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Abstract— Acquiring models of the environment belongs
to the fundamental tasks of mobile robots. In the last
few years several researchers have focused on the problem
of simultaneous localization and mapping (SLAM). Classic
SLAM approaches are passive in the sense that they only
process the perceived sensor data and do not influence the
motion of the mobile robot. In this paper we present a
novel and integrated approach that combines autonomous
exploration with simultaneous localization and mapping. Our
method uses a grid-based version of the FastSLAM algorithm
and at each point in time considers actions to actively close
loops during exploration. By re-entering already visited areas
the robot reduces its localization error and this way learns
more accurate maps. Experimental results presented in this
paper illustrate the advantage of our method over pervious
approaches lacking the ability to actively close loops.

I. I NTRODUCTION

In general, the task of acquiring models of unknown
environments requires solutions to three sub-tasks, which
are mapping, localization and control. Mapping is the
problem of integrating the information gathered with the
robot’s sensors into a given representation. Localization is
the problem of estimating the position of the robot. Finally,
the control problem involves the question of how to steer a
vehicle in order to efficiently guide it to a desired location.

A naive approach to realize an integrated technique,
which solves all three tasks simultaneously, could be to
combine a SLAM algorithm with an exploration procedure.
Since exploration strategies try to explore unknown terrain
as fast as possible, they focus on reducing the amount of
unseen area and thus avoid repeatedly traveling through
known areas. This strategy, however, is suboptimal in the
context of the SLAM problem, because the robot typically
needs to re-visit places to localize itself again. A good
pose estimation is necessary to make the correct data
association, i.e., to determine if the current measurements
fit into the map built so far. If the robot uses an ex-
ploration strategy that avoids multiple visits of the same
place, the probability of making the correct associations
is reduced. This indicates that combinations of exploration
strategies and SLAM algorithms should consider whether
it is worth re-entering already covered spaces or to explore
new terrain. It can be expected that a system which takes
this decision into account can improve the quality of the
resulting map.

Figure 1 gives an example that illustrates why an inte-
grated approach doing active place re-visiting provides bet-
ter results than approaches that do not consider re-entering
known terrain during the exploration phase. In the situation
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Fig. 1. This figure shows two maps obtained by a real world experiment
performed at Sieg Hall, University of Washington. The top image depicts
an experiment in which the robot drove around the loop once and then
entered the long corridor. As can be seen robot was unable to localize
itself correctly before entering the corridor. This leaded to a big error
in the orientation of the horizontal corridor. If the robot did active loop-
closing and re-visited the loop it typically performed much better (bottom
image).

shown in the upper image the robot traversed the loop just
once. The robot was not able to correctly determine the
angle between the loop and the straight corridor, because it
did not collect enough data to accurately localize itself. The
second map shown in the lower image has been obtained
with the approach described in this paper after the robot
traveled twice around the loop before entering the corridor.
As can be seen from the figure, this reduces the orientation
error from approximately7 degrees (top image) to1 degree
(bottom image). This example illustrates that the capability
to actively close loops during exploration allows the robot
to reduce its pose uncertainty during exploration and thus
to learn more accurate maps.

The contribution of this paper is an integrated algorithm
for generating trajectories to actively close loops during
SLAM. Our algorithm uses a grid-based version of the
FastSLAM algorithm and explicitely takes into account the
uncertainty about the pose of the robot during the explo-
ration task. Additionally it avoids that the robot becomes
overly confident in its pose when actively closing loops
which is a typical problem of particle filters in this context.
As a result we obtain more accurate maps compared to
combinations of SLAM with greedy exploration.

This paper is organized as follows. After the discussion
of related work in the following section, we explain the
idea of grid-based FastSLAM, the SLAM algorithm used
throughout this work. In Section IV we present our in-
tegrated exploration technique. We furthermore describe



how to take into account the pose uncertainty and how to
actively close loops. Section V then presents experiments
carried out on real robots as well as in simulation.

II. RELATED WORK

This paper presents an integrated technique to simulta-
neous localization, mapping, and exploration. Several pre-
vious approaches to SLAM and mobile robot exploration
are relevant. In the context of exploration, most of the
techniques presented so far focus on generating motion
commands that minimize the time needed to cover the
whole terrain [1], [9], [17], [18]. Other methods seek to
optimize the view-points of the robot to maximize the
expected information gain and to minimize the uncertainty
of the robot about grid cells [6], [14]. Most of these
techniques, however, assume that the location of the robot
is known during exploration. In the area of SLAM the vast
majority of papers focuses on the aspect of state estimation
as well as belief representation and update [2], [3], [4], [7],
[8], [11], [12], [15]. These techniques, however, are passive
and only consume incoming sensor data without explicitely
generating controls.

Recently, some techniques have been proposed which
actively control the robot during simultaneous mapping and
localization. For example, Makarenko et al. [10] extract
landmarks out of laser range scans and use an Extended
Kalman Filter to solve the SLAM problem. They further-
more introduce a utility function which trades-off the cost
of reaching frontiers with the utility of selected positions
with respect to a potential reduction of the pose uncertainty.
This approach is similar to the work done by Feder et al. [5]
who consider local decisions to improve the pose estimate
during mapping. Both techniques, however, rely on the
fact that the environment contains landmarks that can be
uniquely determined during mapping.

In contrast to this, the approach presented in this paper
makes no assumptions about distinguishable landmarks in
the environment. It uses raw laser range scans to compute
accurate grid maps. It considers the utility of re-entering
known parts of the environment and following an encoun-
tered loop to reduce the uncertainty of the robot in its pose.
This way the resulting maps become highly accurate.

III. G RID-BASED FASTSLAM

To estimate the map of the environment we use a highly
efficient variant of the FastSLAM algorithm [11] which
itself is an extension of the Rao-Blackwellized particle fil-
ter for simultaneous localization and mapping proposed by
Murphy et al. [3]. The key idea of the Rao-Blackwellized
particle filter for SLAM is to estimate a posteriorp(x1:t |
z1:t, u0:t−1) about potential trajectoriesx1:t of the robot
given its observationsz1:t and its odometry measurements
u0:t−1 and to use this posterior to compute a posterior over
maps and trajectories:

p(x1:t,m | z1:t, u0:t−1) =
p(m | x1:t, z1:t)p(x1:t | z1:t, u0:t−1). (1)

This can be done efficiently, since the quantityp(m |
x1:t, z1:t, u0:t−1) can be computed analytically oncex1:t

and z1:t are known. To estimate the posteriorp(x1:t |
z1:t, u0:t−1) over the potential trajectories FastSLAM uses
a particle filter in which an individual map is associated
to every sample. Each map is constructed given the obser-
vationsz1:t and the trajectoryx1:t represented by the cor-
responding particle. During resampling, the weightωt of
each particle is proportional to the likelihoodp(zt | m,xt)
of the most recent observation given the mapm associated
to this particle and the posext of the corresponding
trajectory.

The FastSLAM algorithm used throughout this paper
computes grid maps. It applies a scan-matching procedure
to compute highly accurate odometry data and uses this
corrected odometry in the prediction step of the particle
filter [8]. This way the number of particles can be reduced
so that maps of even large environments can be constructed
online. In the following section we describe how the
FastSLAM algorithm for grid maps can be extended to
actively close loops during exploration.

IV. EXPLORATION WITH ACTIVE LOOP-CLOSING FOR

FASTSLAM

During FastSLAM, whenever the robot explores new
terrain, all samples have more or less the same importance
weight, since the most recent measurement is typically
consistent with the part of the map constructed from
the immediately preceding observations. As a result, the
uncertainty of the particle filter increases. As soon as it re-
enters known terrain, however, the maps of some particles
are consistent with the current measurement and some are
not. Accordingly the weights of the samples differ largely.
Due to the resampling step the uncertainty about the pose
of the robot usually decreases.

Note that this effect is much smaller if the robot
just moves backward a few meters to re-visit previously
scanned areas. This is because each map associated to
a particle is generally locally consistent. Inconsistencies
mostly arise when the robot re-enters areas explored some
time ago. Therefore, visiting places seen further back in the
history has a stronger effect on the differences between the
importance weights and typically also on the reduction of
uncertainty compared to places recently observed.

The key idea of our approach is to identify opportunities
for closing loops during terrain acquisition. Here closing a
loop means actively re-entering the known terrain and fol-
lowing a previously traversed path. To determine, whether
there exists a possibility to close a loop we consider two
different representations of the environment. In our current
system we associate to each particles an occupancy grid
map m[s] and a topological mapG[s] which both are
updated while the robot is performing the exploration task.
In the topological mapG[s] the vertices represent positions
visited by the robot. The edges represent the trajectory
corresponding to the particles. To construct the topological
map we initialize it with one node corresponding to the
starting location of the robot. Letx[s]

t be the pose of particle
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Fig. 2. The red dots and lines in these three image represent the nodes
and edges ofG[s]. In the left imageI(s) contained two nodes and in
the middle image the robot closed the loop until the pose uncertainty is
reduced. After this it continued with the acquisition of unknown terrain
(right image).

s at the current time stept. We add a new node atx[s]
t to

G[s] if the distance betweenx[s]
t and all other nodes inG[s]

exceeds a threshold ofc = 2.5m or if none of the other
nodes inG[s] is visible fromx

[s]
t :

∀n ∈ nodes(G[s]) :
[
distm[s](x[s]

t , n) > c ∨

not visiblem[s](x[s]
t , n)

]
. (2)

Whenever a new node is added, we also add an edge from
this node to the most recently visited node. To determine
whether or not a node is visible from another node we
perform a ray-casting operation in the occupancy gridm[s].

Figure 2 depicts such a graph for one particular particle
during different phases of an exploration task. In each
image, the topological mapG[s] is printed on top of metric
mapm[s]. To motivate the idea of our approach we would
like to refer the reader to the left image of this figure. Here
the robot was almost closing a loop. This can be detected
by the fact that the length of the shortest path between the
current pose of the robot and previously visited locations in
the topological mapG[s] was large, where as it was small
in the grid-mapm[s].

Thus, to determine whether or not a loop can be closed
we compute for each samples the setI(s) of positions of
interest, which contains all nodes that are close to current
posex

[s]
t of particles based on the grid mapm[s] but are

far away given the topological mapG[s] of s:

I(s) = {x[s]
t′ ∈ nodes(G[s]) | distm[s](x[s]

t′ , x
[s]
t ) < c1 ∧

distG[s](x[s]
t′ , x

[s]
t ) > c2}.(3)

Here distM(x1, x2) is the length of the shortest path
from x1 to x2 given the representationM. The distance
between two nodes inG[s] is given by the length of
the shortest path between both nodes, whereas the length
of a path is computed by the sum over the lengths of
the traversed edges. The termsc1 and c2 are constants
that must satisfy the constraintc1 < c2. In our current
implementation the values of these constants arec1 = 6m
andc2 = 20m.

If I(s) 6= ∅ there exist so-called shortcuts fromx[s]
t

to the positions inI(s). These shortcuts represent edges
that would close a loop in the topological mapG[s]. The
left image of Figure 2 illustrates a situation in which a
robot encounters the opportunity to close a loop sinceI(s)
contains two nodes. The key idea of our approach is to use
such shortcuts whenever the uncertainty of the robot in its

Fig. 3. The particle depletion problem: a robot traveled through the inner
loop several times (left image). After this the diversity of hypotheses about
the trajectory outside the inner loop had decreased too much (middle
image) and the robot is unable to close the outer loop correctly (right
image).

pose becomes too large. The robot then re-visits portions
of the previously explored area and this way reduces the
uncertainty in its position.

To determine the most likely movement allowing the
robot to follow a previous path of a loop, one in principle
has to integrate over all particles and consider all potential
outcomes of that particular action. Since this would be too
time consuming for online-processing we consider only
the particles∗ with the highest accumulated importance
weight:

s∗ = argmax
s

t∑
i=1

log ω
[s]
i . (4)

Here ω
[s]
i is the weight of samples at time stepi. If

I(s∗) 6= ∅ we choose the nodexte
from I(s∗) which is

closest tox[s∗]
t :

xte
= argmin

x∈I(s∗)

distm[s∗](x[s∗]
t , x). (5)

In the sequelxte
is denoted as theentry pointat which the

robot has the possibility to close a loop.te corresponds to
the last time the robot was at the nodexte

.
To determine whether or not the robot should activate

the loop-closing behavior our system constantly monitors
the uncertaintyH(t) about the robot’s pose at the current
time step. The necessary condition for starting the loop-
closing process is the existence of an entry pointxte and
thatH(t) exceeds a given threshold. Once the loop-closing
process has been activated, the robot approachesxte

and
then follows the path taken after arriving previously at
xte

. During this process the uncertainty in the pose of the
vehicle typically decreases, because the robot is able to
localize itself in the map built so far and unlikely particles
vanish.

We furthermore have to define a criterion for deciding
when the robot actually has to stop following a loop.
A first attempt could be to introduce a threshold and to
simply stop the trajectory following behavior as soon as
the uncertainty becomes smaller than a given threshold.
This criterion, however, can be problematic especially in
the case of nested loops. Suppose the robot encounters
the opportunity to close a loop that is nested within an
outer and so far unclosed loop. If it eliminates all of
its uncertainty by repeatedly traversing the inner loop,
particles necessary to close the outer loop may vanish.
As a result, the filter diverges and the robot fails to build



Algorithm 1 The loop-closing algorithm

ComputeI(s∗)
if I(s∗) 6= ∅ then begin
H ← H(te)
path ← x

[s∗]
t · shortest pathG[s∗](xte

, x
[s∗]
t )

while H(t) > H ∧ H(t) > threshold do
robot follow(path)

end

a correct map (see Figure 3). To remedy this so-called
particle depletion problem [16] we introduce a constraint
on the uncertainty of the robot. LetH(te) denote the
uncertainty of the posterior when the robot visited the entry
point last time. Then the new constraint allows the robot to
re-traverse the loop only as long as its current uncertainty
H(t) exceedsH(te). If the constraint is violated the robot
resumes its frontier-based exploration process. The idea of
this constraint is to avoid the depletion of relevant particles
during the loop-closing process.

To better illustrate the importance of this constraint
consider the following example: a robot moves from place
A to placeB and then repeatedly observesB. While it is
mappingB it does not get any further information about
A. Since each particle represents a whole trajectory of the
robot also hypotheses representing ambiguities aboutA
will vanish when reducing potential uncertainties aboutB.
Our constraint avoids the depletion of particles representing
ambiguities aboutA by aborting the loop-closing behavior
at B as soon as the uncertainty drops below the uncertainty
stemming fromA.

Finally we have to describe how we actually measure
the uncertainty in the position estimate. The typical way of
measuring the uncertainty of a posterior is to calculate the
entropy. In the case of multi-modal distributions, however,
the entropy does not consider the distance between the
different modes. In our experiments we figured out that
we obtain better results if we use the volume expanded
by the samples instead of the entropy of the posterior. We
therefore calculate the pose uncertainty by determining the
volume of the oriented bounding box around the particle
cloud. A good approximation of the minimal oriented
bounding box can be obtained efficiently by a principal
component analysis.

As long as the robot is localized well enough or no
loop can be closed, we use a frontier-based exploration
strategy [1] to choose target points for the robot. In our
current system we determine frontiers based on the map of
the most likely particles∗. Here a frontier is any known cell
that is an immediate neighbor of an unknown, unexplored
cell [18].

A precise formulation of the loop-closing strategy is
given by Algorithm 1. In our implementation this algorithm
runs as a background process that is able interrupt the
frontier-based exploration procedure. An application of this
algorithm in a simulation run is illustrated in Figure 2.

A. Handling Multiple Nested Loops

Note that our loop-closing technique can also handle
multiple nested loops. During the loop-closing process the
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Fig. 4. Active loop-closing of multiple nested loops.

robot follows its previously taken trajectory to re-localize.
It does not leave this trajectory until the termination crite-
rion, described in previous section, is fulfilled. Therefore it
never starts a new loop-closing process before the current
one is completed. A typical example with multiple nested
loops is shown in Figure 4. In the situation depicted in the
left image the robot starts with the loop-closing process for
the inner loop. After completing this loop it moves to the
second inner one and again starts the loop-closing process.
Since our algorithm considers the uncertainty at the entry
point it keeps enough variance in the filter to close the outer
loop. In general, the quality of the solution and whether or
not the overall process succeeds depends on the number of
particles used. Since determining this quantity is an open
research problem the number of particles has to be defined
by the user in our current system.

V. EXPERIMENTS

Our approach has been implemented and evaluated in a
series of real world and simulation experiments. For the
real world experiments we used an iRobot B21r robot and
an ActivMedia Pioneer II robot. Both are equipped with a
SICK laser range finder. For the simulation experiments we
used the real-time simulator of the Carnegie Mellon Robot
Navigation Toolkit [13]. This simulator generates realistic
noise in the odometry and laser range sensor data.

The experiments described in this section are designed
to illustrate that our approach can be used to actively learn
accurate maps of large indoor environments. Furthermore,
they demonstrate that our integrated approach yields bet-
ter results than an approach without active loop-closing.
Additionally, we analyze how the active termination of the
loop-closure influences the result of the mapping process.

A. Real World Exploration

The first experiment was carried out to illustrate that
our current system can effectively control a mobile robot
to actively close loops during exploration. To perform this
experiment we used a Pioneer II robot to explore the
main lobby of the Department for Computer Science at the
University of Freiburg. The size of this environment is 51m
times 18m. Figure 5 depicts the final result obtained by a
completely autonomous exploration run using our active
loop-closing technique. It also depicts the trajectory of the
robot, which has an overall length of 280m. The robot
decided four times to re-enter a previously visited loop
in order to reduce the uncertainty in its pose. Figure 5
also shows the corresponding entry points as well as the
positions where the robot left the loops (“exit points”). In
this experiment the FastSLAM routine used 250 particles.
As can be seen the resulting map is quite accurate.



Fig. 5. This image shows the resulting map of an exploration experiment
carried out using a Pioneer II robot equipped with a laser range scanner
in the entrance hall of the Department for Computer Science at the
University of Freiburg. Also shown is the path of the robot as well as
entry and exit points where the robot started and stopped the active loop-
closing process.

Fig. 6. This figure depicts an environment with two large loops. The
outer loop has a length of over 220m. The left image show the resulting
map of a trajectory in which the robot drove through the loops only once.
In the second run the robot visited every loop twice and obtained a highly
accurate map (see right image).

B. Active Loop-Closing vs. Frontier-Based Exploration

The second experiment was carried out to compare our
algorithm with a standard exploration strategy that does not
consider loop closing actions. The lower image of Figure 1
shows the map obtained with a B21r robot in the Sieg Hall
at the University of Washington using our algorithm. To
eliminate the influence of measurement noise and different
movements of the robot we removed the data corresponding
to the second loop traversal from the recorded data file and
used this data as input to our FastSLAM algorithm. This
way we simulated the behavior of a greedy exploration
strategy which forces the robot to directly enter the corridor
after returning to the starting location in the loop. As can
be seen from the upper image of Figure 1, an approach
that does not actively re-enter the loop fails to correctly
estimate the angle between the loop and the corridor which
should be oriented horizontally in that figure. Whereas the
angular error is7 degrees with the standard approach it
is only 1 degree with our method. Both maps correspond
to the particle with the highest accumulated importance
factor.

A further experiment that illustrates the advantage of
place re-visiting is shown in Figure 6. The environment
used in this simulation run is 80m times 80m and contains
two large nested loops with nearly featureless corridors.
The left image shows the result of the frontier-based
approach which traversed each loop only once. Since the
robot is not able to correct the accumulated pose error, the
resulting map contains large inconsistencies and two of
the corridors are mapped onto each other. Our approach,
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Fig. 7. This figure compares our loop-closing strategy with a pure
frontier-based exploration technique. The left bar in this graph plots the
average error in the pose of the robot obtained with our loop-closing
strategy. The right one shows the average error if a frontier-based approach
was used. As can be seen our technique significantly reduces the distances
between the estimated positions and the ground truth (confidence intervals
do not overlap).

in contrast, first revisits the outer loop before entering the
inner one (see right image). Accordingly, the resulting map
is quite accurate.

C. A Quantitative Analysis

To quantitatively evaluate the advantage of the loop-
closing behavior we performed a series of simulation
experiments in an environment similar to the Sieg Hall. We
performed 20 experiments, 10 with active loop-closing and
10 without. After completing the exploration task we mea-
sured the average error in the relative distances between
positions lying on the resulting estimated trajectory and
the ground truth provided by the simulator. The results are
depicted in Figure 7. As can be seen the active loop-closing
behavior significantly reduces the error in the position of
the robot.

D. Importance of the Termination Criterion

In this final experiment we analyze the importance of the
constraint that terminates the active loop-closing behavior
as soon as the current uncertaintyH(t) of the belief drops
under the uncertaintyH(te) of the posterior when the robot
was at the entry point last time.

In this simulated experiment the robot had to explore
an environment containing two nested loops (see Figure 8
(d)). In one case we simply used a constant threshold to
determine whether or not the loop-closing behavior should
be stopped. In the second case we applied the additional
constraint that the uncertainty should not become smaller
thanH(te).

Figure 3 shows the map of the particle with the highest
accumulated importance weight obtained with our algo-
rithm using a constant threshold instead of considering
H(te). In this case the robot repeatedly traversed the inner
loop (left image) until its uncertainty was reduced below a
threshold. After three and a half rounds it decided to again
explore unknown terrain, but the diversity of hypotheses
had decreased too much (middle image). Accordingly
the robot was unable to accurately close the outer loop
(right image). We repeated this experiment several times
and in no case the robot was able to correctly map the
environment. In contrast to that, our approach using the
additional constraint always generated an accurate map.
One example run is shown in Figure 8. Here the robot



(a) (b)

(c) (d)

Fig. 8. These images depict snapshots of our loop-closing strategy. The
robot explored the terrain and detected an opportunity to close a loop
in order to reduce its uncertainty (a). It then traversed parts of the inner
loop until its uncertaintyH(t) did not exceed the uncertaintyH(te) of the
posterior when the robot at the entry point anymore. It then turned back
and left the loop to explore new terrain (b). After this, enough hypotheses
are left to correctly close the outer loop (c) and (d). In contrast to that,
a system considering only a constant threshold criterion fails to map the
environment correctly as depicted in Figure 3.

stopped the loop-closing after traversing half of the inner
loop. In both cases we used 80 particles.

As this experiment illustrates, the termination of the
loop-closing is important for the convergence of the filter
and to obtain accurate maps in environments with several
(nested) loops. Note that similar results in principle can
also be obtained without this termination constraint if
the number of particles is dramatically increased. Since
exploration is an online problem and since every particle
carries its own map it is of utmost importance to keep
the number of particles as small as possible. Therefore our
approach also can be regarded as a contribution to limit
the number of particles during FastSLAM.

VI. CONCLUSION

In this paper we presented a novel approach for active
loop-closing during autonomous exploration. We combined
a Rao-Blackwellized particle filter for localization and
mapping with a frontier-based exploration technique ex-
tended by the ability to actively close loops. Our algorithm
forces the robot to traverse previously visited loops again
and this way reduces the uncertainty in the pose estimation.
As a result, we obtain more accurate maps compared to
standard combinations of SLAM algorithms with explo-
ration techniques.

One general problem of FastSLAM is that the number
of particles needed to build an accurate map is not known
in advance. Even our technique does not provide tools to
estimate this quantity but it produces better maps with a
given number of particles compared to a naive combination
of frontier-based exploration with FastSLAM. The major
restrictions of our algorithm are similar to those of Fast-
SLAM, e.g, there are no means to recover from divergence

without a complete re-run of the whole algorithm. Such
issues are subject of future research.
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