depend on a number of constraints imposed on the
platform and its load but we additionally incorporate
the distance to obstacles to achieve safe and intuitive

behavior on the shop floor.

7.4 Open-loop and Closed-loop Trajectory Execution

In this experiment, we evaluate the suitability of our tra-

jectory representation on the basis of tracking errors for

executing a reference trajectory on a real robot. We per-

form this experiment with and without error feedback

and delay compensation in the controller (see Sec. 6,

Eq. (15)). More specifically, we once set ∆tdel = 0 s, gt =

0, gr = 0 (feedforward), once ∆tdel = 0 s, gt = 3, gr =

0.3 (error feedback) and once ∆tdel = 0.0.6 s, gt =

3, gr = 0.3 (error feedback and delay compensation).

For this experiment, we send the reference trajectory to

the robot only once and do not update it during execu-

tion, the whole experiment takes place with respect to

the odometry frame of the robot.

The reference trajectory is shown in Fig. 19 (left)

and specifies a loop in an area of 10 m2 with roughly 22 s

of travel time and exploits the holonomic capabilities of

our platform. In the figure, the orientation of the robot is

denoted by darts, and the driven path for a feedforward

execution is shown as solid line. Fig. 19 also shows

plots of the translational (middle) and rotational (right)

deviation of the actual robot pose from the planned

pose for every point in time, as measured by the wheel

encoder based odometry of the robot.

When executing the reference trajectory with feed-

forward commands only, the system relies on the appro-

priate modeling of the trajectory and its velocity profile.
The average errors for this execution are 0.027 m with a

standard deviation of 0.01 m and 0.6 degrees with a stan-

dard deviation of 0.7 degrees and never exceed 0.05 m

and 3 degrees. We attribute these errors to execution

inaccuracies and approximation errors introduced by

sampling the trajectory with discrete commands sent to

the robot. The run with error feedback shows how these

errors can be compensated by the controller. The run

with delay compensation illustrates this measure’s con-

tribution to tracking performance. Accounting for delay
with the parameter ∆tdel reduces the average tracking

error from 0.0056 m and 0.52 degrees to 0.0014 m and

0.09 degrees. This effect was even stronger in an earlier

version of the omniRob, where we had to account for

roughly double the amount of delay in the system.

In summary, the low tracking errors achieved show

that the compact path model and velocity profiles used

by our approach generate trajectories that can accu-

rately be followed by the robot. We attribute this to the

curvature continuity of our paths and the pre-planned

18 Christoph Sprunk et al.

start

goal

1m
fast
regular
slow

Fig. 20 Setup for an experiment to resemble a medium range
transportation task. The figure shows the path of the robot
in three exemplary executions with different limits for speed
and acceleration in the computation of velocity profiles. With
higher admissible speeds the system chooses longer paths that
can be traversed faster while staying within obstacle imposed
speed limits and constraints on centripetal acceleration.

1m

Fig. 21 Experimental setup to resemble a repetitive
pick&place task. The figure shows the start/goal poses and an
overlay of the 19 trajectories the robot drove in two minutes.

velocities that respect the platform limits. We also ob-

serve that our error feedback control scheme with delay

compensation is well-suited for trajectory execution. In

application scenarios in which a good dynamic model

of the platform is available one could expect even bet-

ter tracking results with model predictive control ap-

proaches.

7.5 Influence of Trajectory Constraints

This experiment shows how our system adapts to differ-

ent values for the constraints in velocity profile genera-

tion, see Sec. 5.4. The experimental setup is shown in

Fig. 20 and is inspired by a medium range transporta-

tion task. The figure shows the driven paths for three

exemplary executions of the task with different settings

for maximum allowed velocity and acceleration. Lower

speed limits lead the system to choose shorter paths

that are closer to obstacles. A reduction of the speed

limits leads to a reduction of the area in which obstacle

speed limits are the dominating constraint and in turn

a reduction in path path length leads to shorter travel

times. For higher speed limits, the optimization chooses

longer paths that feature higher clearance from obsta-

cles and wider curves. The higher possible velocities

0

2

4

6

8

10

12

14

16

18

20

0
5

10
15

20
25

10m

Fig. 22 Our experiment for navigation in a dynamic envi-
ronment. The robot looped for 2.9 km and 2 hours between
the eight shown waypoints while object rearrangements and
moving people changed the environment. The figure shows
some of the driven paths, deviations from the typically chosen
route are due to dynamic obstacles blocking the usual path of
the robot.

at greater distance from obstacles and in wider curves

make up for the increased length of the path.

7.6 Trajectory Execution Accuracy

In these experiments we quantify the performance of

our system in executing the planned trajectories. We

evaluate the system on the transportation task intro-

duced above (see Fig. 20) as well as on a task that is

shown in Fig. 21: Here, the robot has to repeatedly

travel between two close-by positions while changing

orientation. This task is designed to resemble a repet-

itive pick&place application for a mobile manipulator.

Both tasks have been executed with regular velocity

limits and with higher speed limits. We executed the

transportation task ten times, yielding an average travel

time of 35.4 s with a standard deviation of 0.2 s. Five

executions of the variant with raised velocity limits led

to a reduced average travel time of 28.4 s again with a

standard deviation of 0.2 s. The pick&place task was

executed for two minutes yielding 19 very similar tra-

jectories that are shown as overlay in Fig. 21. In a run

with higher admissible velocities and accelerations, the

robot achieved 30 iterations in the same time interval.

We also evaluated the system in a task that consisted

of navigation in a dynamically changing environment.

Fig. 22 shows a grid map of the environment together

with the 8 waypoints between which the robot traveled

repeatedly for 2 hours and 2.9 km. While the robot was

traveling, the system had to cope with people blocking

its path and changing arrangements of objects in the

environment [44].

Accurate and Efficient Navigation for Omnidirectional Robots 19

Fig. 24 The KUKA Moiros robot using our omnidirectional navigation system during a live demonstration at the Hannover
Messe 2013 fair.

regular fast regular fast dynamic
environment

0

0.02

0.04

0.06

0.08

tr
a
n
sl
a
ti
o
n
a
l
tr
a
ck

in
g
er
ro
r
[m

]

odometry
global self-localization

pick&placetransportation

Fig. 23 Mean translational tracking error and standard de-
viation for the transportation task shown in Fig. 20, the
pick&place task shown in Fig. 21, and the navigation in a
dynamic environment shown in Fig. 22. The plot shows the
error computed in the odometry frame of the robot as well as
with respect to global self-localization.

The translational tracking errors for all tasks are

shown in Fig. 23. The plot shows the error computed

within the odometry frame of the robot as well as with

respect to the global self-localization based on a grid

map and the two laser range finders of the platform

(see Sec. 4). The errors are the deviation of the robot

from its planned pose, averaged over time. When we

measure the deviation based on the odometry of the

robot, the average errors are below 0.02 m. The average

errors according to the global self-localization are below

the grid map resolution of 0.05 m.

In summary, our approach shows high accuracy when

executing the generated trajectories over extended peri-

ods of time and in changing environments. The robust-

ness of the overall system builds on the robustness of

the employed components for mapping and localization.

We attribute the reliability of robot motion generation

to the concept of splitting planning and execution of tra-

jectories, see Fig. 2. This allows accurate execution with

high frequency error feedback while regular, smooth

updating of trajectories accounts for odometry drift,

localization noise and changes in the environment. The

efficient planning of updated trajectories builds on our

compact path model that enables the optimization to

adapt the path shape through a small number of param-

eters. In addition, our procedure for collision checking

contributes to the efficiency of trajectory updates.

Fig. 25 The omniRob navigating with the proposed trajec-
tory generation approach in an industrial mobile manipulation
demonstration at the KUKA booth at the AUTOMATICA
2010 fair.

7.7 Real-World Deployed Applications

We have extensively tested and deployed the navigation

system proposed in this paper. In one application sce-

nario the omniRob had to perform random navigation

tasks between three goal locations and never failed to

reach the goal in a 3.5 hour trial [38]. The proposed

navigation system was also employed in several mobile

manipulation demonstrations in the industrial context.

The system has been shown on the omniRob at the AU-

TOMATICA Trade Fair for Automation and Mechatron-

ics in 2010 and 2014 (see Fig. 25) and at the IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems (IROS) in 2011. The KUKA Moiros platform, a
scaled-up version of the omniRob, used the navigation

system in its demonstration at the Hannover Messe 2013,

where it won the Robotics Award (see Fig. 24). Addi-

tionally, the navigation system has been deployed on the

KUKA youBot, a scaled-down version of the omniRob,

and demonstrated at the International Conference on

Robotics and Automation (ICRA) in 2014.

In addition to the omniRob, the Moiros and the

youBot platform, we successfully tested the navigation

system on the KUKA omniMove, a large-scale omnidi-

rectional platform and the Willow Garage PR2 robot.

Currently, KUKA Laboratories GmbH is shipping a ver-

sion of the proposed system as prototypical navigation

software for the omniRob mobile manipulator.

8 Conclusion

In this paper, we have presented a system for accu-

rate navigation of omnidirectional robots in industrial

environments. The system consists of components for

20 Christoph Sprunk et al.

mapping, localization, trajectory generation and robot

control. By devising smooth, curvature continuous tra-

jectories we achieve accurate execution with an error

feedback controller. Our system optimizes trajectories

for travel time meanwhile taking into account platform

and safety constraints and leveraging the high maneu-

verability of omnidirectional robots. Our extensive ex-

periments in simulation and the real world demonstrate

the robustness and accuracy of our system and showcase

its applicability to the domain of industrial factory floor

logistics. This work has a direct impact in the industry
as this navigation system is integrated on the industrial

mobile omnidirectional platform KUKA omniRob.

References

1. adept mobilerobots. http://mobilerobots.com,

2014. Online, accessed 2014-11-26.

2. D. J. Balkcom, P. A. Kavathekar, and M. T. Mason.

Time-optimal trajectories for an omni-directional

vehicle. Intl. Journal of Robotics Research (IJRR),

25(10):985–999, 2006.

3. J. E. Bobrow, S. Dubowsky, and J. Gibson. Time-

optimal control of robotic manipulators along spec-

ified paths. Intl. Journal of Robotics Research

(IJRR), 4(3):3–17, 1985.

4. O. Brock and O. Khatib. Elastic strips: A frame-

work for motion generation in human environments.

The Intl. Journal of Robotics Research, 21(12):1031–

1052, 2002.

5. A. Byravan, B. Boots, S. Srinivasa, and D. Fox.

Space-time functional gradient optimization for mo-

tion planning. In IEEE Intl. Conference on Robotics

and Automation (ICRA), pages 6499–6506, May

2014. doi: 10.1109/ICRA.2014.6907818.

6. Carmen robot navigation toolkit. http://carmen.

sourceforge.net, 2014. Online, accessed 2014-11-

26.

7. J. Connors and G. Elkaim. Manipulating B-Spline

based paths for obstacle avoidance in autonomous

ground vehicles. In National Meeting of the Institute

of Navigation, San Diego, USA, 2007.

8. F. Dellaert and M. Kaess. Square root SAM: Simul-

taneous localization and mapping via square root

information smoothing. Intl. Journal of Robotics

Research (IJRR), 25(12):1181–1203, 2006.

9. F. Dellaert, D. Fox, W. Burgard, and S. Thrun.

Monte Carlo Localization for mobile robots. In

IEEE Intl. Conference on Robotics and Automation

(ICRA), 1999.

10. M. Foskey, M. Garber, M. C. Lin, and D. Manocha.

A voronoi-based hybrid motion planner. In

IEEE/RSJ Intl. Conference on Intelligent Robots

and Systems (IROS), 2001.

11. D. Fox. Adapting the sample size in particle filters

through KLD-sampling. Intl. Journal of Robotics

Research (IJRR), 22(12):985–1003, 2003.

12. D. Fox, W. Burgard, and S. Thrun. The dynamic

window approach to collision avoidance. IEEE

Robotics & Automation Magazine, 4(1):23–33, Mar.

1997.

13. T. Fraichard and V. Delsart. Navigating dynamic

environments with trajectory deformation. Journal
of Computing and Information Technology, 17, 2009.

14. Frog AGV Systems. http://frog.nl, 2014. Online,

accessed 2014-11-26.

15. G. Grisetti, R. Kummerle, C. Stachniss, and W. Bur-

gard. A tutorial on graph-based SLAM. Intelligent

Transportation Systems Magazine, IEEE, 2(4):31–

43, 2010.

16. E. Guizzo. Three engineers, hundreds of robots, one

warehouse. Spectrum, IEEE, 45(7):26–34, 2008.

17. J. Hershberger and J. Snoeyink. Speeding up the

Douglas-Peucker line-simplification algorithm. Tech-

nical report, University of British Columbia, 1992.

18. A. Hornung, M. Phillips, E. G. Jones, M. Bennewitz,

M. Likhachev, and S. Chitta. Navigation in three-

dimensional cluttered environments for mobile ma-

nipulation. In IEEE Intl. Conference on Robotics

and Automation (ICRA), 2012.

19. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pas-

tor, and S. Schaal. Stomp: Stochastic trajectory

optimization for motion planning. In IEEE Intl.

Conference on Robotics and Automation (ICRA),

pages 4569–4574, May 2011. doi: 10.1109/ICRA.
2011.5980280.

20. T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly.

Near-optimal dynamic trajectory generation and

control of an omnidirectional vehicle. Robotics and

Autonomous Systems, 46(1):47–64, 2004.

21. S. Karaman and E. Frazzoli. Sampling-based algo-

rithms for optimal motion planning. Intl. Journal

of Robotics Research (IJRR), 30(7):846–894, 2011.

22. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige,

and W. Burgard. g2o: A general framework for

graph optimization. In IEEE Intl. Conference on

Robotics and Automation (ICRA), 2011.

23. R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss,

and W. Burgard. Autonomous robot navigation in

highly populated pedestrian zones. Journal of Field

Robotics, 2014.

24. F. Lamiraux, D. Bonnafous, and O. Lefebvre. Re-

active path deformation for nonholonomic mobile

robots. IEEE Transactions on Robotics, 20(6):967–

977, 2004.

http://mobilerobots.com
http://carmen.sourceforge.net
http://carmen.sourceforge.net
http://frog.nl

Accurate and Efficient Navigation for Omnidirectional Robots 21

25. B. Lau, C. Sprunk, and W. Burgard. Kinodynamic

motion planning for mobile robots using splines. In

IEEE/RSJ Intl. Conference on Intelligent Robots

and Systems (IROS), 2009.

26. B. Lau, C. Sprunk, and W. Burgard. Efficient grid-

based spatial representations for robot navigation in

dynamic environments. Robotics and Autonomous

Systems, 61(10):1116–1130, 2013.

27. M. Likhachev and D. Ferguson. Planning long dy-

namically feasible maneuvers for autonomous vehi-

cles. Intl. Journal of Robotics Research (IJRR), 28
(8):933–945, 2009.

28. Y. Liu, J. J. Zhu, R. L. Williams II, and J. Wu.

Omni-directional mobile robot controller based on

trajectory linearization. Robotics and Autonomous

Systems, 56(5), 2008.

29. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey,

and K. Konolige. The office marathon: Robust navi-

gation in an indoor office environment. In IEEE Intl.

Conference on Robotics and Automation (ICRA),

2010.

30. K. Maček, G. Vasquez, T. Fraichard, and R. Sieg-

wart. Towards safe vehicle navigation in dynamic

urban scenarios. Automatika, 50(3-4):184–194, 2009.

31. D. Montemerlo, N. Roy, and S. Thrun. Perspectives

on standardization in mobile robot programming:

The Carnegie Mellon navigation (CARMEN) toolkit.

In IEEE/RSJ Intl. Conference on Intelligent Robots

and Systems (IROS), 2003.

32. P. Muir. Modeling and Control of Wheeled Mobile

Robots. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, 1988.

33. E. Olson. Robust and efficient robotic mapping.
PhD thesis, Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer

Science, 2008.

34. O. Purwin and R. D’Andrea. Trajectory generation

and control for four wheeled omnidirectional vehi-
cles. Robotics and Autonomous Systems, 54:13–22,

2006.

35. S. Quinlan and O. Khatib. Elastic bands: Con-

necting path planning and control. In IEEE Intl.

Conference on Robotics and Automation (ICRA),

pages 802–807, 1993.

36. N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa.

Chomp: Gradient optimization techniques for effi-

cient motion planning. In IEEE Intl. Conference on

Robotics and Automation (ICRA), pages 489–494,

2009.

37. M. Riedmiller and H. Braun. A direct adaptive

method for faster backpropagation learning: The

RPROP algorithm. In Intl. Conf. on Neural Net-

works, 1993.

38. J. Roewekaemper, C. Sprunk, G. D. Tipaldi,

C. Stachniss, P. Pfaff, and W. Burgard. On the

position accuracy of mobile robot localization based

on particle filters combined with scan matching. In

IEEE/RSJ Intl. Conference on Intelligent Robots

and Systems (IROS), 2012.

39. R. Rojas and A. G. Förster. Holonomic control of

a robot with an omnidirectional drive. Künstliche

Intelligenz, 20(2):12–17, 2006.

40. M. Rufli, D. Ferguson, and R. Siegwart. Smooth

path planning in constrained environments. In
IEEE Intl. Conference on Robotics and Automa-

tion (ICRA), 2009.

41. J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow,

and P. Abbeel. Finding locally optimal, collision-

free trajectories with sequential convex optimization.

In Robotics: Science and Systems, volume 9, pages

1–10, 2013.

42. K. G. Shin and N. D. McKay. Minimum-time control

of robotic manipulators with geometric path con-

straints. IEEE Transactions on Automatic Control,

30(6):531–541, 1985.

43. C. Sprunk, B. Lau, P. Pfaff, and W. Burgard. On-

line generation of kinodynamic trajectories for non-

circular omnidirectional robots. In IEEE Intl. Con-

ference on Robotics and Automation (ICRA), 2011.

44. C. Sprunk, J. Roewekaemper, G. Parent, L. Spinello,

G. Tipaldi, W. Burgard, and M. Jalobeanu. An

experimental protocol for benchmarking robotic in-

door navigation. In Proc. of the International Sym-

posium on Experimental Robotics (ISER), 2014.

45. I. A. Şucan, M. Moll, and L. E. Kavraki. The

Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, Dec. 2012.

http://ompl.kavrakilab.org.

46. swisslog. http://swisslog.com, 2014. Online, ac-

cessed 2014-11-26.

47. S. Thrun, D. Fox, W. Burgard, and F. Dellaert.
Robust Monte Carlo localization for mobile robots.

Artificial intelligence, 128(1):99–141, 2001.

48. S. Thrun, W. Burgard, and D. Fox. Probabilistic

Robotics. MIT Press, 2005.

49. S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens,

A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,

G. Hoffmann, et al. Stanley: The robot that won

the darpa grand challenge. Journal of field Robotics,

23(9):661–692, 2006.

50. G. D. Tipaldi, L. Spinello, and W. Burgard. Geomet-

rical flirt phrases for large scale place recognition in

2d range data. In IEEE Intl. Conference on Robotics

and Automation (ICRA), 2013.

51. G. D. Tipaldi, M. Braun, and K. O. Arras. Flirt:

Interest regions for 2d range data with applications

http://ompl.kavrakilab.org
http://swisslog.com

22 Christoph Sprunk et al.

to robot navigation. In Experimental Robotics, pages

695–710. Springer, 2014.

52. N. Tomatis. Bluebotics: Navigation for the clever

robot [Entrepreneur]. Robotics Automation Maga-

zine, IEEE, 18(2):14–16, June 2011.

53. K. Watanabe. Control of an omnidirectional mobile

robot. In Proc. of Intl. Conference on Knowledge-

Based Intelligent Electronic Systems, 1998.

54. M. Werling and L. Gröll. Low-level controllers real-

izing high-level decisions in an autonomous vehicle.

In IEEE Intelligent Vehicles Symposium, 2008.

55. P. R. Wurman, R. D’Andrea, and M. Mountz. Co-

ordinating hundreds of cooperative, autonomous

vehicles in warehouses. AI Magazine, 29(1):9, 2008.

56. Y. Yang and O. Brock. Elastic roadmaps–motion

generation for autonomous mobile manipulation.

Autonomous Robots, 28(1):113–130, 2010. ISSN

0929-5593.

57. J. Ziegler and C. Stiller. Spatiotemporal state lat-

tices for fast trajectory planning in dynamic on-road

driving scenarios. In IEEE/RSJ Intl. Conference

on Intelligent Robots and Systems (IROS), 2009.

58. J. Ziegler, M. Werling, and J. Schröder. Navigat-

ing car-like robots in unstructured environments

using an obstacle sensitive cost function. In IEEE

Intelligent Vehicles Symposium (IV 08), 2008.

	Introduction
	Related Work
	Overview
	The Mapping and Localization Module
	The Trajectory Generation Module
	The Robot Control Module
	Evaluation
	Conclusion

