Exploration with Active Loop-Closing for FastSLAM

Cyrill Stachniss Dirk Hahnel Wolfram Burgard

University of Freiburg
Department of Computer Science
D-79110 Freiburg, Germany

Abstract— Acquiring models of the environment belongs
to the fundamental tasks of mobile robots. In the last
few years several researchers have focused on the problem
of simultaneous localization and mapping (SLAM). Classic
SLAM approaches are passive in the sense that they only
process the perceived sensor data and do not influence the
motion of the mobile robot. In this paper we present a
novel and integrated approach that combines autonomous
exploration with simultaneous localization and mapping. Our
method uses a grid-based version of the FastSLAM algorithm
and at each point in time considers actions to actively close
loops during exploration. By re-entering already visited areas
the robot reduces its localization error and this way learns
more accurate maps. Experimental results presented in this
paper illustrate the advantage of our method over pervious
approaches lacking the ability to actively close loops.
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Fig. 1. This figure shows two maps obtained by a real world experiment
performed at Sieg Hall, University of Washington. The top image depicts
I. INTRODUCTION an experiment in which the robot drove around the loop once and then

. entered the long corridor. As can be seen robot was unable to localize
In general, the task of acquiring models of unknowniself correctly before entering the corridor. This leaded to a big error

environments requires solutions to three sub-tasks, whidh the orientation of the horizontal corridor. If the robot did active loop-
closing and re-visited the loop it typically performed much better (bottom

are mapping, localization and control. Mapping is thelmage)_
problem of integrating the information gathered with the
robot’'s sensors into a given representation. Localization ishown in the upper image the robot traversed the loop just
the problem of estimating the position of the robot. Finallyonce. The robot was not able to correctly determine the
the control problem involves the question of how to steer angle between the loop and the straight corridor, because it
vehicle in order to efficiently guide it to a desired location.did not collect enough data to accurately localize itself. The
A naive approach to realize an integrated techniquesecond map shown in the lower image has been obtained
which solves all three tasks simultaneously, could be twith the approach described in this paper after the robot
combine a SLAM algorithm with an exploration procedure traveled twice around the loop before entering the corridor.
Since exploration strategies try to explore unknown terraifs can be seen from the figure, this reduces the orientation
as fast as possible, they focus on reducing the amount efror from approximately degrees (top image) tbdegree
unseen area and thus avoid repeatedly traveling throughottom image). This example illustrates that the capability
known areas. This strategy, however, is suboptimal in thto actively close loops during exploration allows the robot
context of the SLAM problem, because the robot typicallyto reduce its pose uncertainty during exploration and thus
needs to re-visit places to localize itself again. A goodo learn more accurate maps.
pose estimation is necessary to make the correct dataThe contribution of this paper is an integrated algorithm
association, i.e., to determine if the current measurementfisr generating trajectories to actively close loops during
fit into the map built so far. If the robot uses an ex-SLAM. Our algorithm uses a grid-based version of the
ploration strategy that avoids multiple visits of the samd-astSLAM algorithm and explicitely takes into account the
place, the probability of making the correct associationsincertainty about the pose of the robot during the explo-
is reduced. This indicates that combinations of exploratiomation task. Additionally it avoids that the robot becomes
strategies and SLAM algorithms should consider whetheoverly confident in its pose when actively closing loops
it is worth re-entering already covered spaces or to explonhich is a typical problem of particle filters in this context.
new terrain. It can be expected that a system which takess a result we obtain more accurate maps compared to
this decision into account can improve the quality of thecombinations of SLAM with greedy exploration.
resulting map. This paper is organized as follows. After the discussion
Figure 1 gives an example that illustrates why an inteef related work in the following section, we explain the
grated approach doing active place re-visiting provides betdea of grid-based FastSLAM, the SLAM algorithm used
ter results than approaches that do not consider re-enterittgoughout this work. In Section IV we present our in-
known terrain during the exploration phase. In the situatiotegrated exploration technique. We furthermore describe



how to take into account the pose uncertainty and how t®his can be done efficiently, since the quantjiym |
actively close loops. Section V then presents experiments .., z1., uo.t—1) can be computed analytically oneg.;

carried out on real robots as well as in simulation. and z;.; are known. To estimate the posterip(x;.; |
21.¢, Up:t—1) Over the potential trajectories FastSLAM uses
[l. RELATED WORK a particle filter in which an individual map is associated

éq every sample. Each map is constructed given the obser-

This paper presents an integrated technique to Simu“vations and the traiector represented by the Cor-
neous localization, mapping, and exploration. Several pre- 1.t J Y1 TEP y

vious approaches to SLAM and mobile robot expIorationresmnd'n.g pgrtlcle. D‘%“”g resampllng, the weightof
are relevant. In the context of exploration, most of theeaCh particle is proportlona! to the likelihopdz; | m’.xt)

techniques presented so far focus on generating moti Or]; the_ most _recent observation given the rmarassomat_ed
commands that minimize the time needed to cover th& this particle and the pose; of the corresponding

. trajectory.
whole terrain [1], [9], [17], [18]. Other methods seek to . .
optimize the view-points of the robot to maximize the The FastSLAM algorithm used throughout this paper

expected information gain and to minimize the uncertaint omputes g“d. maps. It applies a scan-matching procedure
of the robot about grid cells [6], [14]. Most of these 0 compute highly accurate odometry data and uses this

techniques, however, assume that the location of the rob ﬁrrected o_dometry in the prediction step of the particle
is known during exploration. In the area of SLAM the vast ! [8]. This way the number .Of particles can be reduced
majority of papers focuses on the aspect of state estimatiof f[hat maps of even I_arge environments can be constructed
as well as belief representation and update [2], [3], [4], monlme. In the following section we describe how the

[8], [11], [12], [15]. These techniques, however, are paSSivgastSLAM algorithm for grid maps can be extended to

and only consume incoming sensor data without explicitely"?lct've'y close loops during exploration.

generating controls. V. EXPLORATION WITH ACTIVE LOOR-CLOSING FOR
Recently, some techniques have been proposed which FASTSLAM

actively control the robot during simultaneous mapping and During FastSLAM, whenever the robot explores new

localization. For example, Makarenko et al. [10] eXtrac&errain, all samples have more or less the same importance

I;lnldmarlfzs_ltoutt of Iellserﬂr]angiAsl\jans t?lnd U_Sri anfE)t(rt]end\?/%ight, since the most recent measurement is typically
aiman FIter 1o sove the proolem. They IUrher . nsistent with the part of the map constructed from

mfore mr:.rodufce ‘? Ut'l'ty.t]::rt]ﬁt'ont.\l’.\f[h'c? traldets—gff the.t.COStthe immediately preceding observations. As a result, the
of reaching Irontiers wi € utiity ot selected posi Ionsuncertainty of the patrticle filter increases. As soon as it re-

with respect to a potential reduction of the pose uncertaint inters known terrain, however, the maps of some particles

This approach is similar to the work done by Feder et a_l. [5 re consistent with the current measurement and some are

tﬁ’\ot. Accordingly the weights of the samples differ largely.

during mapping. . techmqugs, however, rely on thPDue to the resampling step the uncertainty about the pose
fact that the environment contains landmarks that can b

. . . . 5t the robot usually decreases.
uniquely determined during mapping.

: N Note that this effect is much smaller if the robot
In contrast to this, the approach presented in this PaPFlst moves backward a few meters to re-visit previously

makes no assumptions about distinguishable landmarks Nanned areas. This is because each map associated to
the environment. It uses raw laser range scans to COmpugleparticle is generally locally consistent. Inconsistencies

accurate grid maps. It considers the utility of re-enterinqnoStly arise when the robot re-enters areas explored some

known parts of the environment and following an Encoung; e ago. Therefore, visiting places seen further back in the

€F1istory has a stronger effect on the differences between the
importance weights and typically also on the reduction of
uncertainty compared to places recently observed.

The key idea of our approach is to identify opportunities

To estimate the map of the environment we use a highlfor closing loops during terrain acquisition. Here closing a
efficient variant of the FastSLAM algorithm [11] which loop means actively re-entering the known terrain and fol-
itself is an extension of the Rao-Blackwellized particle fil-lowing a previously traversed path. To determine, whether
ter for simultaneous localization and mapping proposed bthere exists a possibility to close a loop we consider two
Murphy et al. [3]. The key idea of the Rao-Blackwellized different representations of the environment. In our current
particle filter for SLAM is to estimate a posteripfz;.;, | System we associate to each particlan occupancy grid
1.4, Uo:—1) about potential trajectories;.; of the robot map ml* and a topological mag!®! which both are
given its observations;.; and its odometry measurementsupdated while the robot is performing the exploration task.
uo—1 and to use this posterior to compute a posterior ovein the topological ma!*! the vertices represent positions

tered loop to reduce the uncertainty of the robot in its pos
This way the resulting maps become highly accurate.

Ill. GRID-BASED FASTSLAM

maps and trajectories: visited by the robot. The edges represent the trajectory
corresponding to the particke To construct the topological
(1.6, m | 214, U0t —1) = map we initialize it with one node corresponding to the

p(m | 1.4, 21:4)P(X1:8 | 21:8, U0rt—1)- (1) starting location of the robot. Lmﬁs] be the pose of particle



Fig. 2. The re[g] dots and lines in these three image represent the nodggy 3. The particle depletion problem: a robot traveled through the inner
and edges ofj'*l. In the left imageZ(s) contained two nodes and in |50p several times (left image). After this the diversity of hypotheses about

the middle image the robot closed the loop until the pose uncertainty ighe trajectory outside the inner loop had decreased too much (middle
reduced. After this it continued with the acquisition of unknown terrainimage) and the robot is unable to close the outer loop correctly (right

(right image). image).

s at the current time step We add a new node at” to pose becomes too large. The robot then re-visits portions

Glsl if the distance between;” and all other nodes i) of the previously explored area and this way reduces the

exceeds a threshold ef= 2.5m or if none of the other uncertainty in its position.

nodes ing!*! is visible fromz}"l: To determine the most likely movement allowing the

] robot to follow a previous path of a loop, one in principle

;n)>c vV has to integrate over all particles and consider all potential

2) outcomes of that particular action. Since this would be too
time consuming for online-processing we consider only

Whenever a new node is added, we also add an edge frdft¢ particles™ with the highest accumulated importance
this node to the most recently visited node. To determin@eight:
whether or not a node is visible from another node we ¢
perform a ray-casting operation in the occupancy griél. s* — argmaxz log wl[s]_ ()
Figure 2 depicts such a graph for one particular particle LB
during different phases of an exploration task. In each 5] ) _ ,
image, the topological ma@l®! is printed on top of metric Heré w;~ is the weight of samples at time step:. If
mapm!*]. To motivate the idea of our approach we wouldZ(s™) 7 ¢ V!? choose the node;, from Z(s*) which is
like to refer the reader to the left image of this figure. Hereclosest tox;” :
the robot was almost closing a loop. This can be detected B L [s*]
by the fact that the length of the shortest path between the Tte = ilgg? dist o (2
current pose of the robot and previously visited locations in
the topological mayg!* was large, where as it was small In the sequelk,_ is denoted as thentry pointat which the
in the grid-mapm/*. robot has the possibility to close a loap.corresponds to
Thus, to determine whether or not a loop can be closele last time the robot was at the nodg.
we Compute for each Sampbahe SetZ(S) of positions of To determine whether or not the robot should activate
interest, which contains all nodes that are close to curreffi€ loop-closing behavior our system constantly monitors
posem,[f] of particle s based on the grid mam!s! but are the uncertainty/(¢) about the robot's pose at the current
far away given the topological mapls! of s: time step. The necessary condition for starting the loop-
closing process is the existence of an entry peintand
I(s) = {x,[;f} € nodes(Gl¥) | dist i ( ,[5]7I£S]) <c1 A thatH(t) exceeds a given threshold. Once the loop-closing
dist g1 (xﬁ‘f], I’LS]) > c,}(38) Process has been activated, the robot' gpproa;ck;eand
then follows the path taken after arriving previously at
Here dist p(z1, z2) is the length of the shortest path z;, . During this process the uncertainty in the pose of the
from z; to x5 given the representatioM. The distance vehicle typically decreases, because the robot is able to
between two nodes Gl is given by the length of localize itself in the map built so far and unlikely particles
the shortest path between both nodes, whereas the lengtimish.
of a path is computed by the sum over the lengths of We furthermore have to define a criterion for deciding
the traversed edges. The terms and c; are constants when the robot actually has to stop following a loop.
that must satisfy the constrairef < co. In our current A first attempt could be to introduce a threshold and to
implementation the values of these constantscare 6m  simply stop the trajectory following behavior as soon as
andcs = 20m. the uncertainty becomes smaller than a given threshold.
If Z(s) # 0 there exist so-called shortcuts fromi""] This criterion, however, can be problematic especially in
to the positions inZ(s). These shortcuts represent edgeshe case of nested loops. Suppose the robot encounters
that would close a loop in the topological mgp!. The the opportunity to close a loop that is nested within an
left image of Figure 2 illustrates a situation in which aouter and so far unclosed loop. If it eliminates all of
robot encounters the opportunity to close a loop sibigg  its uncertainty by repeatedly traversing the inner loop,
contains two nodes. The key idea of our approach is to ugmrticles necessary to close the outer loop may vanish.
such shortcuts whenever the uncertainty of the robot in itds a result, the filter diverges and the robot fails to build

Vn € nodes(G1®)) 1 |dist,,. (1&9
[

not _visible,, s (:17:], n)

). (5)



Algorithm 1 The loop-closing algorithm
ComputeZ(s*)
if Z(s*) # 0 then begin
H — H(te) )
path — x,[f I shortest,pathg[s*](mte,xf ])
while H(t) >H A H(t) > threshold do
robot_follow (path)

end robot follows its previously taken trajectory to re-localize.

a correct map (see Figure 3). To remedy this so-calleli does not leave this trajectory until the termination crite-
particle depletion problem [16] we introduce a constrainfion, described in previous section, is fuffilled. Therefore it
on the uncertainty of the robot. Lek(t.) denote the never starts a new loop-closing process before the current
uncertainty of the posterior when the robot visited the entrfne is completed. A typical example with multiple nested
point last time. Then the new constraint allows the robot t6°0PS iS shown in Figure 4. In the situation depicted in the
re-traverse the loop only as long as its current uncertaintft image the robot starts with the loop-closing process for
H(t) exceedsH(t. ). If the constraint is violated the robot 1€ INner loop. After completing this loop it moves to the
resumes its frontier-based exploration process. The idea §f¢ONd inner one and again starts the loop-closing process.

this constraint is to avoid the depletion of relevant particles!Nce our algorithm considers the uncertainty at the entry
during the loop-closing process. point it keeps enough variance in the filter to close the outer

To better illustrate the importance of this constraint@OP- In general, the quality of the solution and whether or
consider the following example: a robot moves from plac&©t the overall process succeeds depends on the number of
A to place B and then repeatedly observ8s While it is particles used. Since determining thI.S guantity is an open
mapping B it does not get any further information about research prqblem the number of particles has to be defined
A. Since each particle represents a whole trajectory of tH&Y the user in our current system.
robot also hypotheses representing ambiguities abbut
will vanish when reducing potential uncertainties absut ) ,
Our constraint avoids the depletion of particles representing Qur approach has been .|mpIer_nented apd evaluated in a
ambiguities about! by aborting the loop-closing behavior series of real world and simulation experiments. For the

at B as soon as the uncertainty drops below the uncertainf@l World experiments we used an iRobot B21r robot and
stemming fromA. an ActivMedia Pioneer Il robot. Both are equipped with a

Finally we have to describe how we actually measure>|CK laser range finder. For the simulation experiments we

the uncertainty in the position estimate. The typical way of'Sed the real-time simulator of the Carnegie Mellon Robot
measuring the uncertainty of a posterior is to calculate th@vigation Toolkit [13]. This simulator generates realistic
entropy. In the case of multi-modal distributions, howevernCiSe in the odometry and laser range sensor data.

the entropy does not consider the distance between theThe experiments described in this section are designed
different modes. In our experiments we figured out thal0 illustrate that our appr_oach can l_)e used to actively learn
we obtain better results if we use the volume expandeﬁccurate maps of large |nd(_)or environments. Furt_hermore,
by the samples instead of the entropy of the posterior. ey demonstrate that our mteg_rated app_roach y|elds_bet—
therefore calculate the pose uncertainty by determining tHE" results than an approach without active loop-closing.

volume of the oriented bounding box around the particlé‘dditionally, we analyze how the active termination of the
cloud. A good approximation of the minimal oriented loop-closure influences the result of the mapping process.

bounding box can be obtained efficiently by a principaly  real World Exploration

component analysis. he fi . ied il h
As long as the robot is localized well enough or no The first experiment was carried out to illustrate that

loop can be closed, we use a frontier-based exploratigfli! Current system can effectively control a mobile robot
strategy [1] to choose target points for the robot. In oul® act!vely close loops dun_ng exploration. To perform this
current system we determine frontiers based on the map 8%<Pe”me”t we used a Pioneer Il robot to gxplore the
the most likely particles*. Here a frontier is any known cell Main lobby of the Department for Computer Science at the

that is an immediate neighbor of an unknown, unexploreb’niversny of Freiburg. The size of this environment is 51m
cell [18]. times 18m. Figure 5 depicts the final result obtained by a

A precise formulation of the loop-closing strategy iscomplete_ly autono_mous exploratio_n run usiljg our active
given by Algorithm 1. In our implementation this algorithm loop-closing technique. It also depicts the trajectory of the

runs as a background process that is able interrupt tH@P0L which has an overall length of 280m. The robot

frontier-based exploration procedure. An application of thidecided four times to re-enter a previously visited loop

algorithm in a simulation run is illustrated in Figure 2. N Order to reduce the uncertainty in its pose. Figure 5
also shows the corresponding entry points as well as the

A. Handling Multiple Nested Loops positions where the robot left the loops (“exit points”). In
Note that our loop-closing technique can also handl¢his experiment the FastSLAM routine used 250 particles.
multiple nested loops. During the loop-closing process théds can be seen the resulting map is quite accurate.

Fig. 4. Active loop-closing of multiple nested loops.

V. EXPERIMENTS
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Fig. 7.  This figure compares our loop-closing strategy with a pure
Fig. 5. This image shows the resulting map of an exploration experime frontier-based exploration technique. The left bar in this graph plots the

ied out usi Pi Il robot ioped with a | erage error in the pose of the robot obtained with our loop-closing
carried out using a Hioneer 1l robot equipped with a laser range SC‘r’mngfrategy. The right one shows the average error if a frontier-based approach
in the entrance hall of the Department for Computer Science at th%

Uni itv of Ereib Al h is th th of th bot " as used. As can be seen our technique significantly reduces the distances
niversity ot Freiburg. AlSo shown Is the path of the robot as wWell as;,,yeen the estimated positions and the ground truth (confidence intervals
entry and exit points where the robot started and stopped the active |OOB

) 0 not overlap).
closing process.

in contrast, first revisits the outer loop before entering the
inner one (see right image). Accordingly, the resulting map
is quite accurate.

C. A Quantitative Analysis

To quantitatively evaluate the advantage of the loop-
closing behavior we performed a series of simulation
experiments in an environment similar to the Sieg Hall. We
performed 20 experiments, 10 with active loop-closing and
Fig. 6. This figure depicts an environment with two large loops. Thel0 without. After completing the exploration task we mea-
outer loop has a length of over 220m. The left image show the resultingured the average error in the relative distances between
map of a trajectory in which t_h(_e robot drove thro_ughthe Ioop_s only onceppsitions Iying on the resulting estimated trajectory and
g‘céﬁastgcr?]gz rég;hﬁgrﬁtbﬁgggfd every loop twice and obtained a highly, o oo\ nd truth provided by the simulator. The results are

depicted in Figure 7. As can be seen the active loop-closing
B. Active Loop-Closing vs. Frontier-Based Exploration behavior significantly reduces the error in the position of

The second experiment was carried out to compare oﬁ?e robot.

algorithm with a standard exploration strategy that does n
consider loop closing actions. The lower image of Figure
shows the map obtained with a B21r robot in the Sieg Hall In this final experiment we analyze the importance of the
at the University of Washington using our algorithm. Toconstraint that terminates the active loop-closing behavior
eliminate the influence of measurement noise and differems soon as the current uncertaiftty?) of the belief drops
movements of the robot we removed the data correspondingder the uncertaintyi(t.) of the posterior when the robot
to the second loop traversal from the recorded data file anslas at the entry point last time.
used this data as input to our FastSLAM algorithm. This In this simulated experiment the robot had to explore
way we simulated the behavior of a greedy exploratioran environment containing two nested loops (see Figure 8
strategy which forces the robot to directly enter the corrido(d)). In one case we simply used a constant threshold to
after returning to the starting location in the loop. As cardetermine whether or not the loop-closing behavior should
be seen from the upper image of Figure 1, an approadbe stopped. In the second case we applied the additional
that does not actively re-enter the loop fails to correctlyconstraint that the uncertainty should not become smaller
estimate the angle between the loop and the corridor whichan H(t..).
should be oriented horizontally in that figure. Whereas the Figure 3 shows the map of the particle with the highest
angular error is7 degrees with the standard approach itaccumulated importance weight obtained with our algo-
is only 1 degree with our method. Both maps correspondithm using a constant threshold instead of considering
to the particle with the highest accumulated importance{(¢.). In this case the robot repeatedly traversed the inner
factor. loop (left image) until its uncertainty was reduced below a
A further experiment that illustrates the advantage ofhreshold. After three and a half rounds it decided to again
place re-visiting is shown in Figure 6. The environmentexplore unknown terrain, but the diversity of hypotheses
used in this simulation run is 80m times 80m and containkad decreased too much (middle image). Accordingly
two large nested loops with nearly featureless corridorghe robot was unable to accurately close the outer loop
The left image shows the result of the frontier-basedright image). We repeated this experiment several times
approach which traversed each loop only once. Since ttend in no case the robot was able to correctly map the
robot is not able to correct the accumulated pose error, thenvironment. In contrast to that, our approach using the
resulting map contains large inconsistencies and two afdditional constraint always generated an accurate map.
the corridors are mapped onto each other. Our approachne example run is shown in Figure 8. Here the robot

%B. Importance of the Termination Criterion



without a complete re-run of the whole algorithm. Such
issues are subject of future research.
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Fig. 8. These images depict snapshots of our loop-closing strategy. The
robot explored the terrain and detected an opportunity to close a loop
in order to reduce its uncertainty (a). It then traversed parts of the inner3]
loop until its uncertaintyH(t) did not exceed the uncertainty(t. ) of the
posterior when the robot at the entry point anymore. It then turned back
and left the loop to explore new terrain (b). After this, enough hypotheses
are left to correctly close the outer loop (c) and (d). In contrast to that, [4]
a system considering only a constant threshold criterion fails to map the
environment correctly as depicted in Figure 3.

(5]

stopped the loop-closing after traversing half of the inner
loop. In both cases we used 80 particles.

As this experiment illustrates, the termination of the
loop-closing is important for the convergence of the filter
and to obtain accurate maps in environments with several’l
(nested) loops. Note that similar results in principle can
also be obtained without this termination constraint if
the number of particles is dramatically increased. Sincel®
exploration is an online problem and since every particle
carries its own map it is of utmost importance to keep
the number of particles as small as possible. Therefore ou?!
approach also can be regarded as a contribution to limit
the number of particles during FastSLAM. [10]

(6]

VI. CONCLUSION
[11]

In this paper we presented a novel approach for active
loop-closing during autonomous exploration. We combined
a Rao-Blackwellized particle filter for localization and [12]
mapping with a frontier-based exploration technique ex-
tended by the ability to actively close loops. Our algorithni*®]
forces the robot to traverse previously visited loops again
and this way reduces the uncertainty in the pose estimatioii4l
As a result, we obtain more accurate maps compared to
standard combinations of SLAM algorithms with explo-[15)
ration techniques.

One general problem of FastSLAM is that the numbeF®!
of particles needed to build an accurate map is not known
in advance. Even our technique does not provide tools 7]
estimate this quantity but it produces better maps with a
given number of particles compared to a naive combination
of frontier-based exploration with FastSLAM. The major[18]
restrictions of our algorithm are similar to those of Fast-
SLAM, e.g, there are no means to recover from divergence

] D. Hahnel, W. Burgard, D. Fox, and S. Thrun.

Nicholas Roy. Furthermore we would like to thank Luis
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