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Abstract Indoor environments can typically be divided into places with different
functionalities like corridors, kitchens, offices, or seminar rooms. We believe that
such semantic information enables a mobile robot to more efficiently accomplish a
variety of tasks such as human-robot interaction, path-planning, or localization. In
this paper, we propose an approach to classify places in indoor environments into
different categories. Our approach uses AdaBoost to boost simple features ex-
tracted from vision and laser range data. Furthermore, we apply a Hidden Markov
Model to take spatial dependencies between robot poses into account and to in-
crease the robustness of the classification. Our technique has been implemented
and tested on real robots as well as in simulation. Experiments presented in this
paper demonstrate that our approach can be utilized to robustly classify places into
semantic categories.

1 Introduction
In the past, many researchers have considered the problem of building accu-
rate metric or topological maps of the environment from the data gathered
with a mobile robot. The question of how to augment such maps by se-
mantic information, however, is virtually unexplored. Whenever robots are
designed to interact with their users, semantic information about places can
be important.

In this paper, we address the problem of classifying places of the en-
vironment of a mobile robot using range finder data and vision features.
Indoor environments, like the one depicted in Figure 1, can typically be
divided into areas with different functionalities such as laboratories, office
rooms, corridors, or kitchens. Some of these places have special geometric
structures and can therefore be distinguished merely based on laser range
data. The types of other places, however, can only be identified according
to the objects located at them. For example, a coffee machine can typically
be found in the kitchen. To detect such objects, we use vision data acquired
by a camera system.

In the approach described here, we apply the AdaBoost algorithm [6] to
boost simple features, which on their own are insufficient for a reliable cate-
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Figure 1. An environment with offices, doorways, a corridor, a kitchen, and a laboratory.
Additionally, the figure shows typical observations obtained by a mobile robot at different
places.

gorization of places, to a strong classifier for place labeling. Since the orig-
inal version of AdaBoost provides only binary decisions, we determine the
decision list with the best sequence of binary strong classifiers. To take spa-
tial dependencies into account, we apply a Hidden Markov Model (HMM)
which estimates the label of the current pose based on the current and the
previous outputs of the sequence of binary strong classifiers. Experimental
results shown in this paper illustrate that our classification system yields
recognition rates of more than 91% or 93% (depending on the number of
classes to distinguish between). We also present experiments illustrating
that the resulting classifier can even be used in environments from which
no training data were available.

In the past, several authors considered the problem of adding semantic
information to places. Buschka and Saffiotti [4] describe a virtual sen-
sor that is able to identify rooms from range data. Also Koenig and Sim-
mons [9] apply a pre-programmed routine to detect doorways from range
data. Althaus and Christensen [1] use line features to detect corridors and
doorways. Some authors also apply learning techniques to localize the
robot or to identify distinctive states in the environment. For example,
Oore et al. [15] train a neural network to estimate the location of a mobile
robot in its environment using the odometry information and ultrasound
data. Kuipers and Beeson [10] apply different learning algorithms to learn
topological maps of the environment.

Additionally, learning algorithms have been used to identify objects.
For example, Anguelov et al. [2, 3] apply the EM algorithm to cluster dif-
ferent types of objects from sequences of range data and to learn the state
of doors. Limketkai et al. [12] use relational Markov networks to detect
objects like doorways based on laser range data. Furthermore, they employ
Markov chain Monte Carlo to learn the parameters of the models. Trep-
tow et al. [19] utilize the AdaBoost algorithm to track a soccer ball without
color information. In a recent work, Torralba and colleagues [18] use Hid-
den Markov Models for learning places from image data.



Compared to the other approaches, our algorithm is able to combine
arbitrary features extracted from different sensors to form a sequence of
strong classifiers to label places. Our approach is also supervised, which
has the advantage that the resulting labels correspond to user-defined classes.

2 The AdaBoost Algorithm
Boosting is a general method for creating an accurate strong classifier by
combining a set of weak classifiers. The requirement for each weak clas-
sifier is that its accuracy is better than a random guessing. In this work,
we apply the AdaBoost algorithm which has originally been introduced by
Freund and Schapire [6]. The input to this algorithm is a set of labeled
training examples. In a series of T rounds, the algorithm repeatedly selects
a weak classifier hj(x) using a distribution D over the training examples.
The selected weak classifier is expected to have a small classification error
on the training data. The idea of the algorithm is to modify the distribution
D by increasing the weights of the most difficult training examples on each
round. The final strong classifier H is a weighted majority vote of the T
best weak classifiers.

Throughout this work, we use the approach presented by Viola and
Jones [20] in which the weak classifiers depend on single-valued features
fj ∈ <. Two kinds of weak classifiers are created in our current system.
The first type is defined as by Viola and Jones and has the form

hj(x) =

{
+1 if pjfj(x) < pjθj
−1 otherwise, (1)

where θj is a threshold and pj is either −1 or +1 and thus represents the
direction of the inequality. We designed a second type of weak classifier
which has the form

hj(x) =

{
pj if θ1

j < fj(x) < θ2
j

−pj otherwise,
(2)

where θ1
j and θ2

j define an interval and pj is either +1 or −1 indicating
whether examples inside the interval are positive or negative. For both
types of weak classifiers, the output is +1 or −1 indicating whether the
classification is positive or negative. The AdaBoost algorithm determines
for each weak classifier hj(x) the optimal parameters, such that the number
of misclassified training examples is minimized.

The AdaBoost algorithm has been designed for binary classification
problems. To classify places in the environment, we need the ability to
handle multiple classes. To achieve this, we use a sequence of binary clas-
sifiers, where each element of such a sequence determines if an example
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Figure 2. A decision list classifier for K classes using binary classifiers.

belongs to one specific class. If the classifier returns a positive result, the
example is assumed to be correctly classified. Otherwise, it is recursively
passed to the next element in this list. Figure 2 illustrates the structure of
such a decision list classifier.

In our current system, we typically consider a small number of classes
which makes it feasible to evaluate all potential sequences and choose the
best order of binary classifiers. Although this approach is exponential in the
number of classes, the actual number of permutations considered is limited
in our domain due to the small number of classes. In practice, we found out
that the heuristic which sorts the classifiers in increasing order according to
their classification rate also yields good results and at the same time can be
computed efficiently. In several situations, the sequence generated by this
heuristic turned out to be the optimal one or very close to it [16].

3 Features from Vision and Laser Data
In this section, we describe the features used to create the weak classi-
fiers in the AdaBoost algorithm. Our robot is equipped with a 360 degree
field of view laser sensor and a camera. Each laser observation consists
of 360 beams. Each vision observation consists of 8 images which form a
panoramic view. Figure 1 illustrates different images and laser range read-
ings taken in an office environment. Accordingly, each training example
for the AdaBoost algorithm consist of one laser observation, one vision
observation, and its classification.

Our method for place classification is based on single-valued features
extracted from laser and vision data. All features are invariant with respect
to rotation to make the classification of a pose dependent only on the po-
sition of the robot and not of its orientation. Most of our laser features are
standard geometrical features used for shape analysis [8, 17]. Typical ex-
amples considered by our system are illustrated in Figure 3. The complete
list of laser features is provided by Martı́nez-Mozos et al. [14].

In the case of vision, the selection of the features is motivated by the fact
that typical objects appear with different probabilities at different places.
For example, the probability of detecting a computer monitor is larger in an
office than in a kitchen. For each type of object, a vision feature is defined
as a function that takes as argument a panoramic vision observation and
returns the number of detected objects of this type in it. This number rep-



Figure 3. Examples for features generated from laser data, namely the average distance
between two consecutive beams, the perimeter of the area covered by a scan, and the mayor
axis of the ellipse that approximates the polygon described by the scan.

resents the single-valued feature fj within AdaBoost according to Eq. (1)
and Eq. (2). In our case, we consider monitors, coffee machines, soap dis-
pensers, office cupboards, frontal faces, face profiles, full human bodies,
and upper human bodies. An example of such objects is shown in Figure 1.
The individual objects are detected using classifiers also trained with Ada-
Boost and based on the set of Haar-like features proposed by Lienhart et
al. [11].

In case the observations do not cover a 360 degree field of view, the
property of the rotational invariance is lost. In such a situation, we expect
that much more training data will be necessary and that the classification
will be less robust.

4 Probabilistic Place Recognition
The approach described so far is able to classify single observations only
but does not take into account past classifications when determining the
type of place the robot is at. However, whenever a mobile robot moves
through an environment, the semantic labels of nearby places are typically
identical. Furthermore, certain transitions between classes are unlikely. For
example, if the robot is currently in a kitchen then it is rather unlikely that
the robot ends up in an office given it moved a short distance only. In many
environments, to get from the kitchen to the office, the robot typically has
to move through a doorway first.

To incorporate such spatial dependencies between the individual classes,
we apply a Hidden Markov Model (HMM) and maintain a posterior Bel(ξt)
about the type of the place ξt the robot is currently at

Bel(ξt) = αP (zt | ξt)
∑

ξt−1

P (ξt | ξt−1, ut−1)Bel(ξt−1). (3)

In this equation, α is a normalizing constant ensuring that the left-hand
side sums up to one over all ξt. To implement this HMM, three compo-
nents need to be known. First, we need to specify the observation model
P (zt | ξt) which is the likelihood that the classification output is zt given
the actual class is ξt. Second, we need to specify the transition model
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Figure 4. The left image illustrates a classification output z. The right image depicts proba-
bilities of possible transitions between places in the environment. To increase the visibility,
we used a logarithmic scale. Dark values indicate low probability.

P (ξt | ξt−1, ut−1) which defines the probability that the robot moves from
class ξt−1 to class ξt by executing action ut−1. Finally, we need to specify
how the belief Bel(ξ0) is initialized.

In our current system, we choose a uniform distribution to initialize
Bel(ξ0). Furthermore, the classification output zt is represented by a his-
togram, as illustrated in the left image of Figure 4. In this histogram, the
k-th bin stores the probability that the classified location belongs to the k-th
class according to the sequence of classifiers in our decision list (compare
Figure 2). To compute the individual values for each bin of that histogram,
we use the approach by Friedman et al. [7]. It determines a confidence
value C ∈ [0, 1] for a positive binary classification with AdaBoost. Let Ck
refer to the confidence value of the k-th binary classifier in our decision list.
Then, the probability that the location to be classified belongs to the k-th
class is given by the k-th bin of the histogram z computed as

z[k] = Ck

k−1∏

j=1

(1− Cj), (4)

whereas for the confidence value CK , used to compute the last bin (z [K])
of the histogram, holds CK = 1 according to the structure of the decision
list (compare Figure 2).

To determine P (zt | ξt), we use the KL-divergence [5] between two
distributions. The first distribution is the current classification output zt.
The second one is learned from a statistics: for each class ξ, we compute a
histogram ẑ1:h(ξ) using h observations recorded within a place belonging
to class ξ (here h = 50). This histogram ẑ1:h(ξ) is obtained by averaging
over the individual histograms ẑ1, . . . , ẑh, which are computed according
to Eq. (4). To determine P (zt | ξt), we use the KL-divergence kld(· ‖ ·)
which provides a measure about the similarity of two distributions

P (zt | ξt) = e−kld(zt ‖ ẑ1:h(ξt))2
. (5)
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Figure 5. The distributions depicted in the first row show the learned histograms ẑ1:h(ξ) for
the individual classes (here corridor (1), doorway (2), kitchen (3), lab (4), seminar room
(5), and office (6)). The left image in the second row depicts a possible classification output
zt. In the right image, each bar represents the corresponding likelihood P (zt | ξt) for the
different estimates of ξt.

To illustrate the computation of the observation likelihood P (zt | ξt)
consider Figure 5. The first row depicts examples for the histograms ẑ1:h(ξ).
The left image in the second row depicts the output zt of the sequential
classifier while the robot was in an office. As can be seen, also the classes
doorway and seminar room have a probability significantly larger than zero.
This output zt and the histogram ẑ1:h(ξt) is than used to compute P (zt | ξt)
according to Eq. (5). The result for all classes is depicted in the right im-
age in the second row. In this image, each bin represents the likelihood
P (zt | ξt) for the individual classes ξt. As can be seen, the observation
likelihood given the robot is in a doorway is close to zero, whereas likeli-
hood given it is in an office is around 90%, which is actually the correct
class.

To realize the transition model P (ξt | ξt−1, ut−1), we only consider
the two actions ut−1 ∈ {Move,Stay}. The transition probabilities were
learned in a manually labeled environment by running 1000 simulation ex-
periments. In each run, we started the robot at a randomly chosen point
and orientation. We then executed a random movement so that the robot
traveled between 20cm and 50cm. These values corresponds to typical dis-
tances traveled by the robot between two consecutive updates of the HMM.
The finally obtained transition probability matrix P (ξt | ξt−1, ut−1) for the
action Move is depicted in the right image of Figure 4. As can be seen, the
probability of staying in a place with the same classification is higher than
the probability of changing the place. Moreover, the probability of moving
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Figure 6. Whereas the left image depicts the training data, the right image shows the clas-
sification result on the test set. The training and test data were obtained by simulating laser
range scans in the map.

from a room to a doorway is higher than the probability of moving from
a room directly to a corridor. This indicates that the robot typically has to
cross a doorway first in order to reach a different room. Furthermore, the
matrix shows a lower probability of staying in a doorway than staying the
the same type of room. This is due to the fact that a doorway is usually a
small area in which the robot never rests for a longer period of time.

5 Experiments
The approach described above has been implemented and tested on a real
robot as well as in simulation. The robots used to carry out the experiments
were an ActivMedia Pioneer 2-DX8 equipped with two SICK laser range
finders as well as an iRobot B21r robot which is additionally equipped with
a camera system.

The goal of the experiments is to demonstrate that our simple features
can be boosted to a robust classifier of places. Additionally, we analyze
whether the resulting classifier can be used to classify places in environ-
ments for which no training data were available. Furthermore, we demon-
strate the advantages of utilizing the vision information to distinguish be-
tween different rooms like, e.g., kitchens, offices, or seminar rooms. Ad-
ditionally, we illustrate the advantages of the HMM filtering for classify-
ing places with a moving mobile robot. Finally, we briefly present results
comparing our sequential AdaBoost classifier with a multi-class variant of
AdaBoost, called AdaBoost.M2 [6]. Throughout our experiments, the term
classification result refers to the most likely class reported by the HMM or
respectively by the sequence of binary classifiers.

5.1 Results with the sequential classifier using Laser Data
The first experiment was performed using simulated data from our office
environment in building 79 at the University of Freiburg. The task was to
distinguish between three different types of places, namely rooms, door-
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Figure 7. The left image depicts a trajectory of a robot and the corresponding classifications
based on real laser data. The robot used in this experiment is depicted in the right image.

ways, and a corridor based on laser range data only. In this experiment,
we solely applied the sequential classifier without the HMM filtering. For
the sake of clarity, we separated the test from the training data by dividing
the overall environment into two areas. Whereas the left part of the map
contains the training examples, the right part includes only test data (see
Figure 6). The optimal decision list for this classification problem in which
the robot had to distinguish between three classes is room-doorway. This
decision list correctly classifies 93.9% of all test examples (see right im-
age of Figure 6). The worst configurations of the decision list are those in
which the doorway classifier is in the first place. This is probably due to
the fact, that doorways are hard to detect and typically most parts of a range
scan obtained in a doorway cover the adjacent rooms or the corridor. Note
that we obtained similar success rates with alternative training and test sets.

The next experiment has been carried out with a real mobile robot that
we manually steered through the environment. We used the same classifier
as in the previous experiments. The trajectory including the corresponding
classification results as well as the mobile robot are depicted in Figure 7. As
can be seen from this figure, the learned classifier yields a robust labeling
also for real robot data.

Additionally, we performed an experiment using a map of the entrance
hall at the University of Freiburg which contained four different classes,
namely rooms, corridors, doorways, and hallways. The optimal decision
list is corridor-hallway-doorway with a success rate of 89.5%.

5.2 Transferring the Classifiers to New Environments
The second experiment is designed to analyze whether a classifier learned
in a particular environment can be used to successfully classify the places
of a new environment. To carry out this experiment, we trained our sequen-
tial classifier in the left half of the map shown in Figure 1. In the right half
of this environment, our approach was able to correctly classify 92.1% of
all places. The resulting classifier was then evaluated on scans simulated
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Figure 8. The left map depicts the occupancy grid map of the Intel Research Lab and the
right image depicts the classification results obtained by applying the classifier learned from
the environment depicted in Figure 1 to this environment. The fact that 82.2% of all places
could be correctly classified illustrates that the resulting classifiers can be applied to so far
unknown environments.

given the map of the Intel Research Lab in Seattle depicted in Figure 8.
For these scans the classification rate decreased to 82.2%. This indicates
that our Algorithm yields good generalizations which can also be applied to
correctly label places of so far unknown environments. Note that a success
rate of 82.2% is quite high for this environment, since even humans typi-
cally cannot consistently/correctly classify the places in this environment.

5.3 Improving Robustness using HMM Filtering
The third experiment was performed using real laser and vision data ob-
tained in a typical office environment, which contains six different types of
places, namely offices, doorways, a laboratory, a kitchen, a seminar room,
and a corridor. The true classification of the different places in this envi-
ronments is shown in Figure 9.

The classification performance of the classifier on a typical real data
test set is shown in in left image of Figure 10. The classification rate in this
experiment is 73.7%. If we additionally apply the HMM to estimate the
type of the place, the classification rate increases up to 90.9%. The labeling
obtained with the HMM is shown in the right image of Figure 10.

A further experiment was carried out using test data obtained in a dif-
ferent part of the same building. We applied the same classifier as in the
previous experiment. Whereas the sequential classifier yields a classifica-
tion rate of 75.4%, the combination with the HMM generated the correct
answer in 91.2% of all cases. A two-sample t-test applied to the classifica-
tion results obtained along the trajectories for both experiments showed that
the improvements introduced by the HMM are significant. Furthermore,
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Figure 9. Ground truth labeling of the individual areas in the environment.
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Figure 10. The left image depicts a typical classification result for a test set obtained using
only the output of the sequence of classifiers. The right image shows the resulting classifi-
cation in case a HMM is additionally applied to filter the output of the sequential classifier.

we classified the same data ignoring the vision information and based only
on the laser features. In this case, only 54.4% could be classified correctly
without the HMM. The application of the HMM increases the classification
performance to 66.7%. These three experiments illustrate that the HMM
seriously improves the overall rate of correctly classified places.

5.4 Comparison of the Sequential Classifier with AdaBoost.M2
Our current system uses a sequence of strong binary classifiers arranged
in a decision list. To evaluate this approach, we compared it to Ada-
Boost.M2 [6], which is a multi-class variant of AdaBoost. In all our ex-
periments, the optimal sequential classifiers performed better than Ada-
Boost.M2. Table 1 provides a quantitative analysis of the classification per-
formance for three different environments. As can be seen, our sequential
AdaBoost classifier yields better results than the AdaBoost.M2 algorithm.
A more detailed comparison between both algorithms can be found in the
work by Martı́nez-Mozos [13].

We also evaluated the performance of the system when the order of
the binary strong classifiers is chosen according to their classification rate.
Compared to the optimal order, the classifier generated by the heuristic for
six different classes performed in average only 1.3% worse.



Table 1. Classification results for different classifiers.

Environment Seq. Classifier % AdaBoost.M2 %
depicted in Figure 1 92.1 91.8
depicted in Figure 6 93.9 83.8

Univ. of Freiburg, entrance hall 89.5 82.3

6 Conclusion
In this paper, we presented a novel approach to classify different places in
the environment of a mobile robot into semantic classes, like rooms, hall-
ways, corridors, offices, kitchens, or doorways. Our algorithm uses simple
geometric features extracted from a single laser range scan and information
extracted from camera data and applies the AdaBoost algorithm to form a
strong classifier. To distinguish between more than two classes, we use a
sequence of strong binary classifiers arranged in a decision list. We fur-
thermore use a Hidden Markov Model to take into account the spatial de-
pendencies between places. Experiments carried out on a real robot as well
as in simulation illustrate that our technique is well-suited to reliably la-
bel places in different environments. Further experiments illustrate that a
learned classifier can even be applied to so far unknown environments. Fi-
nally, we compared our sequential AdaBoost classifier to AdaBoost.M2,
a multi-class variant of the AdaBoost algorithm. In our experiments, the
sequential classifier always outperformed AdaBoost.M2.

We belive that these results open new directions for future research.
First, semantic labels can be used to facilitate loop-closing actions during
exploration and SLAM. Furthermore, the extraction of labels will support
natural interaction with users.
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