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Abstract— In this paper, we consider the problem of exploring
an unknown environment with a team of mobile robots. One of
the key issues in multi-robot exploration is how to assign tajet
locations to the individual robots. To better distribute the robots
over the environment and to avoid redundant work, we take inb
account the type of place a potential target is located in (g., a
corridor or a room). To determine the type of a place, we apply
a classifier learned with AdaBoost which additionally congiers
spatial dependencies between nearby locations. Our approh to
incorporate the type of places in the coordination of the rolots
has been implemented and tested in ffierent environments. The
experiments demonstrate that our system fectively distributes
the robots over the environment and allows them to accomplts
their mission faster compared to approaches that ignore the
semantic place labels.

|. INTRODUCTION

work is reduced and interferences occur less likely. Itefae
makes sense to focus on areas first which are likely to provide
a large number of new target locations in order to obtain a
better assignment of targets to robots.

The contribution of this paper is a technique to estimate and
utilize semantic information during collaborative muiltibot
exploration. In our approach, the robots get a higher reward
for exploring corridors since they typically provide more
branchings to unexplored areas like adjacent rooms compare
to rooms itself. This is especially useful in case of largeoto
teams, because if more target locations are available teso
can be better distributed over the environment. As a result,
the overall completion time of an exploration task can be
significantly reduced.

Il. ReLateD WoORK

The problem of exploring an environment belongs to the
fundamental problems in mobile robotics. There are severalThe various aspects of the problem of exploring unknown
applications like planetary exploration [2], reconnamsa[9], environments with mobile robots have been studied intehsiv
or cleaning [11] in which the complete coverage of a terrain the past. For example, Yamauchi [24] presented a tech-
belongs to the integral parts of a robotic mission. The use wifjue to learn maps with a team of mobile robots. In this
multiple robots is often suggested to have several advastagpproach, the robots exchange information about the map tha
over single robot systems [4, 8], since cooperating robdts continuously updated whenever new sensor input arrives.
have the potential to accomplish a task faster than a sindle acquire knowledge about the environment, all robots move
robot. However, if robots operate in teams there is the ris& the closest frontier cell. Koenigt al. [14] analyze diferent
of interferences between them. Several exploration tegclas terrain coverage methods for ants which are simple robdts wi
dealing with the problem of appropriate collaboration begw limited sensing and computational capabilities. Furthemem
robots were presented in the past [3, 12, 20, 24, 26]. there has been research on how to deal with limited commu-
A popular approach to exploration can be summarized in theation in the context of multi-robot exploration [3, 20].
following way. First, a set of potential target locationgamet One approach towards cooperation between heterogeneous
areas is determined. Second, the robots choose targdablogatrobot systems has been presented by Singh and Fujimura [23].
and then include their observations obtained along thespath a robot is too big to pass through a narrow passage,
to the targets into a map. This process is repeated, until thenforms other robots about this task. Howaed al. [10]
environment has been fully covered with the sensors of theesented an incremental deployment approach that etkplici
robots. In the context of multi-robot exploration, it is ionpant deals with obstructions, i.e., situations in which the path
to achieve a collaboration behavior so that the robots avaide robot is blocked by another. Zlot and colleagues [26]
traveling unnecessary long distances, avoid doing recindproposed an architecture for mobile robot teams in which the
work, and avoid interference with other team-mates. exploration is guided by a market economy. They consider
Indoor environments constructed by humans often contaiaquences of potential target locations for each robotraile t
certain structures like corridors with adjacent roomsftices. tasks between the robots using single-item first-priceeskal
However, it is mainly unexplored how robots can utilizdid auctions. Such auction-based techniques have also been
such background information to morefieiently solve the applied by Gerkey and Mataric [7] tdfeciently solve the task
exploration task. One of our observations is that the moadlocation problem with a group of robots.
unexplored target locations are known when assigning terge Matari¢ and Sukhatme [16] considefférent strategies for
to robots, the faster the team can explore the environmetatsk allocation in robot teams and analyze the performance
This is due to the fact that the robots can be better disgtbutof the team in extensive experiments. Parker [19] described
over the environment. In this way, the amount of redundaatproject to perform reconnaissance and surveillance task.



investigates how to jointly accomplish a task with heteroge ||
neous robots that cannot be solved by a robot individuallj
Ko et al. [12] present an approach that uses the Hungarig
method to compute the assignments of frontier cells to Kbot
In contrast to our work, Ket al. mainly focuses on finding a ig. 1. Examples for features generated from threffedint laser scans
common frame of reference in case the start locations of tE'a%nel.y the averilge distance bet\/\?een two consecutive béznserimeter of,
robots are not known. the area covered by a scan, and the mayor axis of the ellips@pproximates

The coordination technique presented is this paper is #a polygon described by the scan.
extention of our previous work [3]. We also discount theitytil
of target locations if they are visible from a goal locatioThe goal is to learn a classifier, that is able to distinguish
already assigned to a robot. In contrast to [3], the approachrridors from other kinds of indoor structure. To obtairisu
presented in this paper estimates and incorporates baakdjroa classifier, we apply the AdaBoost algorithm introduced by
knowledge about environmental structure into the goal tpoiRreund and Schapire [6].
assignment procedure. The key idea of AdaBoost is to form a strong binary

In order to improve the navigation, we use semantic plactassifier given a set of weak classifiers. Thereby, the weak
labels learned from sensor data. A series of authors adatesslassifiersh; only need to be better than random guessing and
the problem of leaning environmental structures with mmbilre constructed using simple, single-value featdjesRR
robots. For example, Koenig and Simmons [13] use a pre-
programmed routine to detect doorways from range data. Al- hj(x) = { 1)
thaus and Christensen [1] use line features to detect cosrid
and doorways. Some authors also apply learning techniquéiserex is an exampley; is a threshold value, angl, is either
to localize the robot or to identify distinctive states inreth—1 or +1 and thus represents the direction of the inequality.
environment. For example, Ooret al. [18] train a neural The AdaBoost algorithm determines for each weak classifier
network to estimate the location of a mobile robot in ith; the optimal parameter tupl®;( p;), such that the number
environment using the odometry information and ultrasourtd misclassified training examples is minimized.
data. In our work, we apply a technique originally proposed In our approach, the featurds are directly extracted from
by Martinez Mozoset al. [15]. This technique uses simpleobservations. Examples for features extracted from |asege
features extracted from laser range scans to train a setdata are depicted in Figure 1. Such features are the average
classifiers and in this way are able to label a place givendistance between consecutive beams, the area covered by a
single 2d laser range observation. Furthermore, our smmapthrange scan, or the perimeter of that area. Most of the feature
technique bears resemblance with our previous approagh [2dre standard geometrical features used in shape analg$is [2
in which a hidden Markov model is applied to improve th&he full list of features is provided in [15].
classification result. In contrast to the work presente@ hee The input to the AdaBoost algorithm is a set of labeled,
combined in [21] laser data and visual information to obtaipositive and negative training examples. In our case, #his i
more features and in this way are able to distinguish betwegrset of laser-range observations recorded in a corridoraand
more classes. second set taken outside corridors. In a serie§ abunds,

The semantic labels used to improve multi-robot coordihe algorithm repeatedly selects a weak classkjebased on
nation can be seen as background knowledge about spaaialistributionD over the training examples. This distribution
structures. Foxet al. [5] presented a technique which aims tepecifies an importance weight for each example in the curren
learn background knowledge in typical indoor environmentsund. The selected weak classifier is expected to have a
and later on use that knowledge for map building. Thesmall classification error on the training data. The ideahef t
apply their approach to decide whether the robot is seeinglgorithm is to modify the distributiorD by increasing the
previously built portion of a map, or is exploring new temrai weights of the most dicult training examples in each round.

Due to the best of our knowledge, there is no workhe final strong classifieH is a weighted majority vote of
that investigates how semantic information about places time bestT weak classifiers
the environment can be used to optimize the collaboration T
behavior of a team of robots. The contribution of this paper H(x) = ZW‘ - hy(X). 2
is an approach that estimates and explicitly uses semantic t=1

information in order to more ficiently spread the robots |, o system, the resulting strong classifier takes as input
over the environment. This results in an more balanced ttar%esingle 360 degree laser range scan recorded by a robot and

location assignment with less interferences between 0bqk apje to determine whether or not the position from which
As a result, the overall time needed to cover the Wholfa scan was taken belongs to the clessidor.

environment can be significantly reduced.

1 if pj- fj() < pj -0
0 otherwise

IV. ESTIMATING THE LABEL OF A GoAL LocATioN

lll. Semanmic Prace L aeeLiNG The idea described in the previous section is well-suited

This section explains, how semantic place labels can tie determine the type of place the robot is currently in.
obtained with mobile robots based on laser range obsengtidn the context of exploration, however, we are interested in



classifying potential targets of the robot. Typically, ger robot  potential virtual trajectory

. X g b target v, b
locations are located at the frontier between known and ur -~ - -_\l . L,
known areas. According to our grid-based representatiarh s €] ‘ €]
frontier cells [25] can be easily extracted. In our approaah _ : Eose%ggg;yaggg%% o

generate a potential target location for each group of feont
cells lying on the same frontier. This procedure is repeated. 2. This figure illustrates the generation of the virttrajectory used for
for each frontier. As an example, the left image of Figure the HMM smoothing. The left image depicts the current larabf the robot,
. . . the frontiers (dashed lines), and a potential target lonatb be evaluated. To
deplgts .a potent|a! target location. It was generated frbm tdo s0, the robot generates a virtual trajectory as shownemigfint image and
frontier in the corridor (the targets for the other two fri@n$ simulates observations at several positions located ortréjectory. These
are not shown in that image). sequence of observations is used as the input of the HMM iardadobtain

- . . . a more robust classification result.
One solution to classify a place which is not the current

pose of the robot is to simulate a laser range scan at thie plac lassified. Si | . hich h | K id

given the (partial) map constructed so far. However, siaogd e”c allssue.. Ince c:jgatlons which zlalvebesslun .fr)o(\;vn g::

neighboring areas of frontier cells have not been obser/&g'S In their surroundings can typically be classified wit
;1 igher success rate, the other positions on that trajector

so far, classifying such a frontier cells with the approac : .
fying pp ould be as far away from the unknown locations as possible.

presented in the previous section leads to a high misclass_l_l1 ; v th idian di ¢ e
cation rate. In the following, we therefore introduce a HMM- " erefore, we apply the euclidian |§tance tra_ns ormgaf
ith respect to unknown and occupied cells in the local area

based technique that takes into account spacial depersent| ; . .
d P P llthe frontier. We select the pose in the free space witha th

between nearby locations in order to obtain a lower erra ra}q | ith the hiahest di K Th
for places like frontier cells. ocal area with the highest distance to unknown areas. Then

. . ) .
Due to the structure of man-made environments, the sem&h-A planr_ler IS ”?ed to generate the _wrtua! trajectory th
et location. An illustrating example is depicted in Uig 2.

tic class does not change randomly between nearby poé@ég
Therefore, it makes sense to consider a smoothing between
places located close together [21]. To do so, we generate a V. USING SEMANTIC PLACE INFORMATION FOR EFFICIENT
short virtual trajectory to the desired goal location. Wen-si Murri-RoBor EXPLORATION

ulate laser range observations within the partially knowpma the goal of collaborative multi-robot tasks is to share the
along the virtual trajectory. Whenever the ray-castingapen 5,4 petween the members of a team in order to accomplish

which is used to simulate a beam reaches an unknown Ggll 5k faster. As discussed in the related work section,
in the grid map, the virtual sensor reports a maximum-ranggrerent approaches exist that assign target locations tasobo
readmg. We then_apply a hidden Markov model (HMM) a”gsing job-shop-scheduling techniques, bidding algorithor
maintain a posterioBelLx) about the typelx of the placex  gecisjon theoretic approaches. In the approach descriéeg h
the virtual sensor is currently at we discount frontiers based on visibility constraints a3

BelLy) = a-P(cx|Ly)- Z P(L | Ly) - BelLy). (3) The approach works in a centralized fashion but can also deal

= with limited communication. Typically, one robot calcidat

. . . . . the assignments. In case the whole team splits up into devera

In this equationgy is the result of the classifier learned Wlth[eams due to the restricted communication range, one member

AdaBoost for the placex and « is a normalizing constant o gach sub-team becomes a leader and executes the target
ensuring that the left-hand side sums up to one over ﬁ@signment procedure

semantic labels.

imol hi h q b For each robot in a team, the algorithm computes the
To implement this HMM, three components need to bg,g V{ to each target location based on the distance to

known. Fws?, we negd FO specify the obs_e_rvapon mods traveled in order to reach that location. To avoid that
.P (Cx | L.X) which is the I|kel|ho_od that the classn‘_|cat|on OUtF_)ugeveral robots focus on the same frontier, each targetibocat
is ¢x given the actual class iby. '!'he observation mpdel 'S is discounted after being assigned to one robot. In this thay,
Igarned based on 5‘OOQ observations, rec_ordedfﬁerelnt €N robots get distributed over the environment and do not focus
vironments combn:1ed with the corresponding manually e'td}aton the same local area. Additionally, target locations Wwhic
ground truth labeling. can potentially be observed by other robots already asdigne

Second, we need to specify the transition md@iely | Lx)  re discounted. This is done by introducing a utility fuanti
which defines the probability that the virtual sensor move&m given by

from classLy to classLy. To determine the motion model,
we evaluated typical trajectories obtained during expiora -t
We can directly computB(Ly | Lx) by counting the transitions Ut It o th) = Ug = Z Puis(tn, ) (4)
between places, which have been manually labeled. =1
Furthermore, we need to specify how the beBefl(Lsia) Where Pyis(th, ti) describes the probability that the frontigr
is initialized. In our current system, we choose a uniforrgan be observed by a robot movingttoln our approach, this
distribution, which means that all classes (here corridat aprobability density is approximated by a linear function.
non-corridor) have the same likelihood. To determine appropriate target points for all robots, we
Finally, we have to describe how the virtual trajectory iapply an iterative approach. In each round, the tuplé),(
generated. The endpoint of the trajectory is the frontidirtoe wherei is a robot and a frontier cell, with the best overall



evaluationUt—Vti is chosen. One then recomputes the utilitie
of all frontier cells according to Eq. (4) given the new ang
all previous assignments. Then the process is repeatetdor
remaining robots.

The knowledge about the semantic labels is integrated i
the utility function. All places which are supposed to powi
several branchings to adjacent places are initialized avhifgh Fig. 3. Maps of the Fort Sam Huston hospital and the Intel &ebeLab.
utility. In our current implementation, all corridor lodams

get ay tlmgs higher |n|t|a_1I utility (J_init) compared to all _ 36 standard coordination x

other potential target locations. In this way, the robotsfer £ 337 with semantic labels——
X . : . = .

targets in corridors and eventually make slight detourgdeo 5 30

to explore them first. To determine the actual valueyof E 27}

we performed exploration runs inftBrent environments with S 24;

varying y. We figured out that we obtained the best results ® 21t

using ay-value of around 5. Algorithm 1 depicts the resulting 2 18}

coordination technique used in our current system. 3 15/

-
Algorithm 1 Target Assignment Algorithm Using Semantic 5 10 15 20 25 30 35 40 45 50
Place Labels. number of robots
1: Determine the set of frontier cells. Fig. 4. Coordination results obtained in the Fort Sam Hustospital map

2: Compute for each robdtthe COStVti for reaching each employing the coordination strategy with and without the wé semantic
B lace labels.
frontier cellt. P

3: Estimate for each frontier cetlthe semantic labeling ) ) ) ) )
(according to Section IV). which do not consider semantic place information for small

4: Set the utility U; of all frontier cellst to Uinit(Ls,N) _robot tegms, we trigger the inflgence of the semantk_: place
according to their semantic labeling and the sizen of information depending on the size of the team. We linearly

the team (see text below). decrease the influengefor teams smaller than 10 robots. The
5: while there is one robot left without a target poito linear interpolation of the influence of the semantic lakisls
6: Determine a robot and a frontier celt which satisfy: €ncoded in the utility functioinit(Ls, n), wheren denotes the
(i.t) = argma, , (Uy - V). number of robots, in Algorithm 1.
7:  Reduce the utility of each target pointin the visibility
area according tJy « Uy — Pyis(t, t). VI. EXPERIMENTS
8: end while

This section is designed to evaluate the improvements of
o _ _ _ our multi-robot coordination technique which makes use of
Our approach distributes the robots in a highfficeent semantic place information. Due to this big numbers of repot

manner over the environment and reduces the amount\@ evaluated our collaboration technique only in simutatio
redundant work by taking into account visibility consttsin experiments.

between targets and their semantic labels. The labels ack us
to focus the exploration on unexplored corridors, becaleg t , i
typically provide more branchings to adjacent rooms thaf‘h' Performance Improvement using Semantic Place Informa-
other places. The high number of branchings results intign
higher number of potential target locations that are algdla The first experiment has been carried out in the map of
in the assignment process. This typically leads to a motiee Fort Sam Huston hospital, which is depicted in the left
balanced distribution of robots over the environment. As wisnage of Figure 3. This environment contains a long horiabnt
will demonstrate in the experiments, the integration ofhsucorridor, vertical corridors, and several rooms adjacerthe
semantic labels helps to reduce the overall exploratior tifn corridors.
multi-robot exploration approaches for large robot teams. We varied the size of the robot team from 5 to 50 robots
Please note that for very small teams of robots we dmd applied the coordination technique with and withouintgk
not achieve a reduction of the exploration time using oumto account semantic information about places. Like iroat
technique. This fact can be explained by considering tleperiments, the group of robots started from the samainiti
single-robot exploration scenario. In this case, it makes mposition which was chosen randomly for the individual runs.
sense to focus on exploring the corridors first, since thetrold-or each setting, we carried out 50 runs. Figure 4 depicts the
has to cover the overall environment with its sensor. Movingsult of the exploration experiment by plotting the exptan
through the corridors first will in general lead to an incexhs time versus the number of robots. The error bars in that
trajectory length and in this way will increase the overafplot indicate the @5 confidence level. As can be seen, our
exploration time. We observed thidfect for robot teams technique significantly outperforms the collaborationesuoke
smaller than five robots. that does not consider the place information. This sigmfica
To prevent a loss of performance compared to approachieduction of exploration time is due to the fact that the tebo
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number of robots Fig. 8. This plot illustrates the classification performaraf the standard

classifier depending on how many consecutive beams of a 3§beale

Fig. 6. Results obtained in the Intel Research Lab. . ) . )
observation (1 degree angular resolution) are maximumeraegdings.

focus on exploring the corridors first. As a result, a big nemb
of frontiers typically emerges due to numerous adjacenno

Especially in the context of large teams, this results in Ates. As can be seen even at a high error of 10%, our
better distribution of robots over the environment and thLéSppréach significantly ou’tperforms the coordination tdiq:hney
speeds up the exploration process. Tlfe can be observedthat ignores the semantic information. When the error of

n F|gure S The grap_hs plot the nu_mber of pot_ent|al_ targfte classification exceeds 15%, the exploration time i$ stil
locations over time during an exploration task carried cing reduced, although this result is not significant anymore.
the Fort Sam Houston map. Using our approach, more target '
locations are available in the decision process most ofitine t
This leads to a better assignment of target locations totsobg@. Improvements of the HMM Smoothing and Error Analysis
and as a result the amount of redundant work is reduced. of the Classifier
Furthermore, we observed a reduction of interferences be- . .
- In this section, we want to analyze the actual error of our

tween robots when they plan their paths through the envi- s . )
yp P g lace classification system and illustrate the improvement

ronment. In our simulator, interferences result in a reduc%e HMM smoothing. To do so. we labeled an environment
travel speed, since the robots often block paths of othestsob rained a corridor clgésificator u',sin AdaBoost. and usesk t '
Therefore, reducing the number of interferences allows tﬁg 9 R

: . , sét to evaluate the success rate. Whenever a single full 360
robots to accomplish their task faster. In our experiments, . )

i . degree laser range scan was available, we obtained accurate
observed a reduction of robot-robot interferences of uéh 2 P : . :

o . S . classification results in dierent dfice environments. In this
We performed similar experiments in fidirent environ- X
. , ict&3se: the error-rate was typically between 2% and 4%.

ments, like for example in the Intel Research Lab depicte Fi 8 deoicts th It of lassifier d di th
in the right image of Figure 3. The result is comparable to 'gure © depicts the result of our classilier depending on the

the previous experiment and again the knowledge about ﬂémberof invalid readings caused by unknown grid cellseclos
frontiers. The x-axis shows the size of a continuous block

semantic categories of places allows the robots to complé ) ) )
the exploration task morefficiently. The actual evolution of oF maximum range measurements (with an angular resolution

the exploration time in this experiment is depicted in Fegér of the laser _Of 1 degree_). As can be seen, .'f only h_alf of
the observations are available, the classification erra i

o ) _ between 18% and 19%.

B. Influence of Noise in the Semantic Place Information In the final experiment, we determined the success rate of

In the experiments presented above, we assumed that dhe HMM based smoothing method to determine the semantic
robots are able to correctly classify thefdrent target loca- labels. First, we determined the success rate without th&IHM
tions into the semantic categories. This assumption, hewewsmoothing. In this case, the average classification rate was
is typically not justified. In this experiment, we evaluateet 81.2%. By considering the exploration speed-up depending o
performance of our approach forfidirent classification error the classification rate depicted in Figure 7, such a highrerro
rates. We evaluated the exploration time for a classificat@te is not sfficient to obtain an significant improvement.

which randomly misclassified 5%, 10%, and 15% of the
places. Figure 7 depicts a plot comparing th&edent error



Second, we applied our HMM-based smoothing approach]
that generates virtual trajectories towards the frontied
this way incorporates the spatial dependencies betweeb)neaw
locations. As a result, we obtained an average successfrate o
92.8%. This is a good result considering that we obtained &fl
average success rate of 96.2% (see Figure 8) if all obsensati
are perfectly known. This fact illustrates that the HMM is a
useful tool to improve the place labeling especially if noet (6]
full 360 degree range scan is available. It allows us to egBm
the semantic labels with a comparably low error rate. [7]

In sum, our experiments demonstrate that semantic place
information can significantly reduce the exploration tinvere (g

under larger classification errors.
E]

VII. ConcLusioN

In this paper, we proposed a novel technique that takes
into account semantic information about places in the odmte[llo]
of coordinated multi-robot exploration. Since indoor eon-
ments are made by humans, they typically consist of strastur
like corridors and rooms. The knowledge about the type ﬁ.fl]
place of potential target locations allows us to betterritiste
teams of robots over the environment and to reduce redundant
work as well as the risk of interference between the robdis. T12]
semantic labels are determined by learning a classifielgusin
AdaBoost in combination with an HMM to consider spacial
dependencies. (13]

Our approach has been implemented and tested in extensive
simulation runs with up to 50 robots. Experiments presented
in this paper illustrate that a team of robots using our aggino
can complete their exploration mission in a significantIE/M]
shorter period of time. Furthermore, we believe that our
technique for utilizing semantic information during exgltion 151
is not restricted to our exploration method and that it can
be readily integrated into other, state-of-the-art camation [16]
approaches.

In future work, we plan to learn the place labels in ap
unsupervised fashion. In this way, the system might be able t
determine on its own what kind of spacial structures areulsef
for coordinated exploration and does not rely on manualjyg

defined labels.
[19]
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