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Abstract

Whenever robots are installed in populated environments,
they need appropriate techniques to avoid collisions with
unexpected obstacles. Over the past years several reac-
tive techniques have been developed that use heuristic
evaluation functions to choose appropriate actions when-
ever a robot encounters an unforeseen obstacle. Whereas
the majority of these approaches determines only the next
steering command, some additionally consider sequences
of possible poses. However, they generally do not con-
sider sequences of actions in the velocity space. Accord-
ingly, these methods are not able to slow down the robot
early enough before it has to enter a narrow passage. In
this paper we present a new approach that integrates path
planning with sensor-based collision avoidance. Our al-
gorithm simultaneously considers the robot’s pose and
velocities during the planning process. We employ dif-
ferent strategies to deal with the huge state space that has
to be explored. Our method has been implemented and
tested on real robots and in simulation runs. Extensive
experiments demonstrate that our technique can reliably
control mobile robots moving at high speeds.

1 Introduction

Path planning is one of the fundamental problems in mo-
bile robotics. As mentioned by Latombe [11], the ca-
pability of effectively planning its motions is “eminently
necessary since, by definition, a robot accomplishes tasks
by moving in the real world.” Over the past years, a huge
variety of techniques for motion planning has been de-
veloped. They can roughly be divided into map-based
approaches such as road-map or cell-decomposition tech-
niques (see [11] for an extensive overview), and reactive,
sensor-based approaches [1, 4, 6, 7, 9, 10, 15].

Goal-directed path planning techniques compute paths
based on a given map of the environment. Thereby they
assume that the environment does not change while the
robot is moving. However, when robots are designed to
operate in dynamic or populated environments, this as-
sumption is no longer justified. Instead the robots have
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to be equipped with sensors to be able to react to un-
foreseen obstacles. Therefore, many researchers have
developed reactive, sensor-based approaches that con-
trol the movements of the robot based on its sensory
input. Typical members of this class are the curvature-
velocity method [15], the dynamic window approach [4],
the vector-field histogram techniques [1] and the potential
field techniques [8]. The key idea of these approaches is
to use an evaluation function to determine the best next
action based on the current sensory input and eventu-
ally given the current state of the system. The advantage
of these techniques lies in their efficiency, so that new
commands can be generated at a high frequency. One
disadvantage of the purely sensor-based approach is the
sub-optimality which comes from the fact that potentially
available global information is ignored. Moreover, tech-
niques of this type are also incomplete, since the robots
can get stuck in U-shaped obstacles.

Therefore, several researchers have worked on extensions
to remedy these problems. For example, Kathib and
Chatila [7] modify the potential function to make the
motion of the robot more efficient and to achieve cer-
tain desirable behaviors such as wall following and track-
ing. Schlegel [13] presents an approach to modify the
evaluation function according to the shape of the robot,
which is especially useful for transportation or manipu-
lation tasks. The techniques described by Fox et al. as
well as Schmidt and Azarm [5, 14] combine the sensory
information with a given map of the environment, for ex-
ample to deal with objects that cannot be detected with
the robot’s sensors. Ko and Simmons [9] introduced the
Lane-Curvature method. This approach extracts lanes out
of a given map of the environment and modifies the eval-
uation function so that the robot stays on the lanes. This
leads to smoother trajectories, especially in long corri-
dors.

Additionally, there are approaches to integrate path-
planning techniques with sensor-based approaches. For
example, the systems described by Burgard et al. and
Thrun et al. [3, 17] uses a path planning system to com-
pute intermediate points lying on the optimal path. These
intermediate points are transmitted to the reactive colli-
sion avoidance system, so that the robot can no longer



get stuck in local minima of the evaluation function. Re-
cently, Brock and Kathib [2] presented an elegant in-
tegration of path planning and reactive collision avoid-
ance. They modify the evaluation function according to
the previously planned path and this way can integrate the
knowledge about globally optimal actions into a sensor-
based approach.

Whereas all these approaches have been proven to allow
mobile robots to reliably navigate in dynamic environ-
ments, the resulting paths sometimes are sub-optimal. As
we will point out in more detail in this paper, one of the
main reasons for this lies in the fact that the next con-
trol action for the robot is chosen mainly based on its
current state (position, orientation and velocities), even-
tually taking into account a globally planned path. This
path, however, is only planned in the〈x, y〉 space without
considering the orientation and velocities of the robot. As
we will argue below, in certain situations the kinematics
of a robot also has to be considered during the map-based
path planning, especially when the robot moves at a high
speed.

In this paper we present integrated path-planning and col-
lision avoidance technique that takes into account the
kinematics of the robot as well as the dynamic of the
environment. Our method plans the control actions of
the robot in the space of positions (〈x, y, θ〉) and veloc-
ities (〈v, ω〉). We apply several techniques to cope with
the enormous complexity of the state space that has to
be explored. As a result our system is able to efficiently
determine the next motion command. Our technique has
been implemented and tested in extensive experiments on
different robot systems as well as in simulation. All ex-
periments show that our technique is able to reliably con-
trol a robot in dynamic environments even with narrow
passages. They furthermore illustrate that our approach
yields a better behavior than previous approaches.

This paper is organized as follows. In the next section
we will describe the motion equati8ons for synchro-drive
and differential-drive robots, which build the basis for our
collision avoidance system. Section 3 contains a discus-
sion of the popular dynamic window approach. In Sec-
tion 4 we will present our planning technique. Finally,
in Section 5 we describe different experiments illustrat-
ing the capabilities of our approach. We also perform a
comparison to an alternative technique and to the optimal
solution.

2 Motion Equations for Synchro-Drive and
Differential-Drive Robots

To plan the trajectories of a robot our system is guided
by the well-known motion equations for synchro-drive or
differential-drive robots [4]. Thereby it assumed that the
trajectory of a robot can be approximated by a sequence
of circular arcs. Accordingly, thex-coordinates of the
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Figure 1: Situation in which a robot using the dynamic win-
dow approach cannot reach the goal.

robot given it starts at positionx(t0) and given that it has
the velocities〈vi, ωi〉 at timeti can be computed as:

x(tn) = x(t0) +
n−1∑
i=0

(F i
x(ti+1))

where

F i
x(t) =


− vi

ωi
(sin θ(ti)− sin(θ(ti)+

ωi · (t − ti))), ωi 6= 0

vi cos(θ(ti)) · t, ωi = 0.

The corresponding equations for they-coordinate are ob-
tained by replacingcos by sin and multiplying the first
line by−1.

3 The Dynamic Window Approaches

The dynamic window approach (DWA) is a popular tech-
nique for reactive collision avoidance. Their key idea is to
use an evaluation function that takes as input the current
state of the system (pose and velocities) and to determine
a new steering command (translational and rotational ve-
locities) such that a given evaluation function is maxi-
mized. The search for appropriate steering commands is
carried out within the set of admissible velocities. Among
them are all velocities that can be reached within a certain
time frame given the maximum possible accelerations or
decelerations of the system. Furthermore, velocities that
would inevitably lead to a collision with an obstacle are
not considered admissible. The evaluation functions typ-
ically measure the progress towards the goal, the current
velocities and the distance to obstacles [2, 4, 9, 13, 15].

Although dynamic window techniques have successfully
been applied on a variety of robot systems, there are sit-
uations in which they lead to a sub-optimal behavior. As
we figured out in practice, this mainly comes from the
fact that the existing approaches only consider the imme-
diately next action or, if not, only plan in the〈x, y〉 con-
figuration space. However, when the robot travels along
a corridor and has to enter a doorway, it has to decelerate
early enough to be able to actually turn into the door-
way. Approaches not performing a look-ahead or tech-
niques not considering the velocities during planning are



not able to detect this and therefore will fail to produce
the correct motion commands.

For example, consider the situation depicted in Figure 1.
The Global Dynamic Window Approach [2] tries to max-
imize the following evaluation function:

Ωg(p, v, a) = α · nf1(p, v) + β · vel(v)
+γ · goal(p, v, a) + δ ·∆nf1(p, v, a).

Here, nf1(p, v) is the so-called navigation function,
which is based onA∗-search in the〈x, y〉 space. The
termvel(v) is a function that assesses the velocity of the
robot. Far away from the goal, a high velocity means a
high assessment. Furthermore,goal(p, v, a) is a binary
function which indicates that the robot is near the goal.
∆nf1(p, v, a) is the grid-based gradient of the navigation
function. Now suppose that the goal is at the very end of
the long corridor starting in the field markedc0 and fac-
ing south. Furthermore suppose the robot evaluatesΩg

when it is in cellci with i > 1. Obviously, the values
of nf1(p, v) force the robot to stay on its horizontal path.
The same holds for the gradient∆nf1(p, v). Furthermore,
goal(p, v, a) is zero here, because the target location is
far away fromc0. Please note that only inc0 the values
of nf1(p, v) and∆nf1(p, v) force the robot to turn south.
Thus, the steering command in the cellsci (i > 1) of the
robot is mainly governed by the termvel(v). Since the
system seeks to maximizeΩg, the robot will accelerate
as much as possible. As a result, it will be too fast to
make the necessary turn into the corridor when reaching
c0. Thus, without considering the velocities the robot will
fail to enter the corridor. This illustrates that it is not suf-
ficient to plan in the〈x, y〉-space only. Instead one has to
perform a look-ahead in the space of velocities to choose
appropriate steering commands.

4 Velocity-based Motion Planning

Our approach to integrated path planning and collision
avoidance considers the five-dimensional〈x, y, θ, v, ω〉
configuration space and tries to optimize a trade-off be-
tween time and collision risk. Unfortunately, planning in
the whole state space is too time-consuming and cannot
cope with the real-time constraints imposed by a robot
moving quickly in dynamic environments. Our system
therefore employs different strategies to deal with the
huge size of the space that has to be explored as well
as with the dynamics of the environment. In particular,
we proceed in the following four steps explained in more
detail below:

1. Update the given (static) map according to the recent
sensory input.

2. Compute a path in the〈x, y〉 space given the updated
map.

3. Use the path generated in Step 2 to determine the
search space to be explored in the next step. Further-
more compute a heuristic to guide the search during
this exploration.

4. Search for a partial path in the fraction of
the 〈x, y, θ, v, ω〉 configuration space computed in
Step 3.

Step 1: To represent the environment, our system uses
occupancy grid maps [12]. This representation separates
the environment into a grid of equally spaced cells and
stores in each cell〈x, y〉 the probabilityP (occx,y) that
it is occupied by an object. We assume that a map rep-
resenting the static aspects of the environment is a priori
given. To integrate sensory input into this map we ap-
ply a conservative strategy. We simply set the occupancy
probability of a cell in which the beam ends to1.0 which
prevents the system from planning a path through that
cell. As soon as this cell is detected to be free again or a
certain period of time has elapsed (120 secs), we reset its
occupancy value to the original value.

Step 2: The goal of the second step is to compute a
path from the current location to the target position in
the〈x, y〉-space. Our system applies the popularA∗ pro-
cedure using the grid-graph induced by the occupancy
grid map to find the shortest path. Thereby, the cost for
traversing a cell〈x, y〉 is proportional to its occupancy
probability P (occx,y). Cells for whichP (occx,y) ex-
ceeds a threshold of0.15 are assumed to have infinite
costs. To speed up the search, the heuristic is based on
a value-iteration in the〈x, y〉-space computed using the
static map. Please note that this heuristic has to be com-
puted only once for each global target location.

Step 3: The goal of this step is the computation of the
search space to be explored in the next step. To this end
we create a channel around the path computed in the pre-
vious step. In our current system we adopt the width and
length of this channel dynamically. We start with a chan-
nel width of70 cm at the current location of the robot and
expand the channel along the path computed in Step 2.
We stop the process as soon as the channel has reached a
certain size that depends on the performance of the under-
lying computer. The goal is to determine a channel that
can be explored within the next0.25 seconds so that the
system can issue a new motion command within this time
frame. The final location on the optimal two-dimensional
path reached during the channel expansion will be the
next subgoal〈xg, yg〉 for the robot. We also perform a
deterministic value-iteration in this channel. The result-
ing value function is identical to the navigation function
nf1described above and builds an admissible heuristic for
theA∗ search carried out in the following step.

Step 4: In the final step we compute a path from
the robot’s current state〈x, y, θ, v, ω〉 to the location
〈xg, yg〉. Thereby we explore the five-dimensional con-
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Figure 2: Trajectories and corresponding channel gen-
erated in one cycle.

figuration space〈x, y, θ, v, ω〉 bounded by the channel
computed in step 3. To determine appropriate values for
θg, vg andωg we distinguish two situations. If〈xg, yg〉
corresponds to the global target location we allow an ar-
bitrary orientation forθg. In this case the velocitiesvg

andωg, however, have to be zero. If〈xg, yg〉 differs from
the global target, we allow arbitrary values forvg but set
ωg to zero andθg to the direction between〈xg, yg〉 and
the next position on the path computed in step 2. Again
we applyA∗ to find the optimal sequence of motion com-
mands. As heuristic we use the value function computed
in the previous step. The discretization of the state space
typically is 10 cm for the position,π/16 degrees for the
heading,π/16 degrees per second for the rotational ve-
locity, and10 cm/sec for the translational velocity. To
compute the successor state of a given state, we use the
motion equations described in Section 2:

〈x1, y1, θ1, v1, ω1〉
〈v2,ω2〉−→ 〈x2, y2, θ2, v2, ω2〉.

Thereby, the maximum changes in the velocities are lim-
ited by the accelerations of the robot’s motors. As a re-
sult, we obtain a sequence of velocity commands〈v, ω〉
the robot must execute to reach〈xg, yg, θg, vg, ωg〉.
Figure 2 shows some of the data structures generated dur-
ing Steps 1 to 4. The solid line corresponds to the optimal
path planned in the two-dimensional configuration space.
In this situation the robot starts in the lower corridor and
has to travel to the left end of the upper corridor. Also
shown is the channel computed in Step 3 and the resulting
intermediate goal location〈xg, yg〉. The dotted line cor-
responds to the trajectory resulting from the full planning
in the five-dimensional configuration space in Step 4.

Our current implementation is highly efficient [16]. It
uses lookup-tables to perform most of the geometric op-
erations. This includes the computation of cells covered
by the robot and the computation of successor states.
Our current system is able to explore channels of 2 m
length and 70 cm width within 0.25 seconds on a standard
800 MHz Pentium III computer. Whenever the channel
is too large to be explored, we use the dynamic win-
dow technique to quickly generate admissible velocities.
We then reduce the size of the channel for the next time
frame. If, however, the channel turns out to be too small

Figure 3: Pioneer 1 robot Ludwig driving around an unex-
pected obstacle.

since sufficient time remains in Step 4, we increase the
size of the channel appropriately. This way, our approach
dynamically adapts itself to the performance of the un-
derlying processor and to the complexity of the planning
problems. Please note, that our approach in principle is
able to compute the optimal path from the robot’s cur-
rent location to the target position given the map and the
current sensory input. If enough computational resources
are available, the channel can cover the whole configu-
ration space so that the system can compute the optimal
sequence of steering commands.

5 Experimental Results

Our path planning method has been implemented and ex-
tensively tested on our mobile robots Albert and Ludwig.
Whereas Albert is an RWI B21r robot, Ludwig is a Pio-
neer 1 system. Both robots are equipped with SICK laser
range finders that are used to detect dynamic obstacles.
Additionally, we carried out a series of simulation runs
to compare our system to the dynamic window technique
described in [4].

5.1 Collision avoidance in Dynamic Environments

The first experiment was carried out using both robots in
our office environment at the University of Freiburg. To
test the capabilities of our system to deal with unexpected
obstacles we installed several objects in the corridor and
changed their positions frequently. Additionally, people
were walking in the environment. In both experiments,
during which the robots traveled over 300 m with aver-
age speeds of over 30 cm/s, we did not observe a single
collision. Figure 3 shows a typical situation during these
experiments. Here Ludwig is moving around an unex-
pected obstacle in the corridor. We also performed exten-
sive simulation experiments with an overall path length
of 20 km. The simulator we used realizes the full func-
tionality and behavior of the a mobile platform includ-
ing the ability to set different accelerations, velocities etc.
During all experiments we found that the generated paths
were very smooth and that the overall behavior was quite
efficient.



Figure 4: Typical trajectories taken by Albert when entering a
room using the DWA (left) and our approach (right).

Figure 5: Albert tries to enter a doorway blocked by several
obstacles using the DWA (left) and our technique (right).

5.2 Comparison to the Dynamic Window Approach

We also performed several experiments to compare our
technique to the collision avoidance system that we suc-
cessfully employed over the past years. This system uses
the dynamic window approach technique combined with
a 2d path planner [17]. Figure 4 shows the outcome of
one such experiment. Here the robot had to travel along
the corridor of our office environment and had to enter the
rightmost office in the north. The left image shows the
trajectory generated by the dynamic window approach.
The right image contains the trajectory generated by our
algorithm. Since the DWA chooses too high speeds in
the corridor, it is not able to directly enter the room when
it reaches the doorway. Rather it first stops, turns back
and then enters the room. Our module, in contrast, slows
the robot down before it reaches the doorway area so that
Albert is able to directly enter the room. With our sys-
tem the robot completed the whole run in 34.5 seconds
driving 11.86 m, which corresponds to an average speed
of 34.3 cm/sec. The dynamic window technique, how-
ever, required 48.5 seconds and traveled 12.31 m, which
results in an average speed of 25.4 cm/s. The maximum
speed of the system was set to 40 cm/sec in both runs.

Another experiment carried out with Albert is depicted
in Figure 5. Here we installed several objects in front of
a doorway to increase the difficulty of entering the cor-
responding room. As can be seen in the left image, the
dynamic window technique again is too fast to make the
necessary sharp turn into the narrow passage. Our tech-
nique, however, slows the robot down early enough so
that it can enter the passage immediately. Figure 6 de-
picts a sequence of images showing Albert executing the

Figure 6: Albert traveling along the path shown in the right
image of Figure 5.
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Figure 7: Average time needed to reach the goal location us-
ing our planning module and using the DWA.

steering commands generated by our system.1

At this time we would like to mention that the evalu-
ation function used by the dynamic window techniques
in fact can be tuned to optimize the behavior of a robot
in specific situations like the ones given in the experi-
ments described above. However, this generally reduces
the performance of the system in other situations. In the
experiments described here we therefore used parameters
for the DWA that we generally used on our system since
they have shown to yield the best overall performance in
a wide range of situations.

5.3 Simulation Experiments

To get a quantitative assessment of the performance of
our approach we performed a series of simulation exper-
iments. In the first task the robot had to travel along a
straight corridor without any unexpected obstacles. The
second scenario was similar to that shown in Figure 4.
The robot had to move along a corridor and had to enter
a room. Figure 7 shows for 50 different runs the average
time the robot needed to reach the target location. The er-
ror bars, which are not visible in the first three columns,
indicate theα = 0.05 significance level. As can be seen
from the figure, both collision avoidance strategies show
the same performance if the robot stays in the corridor.
However, our approach requires significantly less time
to complete the second task. Furthermore, our method

1More pictures and complete videos are available at
http://www.informatik.uni-freiburg.de/˜burgard/publications.html
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yields only a small variance of the overall completion
time. The DWA, in contrast, shows a quite high vari-
ance, which comes from the necessary retries to enter the
room.

Figure 8 shows the time needed to complete a series of
navigation tasks using channels of different size. The last
column is the time needed by the optimal solution, i.e., if
the whole state space is explored. As can be seen, the re-
sults obtained with channels of500 cm length and110 cm
width are as good as the optimal solution.

In a further simulation experiment we investigated the
performance of our method in situations like that shown
in Figure 1. In contrast to the DWA, our method deceler-
ates the robot early enough so that the system is able to
turn into the corridor immediately [16].

6 Conclusion

In this paper we presented an integrated approach to
sensor-based collision avoidance and path planning for
mobile robots in dynamic environments. Our system
plans in the full〈x, y, θ, v, ω〉 configuration space and
therefore takes into account the kinematics of the robot.
The key advantage of our approach is that it also performs
a lookahead in the velocity space. Accordingly the robot
can decelerate early enough which is highly important es-
pecially in narrow environments.

Our algorithm includes several techniques to deal with
the complexity of the induced search problem during re-
planning. The overall system is highly efficient and can
be run on a standard PC. It automatically adapts itself to
the performance of the underlying processor and to the
complexity of the search problem.

The approach has been implemented and tested on differ-
ent robotic systems. In all experiments our technique was
able to generate safe trajectories. We compared our ap-
proach to the popular DWA technique. The experiments
demonstrate that our algorithm yields more efficient tra-
jectories which are often close to the optimal ones.
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