Dissertation zur Erlangung des Doktorgrades
der Fakultat fir Angewandte Wissenschaften der
Albert-Ludwigs-Universitat Freiburg im Breisgau

Exploration and Mapping
with Mobile Robots

Cyrill Stachniss

April, 2006

Betreuer: Prof. Dr. Wolfram Burgard



Dekan der Fakultat fur Angewandte Wissenschaften:
Prof. Dr. Jan G. Korvink

1. Gutachter: Prof. Dr. Wolfram Burgard, Universitat Fraip
2. Gutachter: Prof. Dr. Dieter Fox, University of WashingtoVA

Tag der Disputation: 26.04.2006



Zusammenfassung

iele Anwendungen aus dem Bereich der mobilen Robotik seteiee

geeignete Reprasentation der Umgebung voraus. Aus diesand Gt

das Lernen von Umgebungsmodellen eines der grundlegendbeteme

fur Roboter, dem schon seit mehreren Jahrzehnten Aufnekeiage-
schenkt wird. Das selbstandige Erstellen von Umgebungshrdst eine der Grund-
voraussetzungen fur vollstandig autonom agierende SystBie vorliegende Arbeit
beschaftigt sich mit verschiedenen Problemen, die beibvstindigen Aufbau von
Karten auftreten.

Das Problem beim Erstellen von Karten besteht unter anderder Unsicherheit
der Sensorinformationen. Sensoren wie beispielsweiserireesssysteme oder Sonar-
sensoren messen die Distanz zum nachsten Hindernis. ildgsridefern sie mitunter
nur grobe Schatzwerte und keine exakten Daten. Auch dierBesing der Position
des Roboters anhand der Radumdrehungen (Odometrie) igrin@blichen Fehlern
behaftet, welche sich im Laufe der Zeit sogar akkumulie@me ein geeignetes Um-
gebungsmodell, in dem sich der Roboter selbst lokalisikagm, ist es sehr schwierig
eine gute Positionsschatzung Uber langere Zeit aufreartaiten. Gleichzeitig beno-
tigt ein Roboter aber eine gute Schatzung seiner Positiargus seinen Sensordaten
eine brauchbare Karte zu erzeugen.

Auch ist es kein triviales Problem zu entscheiden, wohih sio autonomer Robo-
ter bewegen soll, um seine Umgebung effizient zu exploriéterstellt sich die Frage,
ob man eine Explorationsstrategie wahlt durch die der Rotsgtine Umgebung mog-
lichst schnell abfahrt, oder lieber ein Verfahren verwendas die Unsicherheit des
Roboters tber die Umgebung minimiert. Die Komplexitat desblems erhoht sich
nochmals, wenn der Roboter neben seiner Unsicherheit irsdasordaten auch die
Unsicherheit in seiner Position berticksichtigen muss ebsiellt sich unmittelbar die
Frage, ob es sinnvoller ist, zuerst die Unsicherheit deoRob Giber seine Umgebung
zu minimieren oder aber seine Position genauer zu ermitteln

Deutlich komplexer wird das Problem, wenn man nicht mehr neur statische
Welten annimmt, sondern bericksichtigt, dass sich dyrarmei©bjekte in der Umge-
bung befinden kdnnen. Solche beweglichen Objekte konnapib&sweise Personen,



Autos oder auch Tiren sein. Man muss sich dabei fragen, olsoielne dynamischen
Objekte aus der Karte entfernen mochte oder einige derrirdbonen beim Karten-
bau bertcksichtigen sollte. So macht es beispielsweise, Siann ein Roboter, der
sich auf einem grof3en Parkplatz bewegt, weil3, wo typisocbieavAuto parken und
wo nicht. Dieses Wissen kann er dann nutzen, um seine Rosiiiuster zu schatzen.

Zusatzlich stellt sich die Frage, wie man eine Gruppe voroRah koordiniert, da-
mit diese eine gemeinsame Aufgabe moglichst effizient I&&amen. Exploriert man
beispielsweise eine Umgebung mit einem Team von Robotemm knan erwarten,
dass sie diese Aufgabe schneller ausfiihren kénnen alsrzieleer Roboter. Auf der
anderen Seite muss bericksichtigt werden, dass sich dieleén Roboter auch ge-
genseitig behindern kénnen. So kann beispielsweise dainebtau entstehen, wenn
mehrere Roboter gleichzeitig einen engen Korridor odeg &iiir passieren wollen.

Man kann die zentralen Fragestellungen beim Lernen von Boggsmodellen
mit mobilen Robotern wie folgt zusammenfassen:

¢ Wie geht man mit der Unsicherheit in den Sensorinformatianmel wie mit den
Fehlern in der Positionsmessung des Roboters um?

e Wie modelliert man in adaquater Weise die Unsicherheit imitM@&dell des
Roboters und wie geht man mit dieser um?

e Wie generiert man geeignete Aktionen fiir einen autonomagigekenden Robo-
ter und wie evaluiert man diese?

e Wie koordiniert man eine Gruppe von Robotern, so dass seeAbfgabe mog-
lichst effizient ausfiihren konnen und doppelte Arbeit vedee?

e Wie geht man mit nichtstatischen Objekten um?

Die vorliegende Arbeit behandelt verschiedene AspektePdeblems der Erstel-
lung von Umgebungsmodellen. Dabei beschéaftigen wir ungztmit den finf oben
aufgezahlten Punkte. Ein zentraler Aspekt dieser ArbedtiesExploration unbekann-
ter Umgebungen oder als Frage formuliert: ,Wie sollte sichRoboter durch eine un-
bekannte Umgebung bewegen, um aus den gewonnenen Seasa@iha konsistente
Karte zu erzeugen? Dabei konzentrieren wir uns in dieséeArauf die Redukti-
on der Unsicherheit im Umgebungsmodell des Roboters. Wiolgen einen Ansatz,
der mdgliche zukinftige Observationen und deren Auswiglketmauf das Modell des
Roboters in die Zielpunktauswahl mit einbezieht. Im erdteihder Arbeit wird dabei
die Position des Roboters als gegeben angenommen und nunsliieherheit in den
Observationen und im Umgebungsmodell betrachtet. Desreegitstellen wir einen
Ansatz vor, der es erlaubt, ein Team von Robotern so zu koieréin, dass diese ihre
gemeinsame Explorationsaufgabe schneller [6sen konnen.



Die Annahme, dass die Positionsinformation als gegebeausgesetzt werden
kann, ist in nattrlichen Umgebungen nicht gegeben. Dakéestwir im zweiten Tell
dieser Arbeit einen Ansatz zur Losung des Problems des inen Lokalisierens und
Kartenlernens vor (engl. simultaneous localization angpirag, SLAM). Das proba-
bilistische und auf Partikelfiltern basierende Verfahnendaglicht es, eine gemeinsame
Verteilung Uber die Trajektorie des Roboters und das Umggsmodell zu verwalten.
Als Ergebnis erhalten wir ein System, das Karten von venisiftaiig groRen Umge-
bungen in Echtzeit erstellen kann.

Aufbauend auf diesem Verfahren adaptieren wir unsere Exfpmstechnik so,
dass diese die Eigenschaften des SLAM Verfahrens berintiggticWir ermdglichen
es dabei dem Roboter Schleifen in der Umgebung zu erkenngérdiese aktiv zu
schlieBen. Im Endeffekt fihrt dies zu besser ausgeriaht€geten im Vergleich zu
herkdbmmlichen Explorationsverfahren.

Das bis dahin gewonnene Wissen wird anschlie3end in eie®yisitegriert. Die-
ses konzentriert sich gleichzeitig auf Exploration, Kabteu und Lokalisierung. Bei
der Auswahl der nachsten auszufiihrenden Aktion betraclatetSystem mdgliche
Sequenzen von Observationen, die der Roboter beim AusfideeAktion erhalten
koénnte. Diese Observationen werden basierend auf deriMageaiber mogliche Um-
gebungsmodelle simuliert und deren Auswirkung auf das @#seadell geschéatzt.
Der Roboter ist dann in der Lage, die Aktion zu wahlen, diegudfdten erwarteten
Minimierung der Unsicherheit Uber die Umgebung sowie tkaresPosition fuhrt.

Abschliel3end behandeln wir das Lokalisieren und Karteabau nichtstatischen
Umgebungen. Im Vergleich zu den meisten existierendent&esdiegt unser Fokus
nicht darauf, dynamische Aspekte aus dem Umgebungsmadefitternen. Statt des-
sen erlaubt es unser Verfahren, die moglichen Konfiguratianchtstatischer Objekte
zu bestimmen. Ein klassisches Beispiel stellen Turen dasdXsind typischweise ent-
weder geschlossen oder offen. Ein Roboter, der sich soMhgsen aneignen kann,
ist spater in der Lage, sich besser zu lokalisieren als ebofo der nur ein statisches
Modell seiner Welt besitzt.

Der Beitrag dieser Arbeit besteht aus einer Menge von T&ehrzum selbststan-
digen Erstellen von Umgebungsmodellen. Zusammengefasstl unsere Verfahren
Lésungen flr die folgenden Probleme:

e Koordination einer Gruppe von mobilen Robotern, so dassedine gemeinsa-
me Explorationsaufgabe schneller bewéltigen kénnen.

e Erzeugung hochauflésender Karten aus unsicheren Sensid@dometrieinfor-
mationen.



e Anpassung einer Explorationsstrategie an ein darungerides Lokalisierungs-
und Kartenbausystem, wodurch die resultierenden Umgedooodelle weniger
Fehler enthalten.

e Erzeugung und Beurteilung von Aktionen fur einen expl@meten Roboter. Da-
bei wird die beste erwartete Aktion unter dem GesichtspdektMinimierung
der Unsicherheit im Weltmodell des Roboters ausgewabhilt.

e Erstellen von Karten in Umgebungen, die nichtstatischeekibjenthalten. Da-
bei werden typische Zustdnde der nichtstatische ObjektRannm modelliert.
Dies wiederrum fuhrt zu einer robusteren Positionsscm@tfir mobile Robo-
ter, die in solchen Umgebungen eingesetzt werden.



Abstract

odels of the environment are needed for a wide range of robpplica-

tions, from search and rescue to automated vacuum cledmsagning

maps has therefore been a major research focus in the relootitmu-

nity over the last decades. Robots that are able to acquiee@irate
model of their environment on their own are regarded as linkjile major precondition
of truly autonomous agents. In order to solve the map legrpmblem, a robot has
to address mapping, localization, and path planning ataheedime. In general, these
three tasks cannot be decoupled and solved independemtlynap learning is thus
referred to as the simultaneous planning, localizatiod,raapping problem. Because
of the coupling between these tasks, this problem is veryptexn It can become even
more complex when there are dynamic changes in the envinononeseveral robots
are being used together to solve the problem.

The contributions of this thesis are solutions to varioyseats of the autonomous
map learning problem. We first present approaches to exparthat take into ac-
count the uncertainty in the world model of the robot. We tescribe how to achieve
good collaboration among a team of robots so that they «ffigisolve an exploration
task. Our approach distributes the robots over the enviemtiand in this way avoids
redundant work and reduces the risk of interference betweeimdividual team mem-
bers. We furthermore provide a technique to make use of lbaokg knowledge about
typical spacial structures when distributing the robotsrdtie environment. As a re-
sult, the overall time needed to complete the exploratiossion is reduced.

To deal with the uncertainty in the pose of a robot, we preaesdlution to the
simultaneous localization and mapping problem. The diffycun this context is to
build up a map while at the same time localizing the robot is thap. Our approach
maintains a joint posterior about the trajectory of the tabw the model of the envi-
ronment. It produces highly accurate maps in an efficientrahdst way.

In this thesis, we address step-by-step the different problin the context of map
learning and integrate our techniques into a single sysi&mprovide an integrated
approach that simultaneously deals with mapping, loctdimaand path planning. It
seeks to minimize the uncertainty in the map and in the trajgestimate based on the



expected information gain of future actions. It takes irtocant potential observation
sequences to estimate the uncertainty reduction in thedwooldel when carrying out
a specific action. Additionally, we focus on mapping and lzegion in non-static
environments. Our approach allows a robot to considerréiffiespatial configurations
of the environment and in this way makes the pose estimate mbust and accurate
in non-static worlds.
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Chapter 1

Introduction

1.1 Learning Models of the Environment

he problem of learning maps is one of the fundamental probiermobile

robotics. These models are needed for a series of apphealike trans-

portation, cleaning, rescue, localization, and variousise robotic tasks.

Learning maps has therefore been a major research issue iohbtics
community over the last decades.

Approaches to map building are either passive or active. passive ones only
perceive information about the environment to build a majhe &ctive ones addi-
tionally plan the motion of the vehicle in order to guide itdhgh the environment.
Robots that are able to acquire an accurate model of theoemaint on their own are
regarded as fulfilling a major precondition of truly autormus mobile vehicles. This
thesis presents different techniques we developed to antously acquire sensor data
and to use this information in order to learn accurate moafaise environment.

In general, learning maps with single-robot systems reguine solution of three
tasks, which arenapping localization andpath planning Mapping is the problem
of integrating the information gathered with the robot'asars into a given represen-
tation. It can be described by the question “What does thédwook like?” Central
aspects in mapping are the representation of the environanerthe interpretation of
sensor data. In contrast to this, localization is the prolaé¢estimating the pose of the
robot relative to a map. In other words, the robot has to ansiveequestion, “Where
am 1?” Typically, one distinguishes between pose trackimigere the initial pose of
the vehicle is known, and global localization, in which noreop knowledge about
the starting position is given. Finally, the path plannimgrmtion control problem in-
volves the question of how to efficiently guide a vehicle teesaited location or along
a trajectory. Expressed as a simple question, this probéanbe described as, “How
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SLAM
mapping localization
integrated
approache
; active
exploration localization

path planning/
motion control

Figure 1.1: Tasks that need to be solved by a robot in orderdoiee accurate models
of the environment. The overlapping areas represent catibirs of the mapping,
localization, and path planning tasks [Makareekal.,, 2002].

can | reach a given location?”

Unfortunately, these three tasks cannot be solved indepelycdf each other. Be-
fore a robot can answer the question of what the environnoarisl like given a set
of observations, it needs to know from which locations thasgervations have been
made. At the same time, it is hard to estimate the currentiposif a vehicle without
a map. Planning a path to a goal location is also tightly cediplith the knowledge of
what the environment looks like as well as with the inforroatabout the current pose
of the robot.

The diagram in Figure 1.1 depicts the mapping, localizataord path planning
tasks as well as the combined problems in the overlappirgsat®multaneous lo-
calization and mappingSLAM) is the problem of building a map while at the same
time localizing the robot within that map. One cannot dedeudgoth tasks and solve
them independently. Therefore, SLAM is often referred ta akicken and egg prob-
lem: A good map is needed for localization while an accuratepestimate is needed
to build a map. Active localizationseeks to guide the robot to locations within the
map to improve the pose estimate. In contrast to t@iglorationapproaches as-
sume accurate pose information and focus on guiding thet refficiently through
the environment in order to build a map. The center area otlthgram represents
the so-calledntegrated approachewhich address mapping, localization, and path
planning simultaneously. The integrated approaches aedallled solutions to the
simultaneous planning, localization, and mappii&PLAM) problem. A solution to
the SPLAM problem enables a mobile robot to acquire sendarlmaautonomously
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moving through its environment while at the same time buogch map. Whenever the
robot is moving, it considers actions to improve its locaiian, to acquire information
about unknown terrain, and to improve its map model by reagareas it is uncertain
about. In the end, the robot is assumed to have learned arageooodel of the whole
environment as well as determined its own pose relativeismtiodel.

Several researchers focus on different aspects of thesgeprs. This is done
using single robot systems as well as teams of robots. Thefuseltiple robots has
several advantages over single robot systems. Cooperatiogs have the potential
to accomplish a task faster than a single one. Furthermeaeng of robots can be
expected to be more fault-tolerant than a single robot. KWewavhen robots operate
in teams, there is the risk of possible interference betwieem. The more robots that
are used in the same environment, the more time each robospend on detours
in order to avoid collisions with other members of the teammlost approaches, the
performance of the team is measured in terms of the overaltieeded to learn a map.
This means that the robots need to be distributed over theoamvent in order to avoid
redundant work and to reduce the risk of interference. A tetirabots makes finding
efficient solutions to problems like exploration more coexplsince more agents are
involved and so more decisions need to be made.

It is worth mentioning that all these problems become everersomplex in the
case where the environment changes over time. Most mapgehgitjues assume that
the environment is static and does not change over time., fibigever, is an unreal-
istic assumption, since most places where robots are usegopulated by humans.
Changes are often caused by people walking through theoemagnt, by open and
closed doors, or even by moved furniture. One possibilityeal with dynamic aspects
is to filter them out and to map the static objects only. Moralleimging, however, is
the problem of integrating the information about changés the map and utilizing
such knowledge in other robotic applications. This can Enalmobile robot to more
efficiently execute its tasks. For example, one can expeobatito more robustly
localize itself in case where it knows about the typical agunfations of the non-static
aspects in its surroundings.

In summary, the key problems in the context of map learnieglae questions of
e where to guide a robot during autonomous exploration,
e how to deal with noise in the pose estimate and in the obsengt

¢ how to deal with the uncertainty in the robot’s world moded &ow to interprete
the sensor data,

e how to model changes in the environment over time, and
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e how to efficiently coordinate a team of mobile robots.

The contributions of this thesis are solutions to differsgects of the map learning
problem which explicitely consider these five aspects. Vésgnt approaches to au-
tonomous exploration that take into account the uncestamthe world model of the
robot. We minimize this uncertainty by reasoning about {mssctions to be carried
out and their expected reward. We furthermore describe baehieve good collab-
oration among a team of robots so that they efficiently solvexploration task. Our
approach effectively distributes the robots over the emritent and in this way avoids
redundant work and reduces the risk of interference betwekitles. As a result, the
overall time needed to complete the exploration missioedsiced. To deal with the
uncertainty in the pose of a robot, we present a highly atedezhnique to solve the
SLAM problem. Our approach maintains a joint posterior dtiba trajectory of the
robot and the map model. It produces highly accurate maps effecient and robust
way. In this thesis, we address step-by-step the problertieinontext of map learn-
ing and integrate different solutions into a single systaie provide an integrated
approach that simultaneously deals with mapping, loctdimaand path planning. It
seeks to minimize the uncertainty in the map and trajectstiynate based on the ex-
pected information gain of future actions. It takes intocct potential observation
sequences to estimate the uncertainty reduction in thedwooldel when carrying out
a specific action. Additionally, we focus on mapping and lizedion in non-static en-
vironments. Our approach allows the robot to consider diffespatial configurations
of the environment and in this way makes the pose estimate mbust and accurate
in non-static worlds.

This thesis is organized as follows. First, we introducephsicle filtering tech-
nique and the ideas of grid maps, which are both frequendyg ttroughout this thesis.
The first part of the thesis concentrates on single- and st exploration given
the poses of the robots are known while they move throughribiecament.

Chapter 3 addresses the problem of decision-theoretionantous exploration
with a single vehicle. We consider a sensor which is affebtedoise and investigate
a technique to steer a robot through the environment in dodeduce the uncertainty
in the map model.

In Chapter 4, we explore how to coordinate a team of robotsderdo achieve ef-
fective collaboration and to avoid redundant work. The @nésd approach is extended
in Chapter 5 so that background information about the sireatf the environment is
integrated into the coordination procedure. The knowlemlgaut different structures
is learned by the mobile robots from sensor data.

In the second part of this thesis, we relax the assumptiomofvk poses and
consider the uncertainty in the pose the a mobile robot. WWegnt in Chapter 6 an
efficient solution to the SLAM problem. It allows us to learmgtly accurate grid
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maps while the pose information of the robot is affected bis&o Our technique
maintains the joint posterior about the map and the trajgadd the robot using a
particle filter. Chapter 7 describes a system to detect aadtieely close loops during
exploration. With this technique, we are not optimizing plose estimation procedure
but are planning appropriate trajectories for the mobibotoThe revisiting of known
locations from time to time allows the robot to reduce theantainty in its pose. As a
result, the obtained map is better aligned and shows lesggmtencies.

Actively revisiting known areas during SLAM offers not ontlye possibility to
relocalize a vehicle, it also introduces the risk of becagromerly confident especially
in the context of nested loops. To cope with this limitatiore present in Chapter 8
an approach for recovering the particle diversity aftesitlg loops. This allows the
robot to stay an arbitrary period of time within a loop withdepleting important state
hypotheses.

In Chapter 9, we present a decision-theoretic approachpioetion with respect
to the uncertainty in the map and the pose estimate of thd.rdlh@ presented algo-
rithm integrates different techniques introduced in trecpding chapters of this thesis.
It simultaneously addresses mapping, localization, aadrmphg. As a result, our ap-
proach enables a real mobile robot to autonomously learndehud the environment
with low uncertainty even if its pose estimates are affetigdoise.

Finally, Chapter 10 addresses the problem of mapping amdization in non-static
environments. By explicitly modeling the different statlee environment is observed
in, the robot is able to more robustly localize itself in a rstatic world.
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1.4 Notation

Throughout this thesis, we make use of the following notatio

| variable | description |

Ty pose of the robot at time stepThis pose is a three dimensional
vector containing the:, y-position and the orientatiof of the
vehicle

X1 sequence of poses of the robot from time step 1 to timetstep

2 sensor observation obtained at time step

Uy odometry information describing the movement fropto =,

a action or motion command

w importance weight

wi"] importance weight of théth particle at time step

m grid map

c grid cell

r resolution of a grid map. Each cell covers an arealoy r.

g topological map

E]| expectation

N (1, Y) | Gaussian with mean and covarianc

H entropy

1 information gain

U utility function

% cost function

n normalizer, typically resulting from Bayes’ rule

Nz | effective number of particles




Chapter 2

Basic Techniques

his chapter explains two techniques which are frequentidubkroughout

this thesis. First, we will introduce the concept of padifilters. A particle

filter is a recursive Bayesian technique for estimating theesof a dynamic

system. We then explain the ideas of grid maps and “mappitty kmown
poses”. Note that elementary laws in the context of proigtiieory can be found in
the Appendix A.1 of this thesis.

2.1 Introduction to Particle Filters

A particle filter is a nonparametric implementation of the/Bsfilter and is frequently

used to estimate the state of a dynamic system. The key ide@agpresent a posterior
by a set of hypotheses. Each hypothesis represents oneipldéate the system might
be in. The state hypotheses are represented bysadaelv weighted random samples

S = {(hwy|i=1,....,N}, (2.1)

wheresl” is the state vector of thieth sample andv!’ the corresponding importance
weight. The weight is a non-zero value and the sum over alysiis 1. The sample
set represents the distribution

N
plx) = sz'5s[i]($), (2.2)

wheres,;; is the Dirac function in the state/! of thei-th sample. Such sétof samples

can be used to approximate arbitrary distributions. Thepsasrare drawn from the
distribution they should approximate. To illustrate suohepproximation, Figure 2.1
depicts two distributions and their corresponding sampts.sIn general, the more
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Figure 2.1: Two functions and their approximations by saaplith uniform weights.
The samples are illustrated by the vertical bars below tloeftimuctions.

samples that are used, the better the approximation. Thiyabimodel multi-modal
distributions by the set of samples is an advantage compaiederies of other filters.
The Kalman filte[{Kalman, 1960, for example, is restricted to Gaussian distributions.

Whenever we are interested in estimating the state of a dgreystem over time,
we can use the particle filter algorithm. The idea of this téghe is to represent the
distribution at each point in time by a set of samples, aldedaarticles. The particle
filter algorithm allows us to recursive estimate the pagts®tS; based on the estimate
S;_1 of the previous time step. Theampling importance resampli&IR) particle
filter can be summarized with the following three steps:

1. Sampling: Create the next generatidfj of particles based on the previous set
S;_1 of samples. This step is also called sampling or drawing fiteerproposal
distribution.

2. Importance Weighting: Compute an importance weight for each sample in the
sets;.

3. Resampling: Draw N samples form the se&t.. Thereby, the likelihood to draw
a particle is proportional to its weight. The new sgtis given by the drawn
particles.

In the following, we explain these three steps in more detaikhe first step, we
draw samples in order to obtain the next generation of pastior the next time step.
In general, the true probability distribution to sampletjadgs from is not known or
not in a suitable form for sampling. We show that it is possiiol draw samples from
a different distribution than the one we want to approximatas technique is known
asimportance sampling
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We are faced with the problem of computing the expectatiahite A, whereA
is a region. In general, the expectatibp| f(x)] of a functionf is defined as

Elf() = / pla) - f(z) de. (2.3)

Let B be a function which returns 1 if its argument is true and O otise. We can
express the expectation that A by

E[Blx e A)] — / p(x)- Bz € A)dx (2.4)
- /% -7(z) - B(z € A)dx, (2.5)

wherer is a distribution for which we require that
p(z) >0 = m(z)>0. (2.6)
Thus, we can define a weight(x) as
wiz) = 2 (2.7)
This weightw is used to account for the differences betwgamd ther. This leads to

E,B(x € A)] = /ﬂ'(l’) ~w(z) - B(x € A)dx (2.8)
= E;|w(z) - B(z € A). (2.9)
Let us consider again the sample-based representationsuppdse the sample are

drawn fromr. By counting all the particles that fall into the regidnwe can compute
the integral ofr over A by the sum over samples

N
/Aﬁ(x) dr =~ % : ;B(Sm €A). (2.10)

If we consider the weights in this computation, we can corapig integral ovep as

N
/p(x) dr ~ Y wll-B(sf e A). (2.11)
A i=1
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= target(x)
2 samples
=
2
E
S
QO
o
: i ]

cow |l ’“Mm H “ ‘ ‘ | 1
X

Figure 2.2: The goal is to approximate the target distrdyubly samples. The samples
are drawn from the proposal distribution and weighted atiogrto Eq. (2.13). After
weighting, the resulting sample set is an approximatiomeftarget distribution.

It can be shown, that the quality of the approximation imgothe more samples that
are used. For an infinite set of samples, the sum over the samphverges to the
integral

N

lim Zw[i] -B(sh e A) = /Ap(x) dx. (2.12)

N=oo =1

Let p be the probability distribution which is not in a suitablerfofor sampling andr
the one we actually sample from. In the context of importasasaplingp is typically
called thetarget distributionandr the proposal distribution

This derivation tells us that we can sample from an arbitdasyribution= which
fulfills Eq. (2.6) to approximate the distributignby assigning an importance weight
to each sample according to EqQ. (2.7). This condition is eded ensure that a state
which might be sampled from does not have zero probability under An exam-
ple that depicts a weighted set of samples in case the proisoddferent from the
target distribution is shown in Figure 2.2. Note that the ami@nce sampling prin-
ciple requires that we can point-wise evaluate the targatidution. Otherwise, the
computation of the weights would be impossible.

Let p(s1+ | d) be the posterior to estimate, whefestands for all the data or
background information. The importance weighting perfedin Step 2 of the particle
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filter implementation (see Page 28) accounts for the factdoaes from the proposal
7 by setting the weight of each particle to

o _ . 2l

w; : , (2.13)
(st | d)

wheren is the normalizer that ensures that the sum over all weights i

The resampling step within a particle filter removes patalith a low impor-
tance weight and replaces them by particles with a high viefgtter resampling, the
weights are set ta/N because by drawing according to the importance weight, one
replaces “likelihoods” by “frequencies”.

Resampling is needed since we use only a finite number of sstgphpproximate
the target distribution. Without resampling, typically sagarticles would represent
states with a low likelihood after some time and the filter \goloose track of the
“good” hypotheses. On the one hand, this fact makes resagptiportant, on the
other hand removing samples from the filter can also be pnuoditie. In practice, it
can happen that samples are replaced even if they are cltise torrect state. This
can lead to the so-called particle depletion or particlerii@pon problem[Doucet,
1998, Doucett al, 2001, van der Merwet al., 2004.

To reduce the risk of particle depletion, one can apply l@asance resampling.
This technique does not draw the particles independentiaoh other in the resam-
pling step. Instead of generatidgrandom numbers to selestsamples, the approach
uses only a single random number to choose the first parfidie. others are drawn
depended on the first draw but still with a probability prdjoral to the individual
weights. As a result, the particle set does not change darmegampling in case the
weights are uniformly distributed. A detailed explanat@nlow-variance resampling
as well as on particle filters in general can be founfTinrunet al,, 2004. The com-
plete particle filter algorithm is listed in Algorithm 2.1.

2.1.1 Mobile Robot Localization using Particle Filters

In the context of mobile robotics, particle filters are oftesed to track the position
of the robot. Since this technique is used in this thesis, el illustrate the most
important facts of Monte-Carlo localizatidbellaertet al, 1999. In this scenario,
the state vectos is the pose of the vehicle. Mostly, the motion estimate ofrtimot
resulting from odometry is used to compute the proposaiidigton in Step 1. The so-
called motion modep(z; | x;_1,u,_1) is used to draw the next generation of particles.
In this case, the importance Weighf} of thei-th sample has to be computed based on
the observation likelihoog(z, | m, =) of the most recent sensor observatipgiven

a mapm of the environment and the corresponding pose of the parfidiis becomes
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Algorithm 2.1 The particle filter algorithm
Input: Sample seb;_; and the datd.
1: S, =10
. for i=1to Ndo
draws ~ (s, | s, d)

2
3
. . -1
4 w=n- [p(§ | sﬂl,d)] : [w(§ | sﬂl,d)] /Il wheren is a normalizer
5. S, =5+ (5,0)
6: end
7. St = (Z)
8 for j=1toNdo ' 4
9: draw a sample!’ from Sy. Thereby,s!” is drawn with probabilityw,”
10: S, =8, + <s¥1, 1 /N>
11: end
12: return S;

clear by considering the following derivations. We can $fanm the full posterior
p(z1.¢ | m, 214, u14—1) @nd obtain a recursive formula

Bayes' rule
p(xlzt | m, let,ulzt—l) = n 'p(zt | m, Ilzt,let—l,Ulzt—l)

'p(xlzt | m, z1.4—1, ul:t—l) (2-14)

Markov

= n-pz | m, )
'p(xlzt | m, Zl:t—laulzt—l) (2-15)

prodﬂ:t rule

n-p(ze | m,xy)
‘p(% | M, T1:4—1, Zl:t—laulzt—l)

'p(xlzt—l ‘ m, Zl:t—17U1;t—1) (2-16)
Markov
= n 'p(zt | m, xt) 'p(% | It—l,ut—l)

'p(Ilzt—1 \ m, 21:4—1, Ul:t—2)7 (2-17)

wheren is the normalizer resulting from Bayes’ rule. Under the Marlassumption,
we can transform the proposal as

7T($1:t | m, Zl:taulzt) = 7T(1't | m, SUt—l,Zt,Ut—l)

'7T(931:t—1 | m, z1.4—1, Ul:t—2)- (2-18)

The computation of the weights needs to be done according.t(2EL3). In the sequel,
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we drop the normalizer that ensures that all weights sum dp Tnis leads to

w, — p(xm ‘ m, Z1;t,U1:t—1) (2_19)

7T($1:t | m, z1:t, U1;t—1)

n-pze | myae) - play | v, u1)
7T(931:t | m, Zl:t,ulzt—l)
e pQa my ) - p(a [ 2, ) (e | my 21, Uaa-o) (2.21)
W(xt | m, It—l,Zt,Ut—l) W(xlzt—l | m, Zl:t—l,ulzt—z) .

~~
Wt—1

'p(«rlzt—l ‘ m, Zl:t—17u1:t—2) (2-20)

_ n 'p<Zt | m,.f()}) p('xt ‘ xt_l’ut_l) S W1 (2 22)

ﬂ-(xt | m, Ti—1, 2, ut—l)

If we choose the motion model as the proposal, we obtain ®i-the sample

, . [i]y . [i] ‘
wt[l] _ n p(Zt ‘ m, Ty ) Ml)(xt | xt—l? ut—l) . wgﬂl (2.23)
P | 22y, up )
= nop(z | moal) wl, (2.24)
< p(z | m, xy}) . wt[ill. (2.25)

Since the resampling step resets the weights of the wholeysetN, we can ignore
the weight of the previous time step and obtain

w o plz | m, 2. (2.26)
This derivation shows that by choosing the motion model smdihe next generation
of particles, we have to use the observation likelihg@od | m,z;) to compute the
individual weights.

To summarize this section, patrticle filters are a nonpamamehplementations
of the recursive Bayes filter. They use a set of weighted sesngnhd can represent
arbitrary distributions. The samples are drawn from a psapdistribution. After de-
termining the importance weights which account for the fiaat the target distribution
is different from the proposal distribution, the resamglgtep replaces particles with
a low weight by particles with a high importance weight.

Throughout this thesis, we apply particle filters to solwe¢hmultaneous localiza-
tion and mapping problem. Furthermore, we apply them in trgext of information

gain-based exploration and to localize a mobile robot inadiyically changing envi-
ronments.
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2.2 Grid Maps

There exist different types of models for representing tharenment which are fre-
guently used in mobile robotics. The most common ones atarfeanaps, geometric
maps, and grid maps. A feature map stores a set of featurestetin the envi-
ronment. Typical features are lines and corners when plibxisensors are used.
Other possibilities are visual features based on the soaiant feature transform
(SIFT) [Lowe, 1999 whenever a camera is used to perceive the environment. For
each feature, these maps store the feature informatiothtageith a coordinate and
eventually an uncertainty measure. This can be realizedibydd features or by using
more efficient data structures like KD-tregsiedmaret al, 1977, Bentley, 1980

Geometric maps represent all obstacles detected by theaslyzometric objects,
like circles or polygons. This kind of representation is pamably compact and needs
only few memory resources.

Throughout this thesis, we use grid maps to model the enviem. Grid maps
discretize the environment into so-called grid cells. Eaelhstores information about
the area it covers. Most frequently used are occupancy gajolsnthat store for each
cell a single value representing the probability that tlitis occupied by an obstacle.
The advantage of grids is that they do not rely on predefinatufes which need
to be extracted from sensor data. Furthermore, they offematant time access to
grid cells and provide the ability to model unknown (unobsel) areas, which is an
important feature in the context of exploration. Howevieeyt have the disadvantages
of discretization errors and of requiring a lot of memoryo@ges.

In this section, we first introduce the occupancy mappingritlgm, developed by
Moravec and Elfe§1985. Afterwards, we briefly describe a variant called reflec-
tion probability maps. Both approaches are also referress totmapping with known
poses.”

2.2.1 Occupancy Probability Mapping

Grid maps discretize the environment into equally sizetscetach cell represents
the area of the environment it covers. It is assumed that ealths either free or
occupied by an obstacle. Occupancy grids store for eachc@elprobability p(c)
of being occupied by an obstacle. In the following, we wilkide the map update
algorithm introduced by Moravec and Elfes which computesatcupancy probability
p(m) for the grid mapn.

The algorithm takes into account a sequence of sensor @tgersz;.; obtained by
the robot at the positions;.; and seeks to maximize the occupancy probability for the
grid map. One assumption in the algorithm of Moravec andsHEehat the different
cells are independent. Therefore, the probability of a maig given by the product
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over the probabilities of the individual cells

pm) = J]»() (2.27)

cem

In the following, we concentrate on the estimation of theupancy probability of the
individual cellsc € m. By applying Bayes’ rule using;.; andz;.,_; as background
knowledge, we obtain

p(zt | C, T1:¢, Zl:t—l) -p(c ‘ $1:t721:t—1)
p(zt ‘ L1, Zl:t—l) .

(2.28)

p(C | L1:ty Zl:t)

We assume that; is independent fromr;.;_; andz;.;_;. This leads to

ple| oy my) = PELCT) D] T B1um) (2.29)
p(zt | 14y 210-1)

We apply Bayes’ rule for the termp(z; | ¢, ;) in EqQ. (2.29) and obtain

p(zt | c, xt) _ p(C | l’t,Zt) 'p<Zt ‘ xt). (230)

ple| )

We can now combine Eg. (2.30) and Eqg. (2.29). Let us furtheenagsume that,
does not carry any information abatif there is no observatior. This leads to

p(c ‘ T, Zt) ‘p(zt | xt) ~p(c | T1:4—1, Zl;t—l)

p(C) . p<Zt ‘ T, Zl:t—l) (231)

p(C | L1:ty Zl:t) =

If we exploit the fact that each cell is a binary variable, vaa derive the following
eguation in an analogous way

p(—|c | Ty, Zt) 'p(zt | xt) -p(—|c | T1:4-1, Zl:t—l)

-c | 14, 214) = 2.32
p( | 1:t 1t) p(_\C) ] p(zt | Tits Zl:t—l) ( )
By dividing Eq. (2.31) by Eq. (2.32), we obtain
ple|zie, 210)  ple|x, 2) - p(=e) - ple | 211, 21:0-1)
— (2.33)
p(—e | T, 21:) p(=c | @, 2) - ple) - p(=c | T1p-1, 21:0-1)
Finally, we use the fact tha —c) = 1 — p(c) which yields
p(C | L1:ty Zl:t) _
1 —p(C ‘ xl:thlzt)
plelanz)  1=ple) _plelsru, 214-1) (2.34)

11— P(C | Ty, Zt) p(c) 1- P(C | T1it—1, Zl:t—l).
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If we define

Odds(z) = P& (2.35)

Eq. (2.34) turns into

Odds(c | 214, 21:¢) =
Odds(c | 24, z) - Odds(c) ™" - Odds(c | T14-1, 21:4-1). (2.36)

This equation has a recursive structure similar to that @&cainsive Bayesian update
scheme. The correspondihg; Odds representation of Eq. (2.36) is given by

log Odds(c | 214, 21.4) =
log Odds(c | 2, z¢)
— log Odds(c)
+log Odds(c | x1.4-1, 21:4-1)- (2.37)

The usage of thivg Odds notation has advantage that it can be computed efficiently. |
is only necessary to compute a sum in order to update a celtlmssensory input. To
recover the occupancy probability from thelds representation given in Eq. (2.36),
we use the following formula which can easily be derived figm (2.35):

Odds(x)

) = T 0dds(@) (2.38)

This leads to the followingccupancy update formula

p(C | L1ty Zl:t) =

(L=ple|z2)  ple)  1=ple|rrm,210-1) 1
S eTenz) T=p@)  ple ] ore, 21) . (2.39)

Eq. (2.39) tells us how to update our beligt | x1.,, z1.,) about the occupancy proba-
bility of a grid cell given sensory input. In practice, one¢esf assumes that the occu-
pancy prior is 0.5 for all cells so th%t% can be removed from the equation.

It remains to describe how to compute the occupancy prabapilc | z;, z;) of a
grid cell given asingleobservatiory; and the corresponding posgof the robot. This
guantity strongly depends on the sensor of the robot andds tlefined manually
for each type of sensor.
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probability Occupancy probability———

pOCC - —

Pprior - [ -
Zt,n + 2

Pfree ° —
Zt,n -

[l

distance between sensor and cell under consideration

Figure 2.3: Sensor model for a laser range finder. It dephetobability that a cell
is occupied depending on the distance of that cell from therlaensor.

2.2.2 Sensor Model for a Laser Range Finder

In case a laser range finder is used, a quite simplistic m@atebe applied. Each cell
c that is covered by the-th beam, ,, of the observation, and whose distance to the
sensor is shorter than the measured one, is supposed to beupred. The cell in
which the beam ends is supposed to be occupied. The fungtiofx,, c) refers to the
distance between the sensor and the center of the.CEflis can be formulated

Dprior 2 IS @ maximum range reading
Dprior cis not covered by, ,,
cl zim, xe) = . ’ 2.40
p(c | tn; t) Doces |Zt,n — dist(z, c)| < r ( )
Dfree, Ztn > diSt(xta C),

wherer is the resolution of the grid map. Furthermore, it must holek pg.. <
Pprior < Pocc < 1. Figure 2.3 depicts an example for such a sensor model fer las
range finder data.

2.2.3 Sensor Model for a Sonar Sensor

In case a sonar sensor is used, the sensor model is slightl ecomplicated, since
the sensor is not a beam sensor and the observations are aigydhan the ones of
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probability Occupancy probability———

pOCC —

Pprior -

DPfree

distance between sensor and cell under consideration

Figure 2.4: Probability that a cell on the optical axis of se@msor is occupied depend-
ing on the distance of that cell from the sensor.

a laser range finder. In practice, one typically uses a nexairthree functions to
express the model. First, the influence of an observatioictwik represented by the
difference betweep,,;,, andp,.. as well as betweep,,.,, andpy..) decreases with
the measured distance.

Second, the proximity information of a sonar is substalytiaffected by noise.
Therefore, one typically uses a piecewise linear functoomodel a smooth transition
from pj.. 10 p,.. as illustrated in Figure 2.4.

Finally, the sonar sensor should not be modeled as a bearmorssimce it sends
out a conic signal. The accuracy of an observation decre@asiethe angular distance
between the cell under consideration and the optical axtee@bbservation. This is
expressed by the derivation from the prior and is typicallydeled using a Gaussian
with zero mean. Therefore, it is maximal along the opticakand decreases the
bigger the angular distance form the optical axis is.

Two examples for a resulting model are depicted in Figurel2ghows two three-
dimensional plots of the resulting occupancy probabdif@e a measurement of 2m
(left image) and 2.5 m (right image). In this figure, the opltiaxis of the sensor cone
was identical with the:-axis and the sensor was placed in the origin of the coorelinat
frame. As can be seen, the occupancy probability is highdds evhose distance to
x, is close toz; ,,. It decreases for cells with shorter distance thanas well as with
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Occupancy probability —— Occupancy probability ——

LR
LR
LA

Figure 2.5: Occupancy probability introduced by a singteasbund measurement of
2z = 2.0m (leftimage) andt;,, = 2.5m (right image).

increasing values of the angular distance.

Figure 2.6 depicts the mapping process for a sequence ofvaltieas recorded
with an iRobot B21r robot. The first row shows a map was budtrfra sequence of
previous ultrasound scans. Afterwards the robot percevsdries of 18 ultrasound
scans each consisting of 24 measurements. The occuparmbgites for these 18
scans are depicted in the rows from 2 to 7. The occupancy bilaparid obtained
by integrating the individual observations into the maphieven in the last row of this
figure. As can be seen, the belief converges to a represantdtihe corridor structure
in which the scans where recorded.

2.2.4 Reflection Probability Mapping

Beside occupancy probability grids, there exist alteugatéalization of grid maps. A
frequently used model is the so-called reflection probighiiap or counting model. In
contrast to occupancy grid maps, they store for each ceflectimn probability value.
This value provides the probability that a measurementrogéehe cell is reflected.
Note that the occupancy model and the counting model aréasimit not identical.

In this model, we are interested in computing the most likefiection probability
mapm* given the observations and poses of the robot.

*

m* = argmaxp(m | T, 214) (2.41)

By series of mathematical transformations (§@argard, 2005 for the details), one
can derive that the most likely map* is the map for which each grid cellhas the
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Figure 2.6: Incremental mapping in a corridor environmenhe upper left image
shows the initial map and the lower one contains the reguliap. The maps in
between are the local maps built from the individual ulttasbscans perceived by the
robot.
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value

#hits(c, L1:t, Zl:t)
#Hhits(c, w1, 214) + #misses(c, 1.4, 21:4)

plc | x14, 214) (2.42)

where#misses(c, x1.4, z1.¢) iS the number of times a beat,, taken fromz,; passed
through the grid celk and#hits(c, x1.¢, z1+) IS the number of times a beam ended in
that cell. Since the value of each cell can be determined bytawg, this technique is
also called counting model.

The differences between occupancy probability and refiegtirobability maps
is that the occupancy probability typically converges torQLdor each cell which
is frequently observed. In contrast to that, reflection pholity values converge to
valuesbetweerD and 1. Values significantly different from O or 1 often oceuren
mapping objects much smaller than the grid discretizatiorios example, for glass
panes which are repeatedly observed with a laser range.finder
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Chapter 3

Decision-Theoretic Exploration Using
Coverage Maps

3.1 Introduction

here exist several applications in which the exploratiek ia an integral

part of the robotic mission. The complete and efficient cagerof terrain

is one of the elementary problems in planetary explordtipostolopoulos

et al, 2001, reconnaissandgiougenet al., 2004, rescudMurphy, 2004,
Thrunet al,, 2003, mowing[Huanget al., 1984, or cleaning Jager and Nebel, 2002,
Endreset al, 1998, Simoncellet al., 2004.

Throughout this chapter, we focus on the problem of how taiefiitly explore an
environment with a single mobile robot. We describe a denisheoretic approach to
exploration of unknown terrain with noisy sensors. The gedb come up with an
accurate model of the environment without steering thetrotamually. Our approach
seeks to minimize the uncertainty in the map over time. Tioesgethe next viewpoint
of the robot is chosen in a way that its action provides thadsgexpected uncertainty
reduction. In the beginning of this thesis, we assume tleatrtbvement of the vehicle
is not affected by noise. Later on, we relax this assumptimhpaesent a technique to
deal with the pose uncertainty of a mobile robot.

In addition to the exploration aspect, we consider the gioldf how to model the
environment of a mobile robot and how to update the map uparseasory input. In
particular, we introduce coverage maps as a probabilisticter represent the belief of
the robot about the state of the environment. In contrastt¢opancy grid§Moravec
and Elfes, 198F in which each cell is considered as either occupied or freegrage
maps represent for each cell of a given discretization agpiostabout the percentage
this cell is covered by an object. As an example consider itii@tgon depicted in
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occupancy value = 1.0 coverage value = 0.2

obstacle

Figure 3.1. Typical occupancy map obtained in situationsvinich cells are only
partly occupied (left) and a coverage map containing theesponding coverage val-
ues (right). Black represents high occupancy probabiigpectively coverage value.

the left images of Figure 3.1 in which a cell is partly covebgdan obstacle. Using
occupancy grid maps the probability that this cell is ocedptonverges to 1 if the
sensors of the robot repeatedly detect the obstacle (atrédted in the left image of
this figure). Since the object covers only 20% of the areaisfdéll, acoverage value
of 0.2 (as shown in the right image of Figure 3.1) would be éebe¢presentation of the
given situation. Additionally, we present a sensor modal #tlows us to appropriately
update a coverage map upon sensory input affected by noise.

This chapter is organized as follows. In the next sectionintreduce the idea of
coverage maps. In Section 3.3, we present a sensor modelllinats us to update
a given coverage map upon sensory input. In Section 3.4, weride a decision-
theoretic approach to exploration based on coverage mdfes.thAis, the experiments
illustrate the various properties of our approach. We prieaecurate maps learned
by a real robot and discuss the advantages of our technicreegisting approaches.
Finally, we discuss related work in Section 3.7.

3.2 Definition of Coverage Maps

As already mentioned above, occupancy grids rest on thergdsn that the envi-
ronment has binary structure, i.e., that each grid celltiseeioccupied or free. This
assumption, however, is not always justified. For examplthe environment con-
tains a wall that is not parallel to the or y-axis of the grid there must be grid cells
which are only partly covered. In occupancy grids, the pbdlig that such cells are
occupied will inevitably converge to 1 (see Figure 3.1). €age maps overcome
this limitation by storing for each cell a posterior abostdbverage. Coverage values
range from O to 1. A coverage of 1 means that the cell is fulljupeed and an empty
cell has a coverage of 0. Since the robot usually does not knewrue coverage of a
grid cell ¢ it maintains a probabilistic belief(¢) about the coverage ef In principle,
there are different ways of representin@). They range from parametric distribu-
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Figure 3.2: The coverage posterior for the cell containidbstacle in Figure 3.1.

tions such as (mixtures of) Gaussians or non-parametriantarsuch as histograms.
Throughout this work, we assume that each coverage pastenoodeled by a his-

togram over possible coverage values. More precisely, are st histogram for each
grid cell, where each bin contains the probability that tberesponding grid cell has
the particular coverage.

A coverage map cell is typically initialized using a unifodistribution in order
to represent the maximum uncertainty about the actual efatee cell. In contrast
to this, Figure 3.2 shows a typical coverage posterior wguieatly obtain for partly
occupied cells. The depicted posterior was generated lmaseldservations perceived
in a simulated environment like the one shown in Figure 3.1.

So far, we only explained the idea of coverage maps but lefhdw to actually
determine the posterior based on observations. In the eekbs, we describe how
we can update coverage maps based on sensory input.

3.3 Updating Coverage Maps Upon Sensory Input

To update a coverage map whenever sensor data arrives, lyesappyesian update
scheme. Throughout this chapter, we assume that our sermsadgs distance infor-
mation. Thus, we need a formalism to convert the distanaanmdition to coverage
values. What we need to determine is the coverage mapat has the highest like-
lihood under all distance measurements = zi,..., 2. If we use Bayes’ rule and
then assume that consecutive measurements are indepgngamthat we know the



48 CHAPTER 3: DECISION-THEORETIC EXPLORATION USING COVERAGE MAPS

mapm, we obtain

Bayes'rule p(2’1~t | m, Il't) p(m | xl't)

I . . - - 3.1
p( | 1:t lt) p(zlzt | .Tl;t) ( )
m | Xq.
M . p(zlzt | m, $1;t) (32)
P21 | 214)
indepe:ndence m | xlt Hp 2y ‘ m, ;(;t, (33)

Ht/ lp(zt/ | xt/ =1

Next we need to know how to determine the likelihggd, | m, z;) of measuring:
given the mapn and the pose; of the vehicle. Again we apply Bayes'’ rule and obtain

m X
| 1.4) szt'|m$t'
Ht’ 1Pz | ay) iy
Baye:s’rule p(m | Zlflzt) ) ! p(m | Ty, Zt’) . p(zt/ | {L’t/) (3 4)
Hi/:lp(z’t’ | zy) i p(m | zv)

_ p(m | 14) ) 15 p(ze | 2v) ﬁp(m | Ty, 2v) (3.5)

[Ty p(ae | 2e)  TTpoyp(m | ze) o)
t

p(m | xl:t)
= p(m | Ty, Zt’) (36)
Hi/ 1p(m ‘ xt’) 1;/[[1
ming ot Hp m | xy, zy) (3.7)
=1
77/
¢
= n - Hp(m | 2y, 2). (3.8)

t'=1

Eq. (3.7) is obtained from Eq. (3.6) by assuming thaits independent af; given we
have no observations. The variabferepresents a normalization constants ensuring
that the left-hand side sums up to one ovemallWe assume that the individual cells
of a coverage map are independent. This is not true in gererais frequently used

in the context of grid maps. We would like to refer to a work dy@n[2003 on how
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to better deal with the dependency between cells. Finalyoltain

t
plm |z, 20) = o -] [] plelze, 20) (3.9)
t'=1cem
t
= 7. H Hp(c | @y, 200). (3.10)
cemt'=1

Thus, to update a map given a measuremente simply have to multiply the current
belief about the coverage of each celly the belief about the coverage resulting from
2. The maximum likelihood coverage map is obtained by chapsie mode of the
coverage histogram for each cell

It remains to describe how we actually comppte | =, z), i.e. how we determine
the distribution about the potential coverage values oflaccgith distancedist(c, x;)
to the sensor given a measurementIn our current system, we use a mixture of a
GaussianV (i, o) and a uniform distributiory to describe the probability distribution
p(c | =, z;) about the coverage of

plc| z,ze) = ~(dist(e,zy), z) +
E(z¢) - N(u(dist(c, ) — 2z), o(dist(c, zy), ),  (3.11)

where¢(z;) is an indicator variable about the validity of the obsemwati;. In casez;

is @ maximum range reading(z;) equals zero otherwise it is ondist(c, ;) is the
euclidian distance between the center of the ea@hd the position of the robot (the
sensor) at time.

The value of the uniform distribution(dist(c, z;), z;) increases withiist(c, x;)
and the measured distanece This reflects a typical property of proximity sensors
like sonars, because the accuracy of a measurement decveiséhe distance to the
obstacle. The megn(z) of the Gaussian is computed in the following way:

0
pa) = 14z ol <t (3.12)
1

Herer is the resolution of the grid discretization. We distindutbree situations,
depending on whether the measurememnds inc or not. Suppose that the measure-
ment does not end inand the distancédist(c, ;) is shorter thar,. In this case, we
havedist(c,z;) — z < —3. In such a situation, the mean of the Gaussian is zero.
In this way, we assume that a cell which is covered by a meamntthat does not
end within this cell is most likely empty. The second line af. E3.12) represents the
situation in whichz ends withinc. In this case, the mean is inverse proportional to
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p(coverage)
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Figure 3.3: This picture shows our sensor mqdel| x;, z;) for a proximity measure-
ment (here for a sonar reading with a measured distgred m).

the area the cell is covered hy. Finally, cells lying a small distance behind a cell,
in which the measurement ends, are most likely completetypied so that the mean
is 1. This value which is set to 20 cm in our implementation eiedhe thickness of
the walls and objects in the environment.

The value of the standard deviatietdist(c, z;), z;) of the Gaussian is also a func-
tion that is monotonously increasing ifist(c, x;) and z, except whendist(c, z;) —
z| < 5. Inthisinterval,o(dist(c, z;), z,) has a constant value that exceeds all values
outside of this interval.

To obtain the optimal parameters for the various functionsur sensor model
shown in Eq. (3.11), we apply the maximum likelihood prineipWe used data sets
recorded with a B21r robot in our department building usiogas and laser observa-
tions. We then compared the resulting maps build with thessensors to the ground
truth map obtained by applying a highly accurate scan-aligmt procedurfHahnelet
al., 2004 on the laser range information. We can easily compute thet exaerage of
each cell of a given discretization by straightforward getim operations. We evalu-
ate a particular set of parameters by computing the likelihaf the ground truth map
given the corresponding coverage map and by applying a &szaich techniques to
determine a parameter setting that maximizes the liketihaddhe ground truth map.

Figure 3.3 depicts a fraction of the resulting sensor medel| z;,z;) for the
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Figure 3.4: The top image depicts a coverage map learneddtmasound data using
our sensor model and map update technique. In this expetimest of the obstacles
fit into the grid discretization and therefore only a few sedhow partly occupied
cells. The lower image illustrates the corresponding gdotath map learned from
laser range data.

ultrasound sensors. As the plot illustrates, for a meastistence of 1 m, cells close
to the robot are with high likelihood unoccupied. Cells eldke measured distance
are covered with a high likelihood.

The maximum likelihood coverage map obtained with this nhaglshown in the
top image of Figure 3.4. The size of the environment depittetiis figure is 17m
by 2.6 m. The lower image of this figure shows the ground trusipmAs can be seen
from the figure, the similarity between the learned map aedytiound truth is quite
high.

3.4 Decision-theoretic Exploration with Coverage Maps

One of the key problems during exploration is to choose gppate viewpoints. In
general, there are different aspects that are relevanth©arte hand, the uncertainty
of the robot about the current state of the map should be d$asn@ossible and on the
other hand, the number of measurements to be incorporagexhieve this uncertainty
reduction as well as the traveled distance should be mieithiz

Coverage maps are well-suited to support a decision-ttie@eproach to explo-
ration. To determine the uncertainty in the state of a paldiccell, we consider the
entropy of the posterior for that cell. Entropy is a generabsure for the uncertainty
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of a belief and is defined as

H(p(z)) = - / p(x) - log p(x) de. (3.13)

xT

In case a histogram is used to represent), the integral turns into a sum over the
bins of the histogramH is maximal in case of a uniform distribution. The minimal
value of zero (in the case of a discrete posterior) is obthiithe system is absolutely
certain about the state of the corresponding cell. To miréntihe uncertainty in the
current map, all we need to do is to reduce the entropy of tthgigual histograms in
the coverage map since the cells are assumed to be independen

The entropy also allows us to define when the explorationftaskbeen completed.
We regard the exploration task as completed as soon as the nedrhes a defined
level of certainty about the map. This is a more appropriatgae than regarding an
environment as explored as soon as all (reachable) celks lbeen covered with the
robots’ sensors. Suppose the environment is of limited diken, we define the goal
of the exploration process for a coverage mas H (p(c)) < e for all cellsc € m
that can be reached by the robot. The valueadscribes the desired level of certainty
about the state of all cells. Additionally, the system hadetect a situation in which
the robot is unable to reduce the entropy of a cell beldw ensure the termination
of the exploration task. In our system, this is achieved byitooing the change of
entropy. If this change is below a threshold value for contee measurements, the
cell is regarded as explored.

In this section, we specified the termination criterion for exploration task based
on the entropy in the map model. In the following, we explaiwtwe actually guide
the robot through the environment.

3.4.1 Choosing the Closest Target Location (CL)

A popular exploration strategy is to drive to the closesatamn at which the robot can
gather information about a cell that has not been suffigiesiplored. This strategy
has been shown to provide short trajectories for singletrekiloration taskfKoenig
and Tovey, 200B As mentioned above, our approach uses the entropy to nesthsur
uncertainty about a grid cell. A cell is regarded as beencgaeifily observed if the
entropy of the coverage belief does not exceeu if it does not change any longer.
The first strategy, called CL, does not take into account hawhinformation will be
obtained at a particular viewpoint. It rather seeks to minéhe distance to the next
point by selecting

¢* = argmin dist,,(z, c). (3.14)
ceL(m)
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Here L(m) is the set of reachable cells which have a grid cell with higtnapy in its
visibility range. dist,, (z, ¢) is the length of the shortest path between the current pose
x of the robot and the locationgiven the current map: of the environment.

3.4.2 Exploration using the Information Gain (IG)

The second strategy, called IG, is solely governed by thernmétion gain that can
be obtained about the environment at a specific viewpoine ififormation gain is
used to take into account the accuracy of the informatiomigeal by the sensor. We
compute the expected information gain which is the expedtetige of entropy given
that the robot obtains a measurement at a certain locatithreimap.

For a given celk and measurementtaken fromz, the information gain is defined
as

I(C,fIJ, Z) = H(p(C)) - H(p(c | x?'z))' (315)

Herep(c) is the coverage histogram of celandp(c | z, z) the same histogram after
integrating the measurementaken from the pose according to our sensor model.
The information gain of a measurement is then computed asuimeof the informa-
tion gains for all cells covered by that measurement. Sineedw not know which
measurement we will receive if the robot measures at a cegptasitionz, we have to
integrate over all possible measurements to compute thecgegbinformation gain for
that viewpoint

E[l(z)] = /p(z|m,x)- Z I(c,x,z)dz. (3.16)

ceCov(z,z)

Here Cou(z, z) is the set of cells covered by measuremeiaken from locatione.

In order to estimat&ov(x, z), we apply a ray-casting technique based on the current
maximum likelihood map. Considering only the maximum likebd map to com-
pute the observatiop(z | m, x) is an approximation but it allows us to compute this
guantity in an efficient way. In our approach, we take intooaett a discretized set of
proximity measurements. In this way, the integral turne Bnsum

E[I(z)] ~ Zp(z|m,x)- Z I(c,x, 2). (3.17)

ceCov(z,z)

Since the complexity of EqQ. (3.17) depends exponentiallthemumber of dimensions
of the measurement, we consider all dimensions indepelydédtherwise the com-
putation would be intractable. For example, for our B21motoblbert (see Figure 3.5)
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Figure 3.5: The left image depicts the B21r robot Albert usedarry out the experi-
ments. Albert is equipped with ring of 24 ultrasound sensdhe other images show
photographs taken within the corridor of our office enviramn

equipped with 24 ultrasound sensors, we compute the avaragenation gain over
all 24 sensors independently.

To evaluate a potential viewpoint, we generate a set of piatgaroximity obser-
vations. This set is given by all possible distances themearan return up to a given
resolution. In our current implementation, we simulatepadiximity observations be-
tween 20 cm and 2.5 m with a resolution of 2 cm. We then detexiiia likelihood for
each observation and its effect on the entropy of the maps Jimulation process is
computationally intensive, but it provides the expectetliction of entropy for each
grid cell in the map. This information is required when segkior exploration strate-
gies that minimize the uncertainty in the map model. In owprapch, we consider
each grid cellc as a potential next viewpoint and select the one which pesvitie
highest expected entropy reduction

¢* = argmax E[I(c)]. (3.18)

ceL(m)

In extensive experiments, we figured out that an approadhptiraly relies on the
information gained at particular viewpoints usually miiges the number of mea-
surements needed to learn a map. However, it has the magmhaistage that it does
not take into account the overall path length of the resgitiajectory.

3.4.3 Using IG in a Local Window (IG_WIN)

To overcome the disadvantage that the strategy |G doesk®irt® account the over-
all path length of the resulting trajectory, we defined thiatsgy IG_WIN. This tech-
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nique restricts the search for potential viewpoints to allegndow. This window
defines an area in the environment the robot has to explorpletety before focusing
on a different area. The next viewpoint can be determined by

¢* = argmax F[I(c)]. (3.19)

CE Lyin(m)

Here, L,;,(m) refers to the potential goal locations which are locatechim Ibcal
window. Once the window has been explored, there is no neetiéaobot to return
to this area again. As we point out in the experiments, thiauée to be traveled can
be significantly reduced using this strategy.

3.4.4 Combination of IG and CL (IG_CL)

The final strategy discussed in this chapter tries to conmbi@@roperties of the strate-
gies CL and IG. The goal is to find the best trade-off betweeretpected information
gain E[I(c)] of possible viewpoints € L(m) and the costglist,,(z, c) of reaching
them. This is achieved by combining Eqg. (3.14) and Eq. (3.18)

¢* = argmax a- Elle)
ceL(m) maXeerm) £[1(c')]
dist,,(x, c)

—(1—a)- (3.20)

MaXyer(m) disty,(x, )

The normalization in Eq. (3.20) is performed to account Far fact that it is unclear
how to subtract a distance from an information gain. Thesgfee subtract the relative
cost from the relative information gain. As we show in theexments of this chapter,
this leads to a well balanced exploration behavior.

Eq. (3.20) combines the advantages of the strategies |G anid i€duces the distance
to be traveled by the robot and the number of measuremenessey to achieve the
desired level of certainty. By adapting the weighthe user can easily influence the
behavior of the robot and optimize its performance for a gppeask. A value close
to zero results in the strategy CL, whereas a value close o dgntrast leads to a
strategy that only considers the information gain.

3.5 Exploration Using Occupancy Grid Maps

In general, the decision-theoretic exploration technigpesented in this chapter is not
restricted to coverage maps. As long as the underlying nfaesentation allows the
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robot to compute the uncertainty of a local area like a gridi @ne can also compute
the entropy of an occupancy grid celas

H(p(c)) = —p(c)logp(c) — (1 —p(c))log(l —p(c)). (3.21)

An occupancy grid map can also be seen as a coverage map asergg@e histograms
with two bins. Since each cell is represented by a binaryabée the amount of
information stored per cell is small compared to coveragpsnda his is due to the
fact that coverage maps allow to model partly occupied egltsuse a full histogram
instead of a binary variable. We therefore chose this reptation for our approach
presented in this chapter.

3.6 Experimental Results

Our techniques described above have been implemented ahdhtad using a real
robot as well as in simulation runs. In our experiments, the of coverage maps
with our decision-theoretic viewpoint selection stratégg shown an advantage over
standard exploration strategies often used in combinatitim occupancy grids. We
figured out that whenever a robot has to actively control isioms in order to acquire
all information necessary to generate an accurate mapntestainty-driven approach
is of utmost importance.

The experiments described in this section are designetlirate that coverage
maps in combination with our sensor model can be used to l@gmquality maps
even if noisy sensor are used. We demonstrate that they aiaawdecision-theoretic
control of the robot during exploration. We furthermore gare our method to the
scan counting technique for exploration. Scan countinggstfor each cell the number
of times it has been observed and in this way decides if a ealldeen sufficiently
explored. As we show, the use of scan counting leads to ddhger trajectories than
our approach or to less accurate maps.

Please note that the simulation of potential observatigneseces is computation-
ally expensive. In our experiments, the robot had to stagr @fteached its viewpoint
in order to evaluate future actions. Therefore, we do nosiclamn measures like aver-
age speed of the robots in this chapter.

3.6.1 Mapping with Noisy Sensors

The first experiment is designed to illustrate that we oblteghly accurate coverage
maps using our sensor model. In this real world experiméetntobile robot Albert

explored parts of our office environment using our deciglmoretic viewpoint selec-
tion technique. Albert traveled along the corridor and exdé¢hree rooms. The middle
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Figure 3.6: This figure depicts a coverage map learned byrAllseng its ultrasound
sensors in the environment depicted in Figure 3.5. In thenifiag view, partly occu-
pied cells are visible (grayish cells). The size of each geitiwithin this map is 10 cm
by 10cm.

and the right image of Figure 3.5 show pictures of this emriment. As can be seen,
there are lots of glass panes which are hard to map with alireds. The resulting
coverage map is shown in Figure 3.6. We would like to empleasiat even smaller
details such as the narrow pillars at the walls are visibta@resulting map. The left
image of this figure shows a magnified view on partly occupmtsc

Figure 3.7 depicts snapshots of an exploration experinrettteé same environ-
ment using the exploration strategy IG_CL. The individuahges depicts the map
constructed so far as well as the entropy values of the iddalimap cells. The darker
the value, the higher the entropy. The red points represenseétl(m), which is
the set of potential target locations the robots consideepproach. As can be seen,
the robot explores the environment until the £ét) is empty, which means that all
reachable cells and their direct surroundings have a lovopytvalue.

Another example for a coverage map build from real sonaridadapicted in the
top image of Figure 3.8. The sonar data (see lower image cfaime figure) has been
recorded while the robot was controlled manually using &tjoik. Since the robot
was not performing an exploration task it did not enter anthefrooms close to the
corridor.

3.6.2 Comparing the Viewpoint Selection Strategies

Robots performing 2D exploration tasks with sonars or lasege scanners typically
integrate every sensor measurement because the amourtaas daasonably small
and easy to integrate. In this section, we also considerithati®on that analyzing a
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Figure 3.7: The images show snapshots during an exploraxiperiment. The upper
parts of each image shows the current map and the lower onesponding entropy.
Darker values in the lower image indicate higher entropy.e Ppbses of the robot
is indicated by the blue circle in the upper parts. The rechigoindicate potential
viewpoints.
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Figure 3.8: The top image depicts a coverage map build frarorded sonar data at
the University of Washington. The lower image shows 2% ofaliar scans used to
build the map above and illustrates the high noise in the areazent data.

measurement produces high costs. This might by the case éxample, the distance
information needs to be extracted from stereo images. |h awituation, the number
of measurements needed for the exploration task is a valintevést.

As mentioned above, one of the major advantages of our decibeoretic explo-
ration technique is that they allow us to integrate the uad®ly in the map model
into the selection process of the next viewpoint. The expenis in this section are
designed to compare the performance of the different gfiegeising the traveled dis-
tance and the number of required observations as measurearifjoout the experi-
ments, we varied the size of the local window when using IGN\Athd the weightv in
the evaluation function shown in Eq. (3.20). In Figure 3h@, numbers behind IG_CL
show the value of the weight and the numbers behind IG_WIN indicate the radius
of a circle which defines the window. The results have beeniodt using 20 runs
per strategy. Please note that further experiments caouédh alternative environ-
ments showed similar results. The maximum allowed entrapingd all experiments
described in this section was set to 0.6 (using 11 histogiias).b

The left graph in Figure 3.9 shows the average number of meamsnts necessary
to complete the exploration task for each strategy. As caseba from the figure, the
strategy 1G needs the minimum number of measurements. Tdtegy IG_CL with
a = 0.5 needs approximately the same number of measurements aféGtrategy
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Figure 3.9: The left graph shows the average number of meamunts needed by
different strategies. The right one depicts the averagle leaigth of the exploration
for each strategy. The value behind IG_WIN shows the sizé®tfdcal window and
behind IG_CL the value of the parameter The errorbars show the 5% significance
interval.

CL requires the maximum number of measurements compardtdthar strategies
considered here. The reason is that it only seeks to minithe@ath length without
considering the information gained at particular locagion

In our experiments, we found that a nearest neighbor views®lection strat-
egy like CL outperforms an approach considering the infaionagain if the robot is
allowed to integrate measurements while it is moving (assgrthat the acquisition
and integration of measurements can be done fast). Thiseaedn in right image
of Figure 3.9 which plots the average path length driven leyrtbot during the ex-
ploration task for all different strategies. With respexthe path length the strategy
CL shows the best behavior as the resulting trajectorieslaoeter than those of all
other techniques. In contrast to that, the 1G strategy igstine distance to be driven
and therefore produces an extremely long path which resuttee worst behavior of
all strategies. The IG_CL strategy with = 0.4 appears to yield a good trade-off
between the number of measurements and the overall patthleAgcording to our
experiments, it slightly outperforms the IG_WIN strategy.

3.6.3 Advantage over Scan Counting

The next experiment is designed to illustrate that an agbradnich considers the un-
certainty in the belief of a cell to select viewpoints yielti®re accurate maps than
techniques relying on scan counting approaches. Scaninguethniques store for
each cell the number of times this cell has been interceptadibeasurement. Several
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Figure 3.10: The top image depicts an occupancy grid mapraatavith scan count-
ing (n = 1). The bottom image shows the corresponding coverage map.

| technique | path length | [{c | H(h(c)) > €}] |
coverage maps 89.1m 0%
counting (n=1) 26.6m 21%
counting (n=50)] 90.6m 1.5%

Table 3.1: This table shows the path length and number of egth high entropy
for different exploration strategies. The values are oiadiby a series of real world
explorations runs performed in our department.

exploration techniquelBurgardet al., 2002, Edlinger and von Puttkamer, 1994, Ya-
mauchiet al, 1999 use scan counting and assume that a place is explored if it has
been scanned once. This can be problematic especially wleetmnderlying sensors
are noisy. Figure 3.10 shows a typical occupancy grid majpeotorridor at our labora-
tory obtained from real sonar data and using this approaltthogh this map reveals
the structure of the environment, it lacks several dethiés &re contained in the cor-
responding coverage map obtained with our uncertaintyedréxploration technique.
Since the exploration process stops as soon as all readbabt®ns were intercepted
by a measurement at least once, typically many cells of th@tieg map have a high
uncertainty. Especially, if noisy sensors are used thetrbas to scan cells multiple
times. This leads to an extension of scan counting in whiehassumes that each cell
has to be covered times and not only once. In practice, it is unclear how to o0
the value forn. A candidate value could be the maximum number of measuresmen
necessary for obtaining a coverage map that fulfills theopgtthreshold criterion.
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To analyze the quality of occupancy grid maps obtained ftbewdint values of,
we performed several experiments. The results:fer 1 andn = 50 are summarized
in Table 3.1 (in practical experiments we found that= 50 yields coverage maps
that typically fulfill the entropy criterion for the majoyiof grid cells using ultrasound
sensors). The right column of this table contains the péacgnof cells in m for which
the entropy exceeds the given threshold. As can be seen frerfigure, more than
20% of the cells do not fulfill the entropy criterionmif= 1. In the case of = 50, still
1.5% of the cells are above this threshold. In contrast g thir approach considers
the uncertainty in the coverage of the individual cells sat the resulting maps are
more accurate. As this experiment demonstrates, evendedestan counting does
not guarantee that in the end every cell is explored suffiljiefypically, some cells
will be measured too often, others not often enough.

To analyze the relationship between the overall distarsseeted and the percent-
age of sufficiently explored cells, we performed a seriedddifulation experiments.
In these experiments, we forced the robot to reach a scart cbunwheren varied
between 1 and 130. We counted the number of cells that wefieisafly explored
given the entropy criterion for coverage maps and plottedj&inst the length of the
overall path. The resulting graph is shown in Figure 3.11e Gitoss on the right side
indicates the path length obtained when using our exptoratirategy IG_CL for cov-
erage maps. If one requires that 85% or more of the ealfsthe map should satisfy
H(h(c)) < € (heree = 0.6), a decision-theoretic exploration strategy yields sort
trajectories than extended scan counting.

3.7 Related Work

Exploration is the task of guiding a vehicle during mappiagtsthat it covers the envi-
ronment with its sensors. In addition to the mapping tadigieht exploration strate-
gies are also relevant for surface inspection, mine swegepinsurveillancéChoset,
2001a, Massiost al,, 2001. In the past, several strategies for exploration have been
developed. A popular technique is to extract frontiers leetwknown and unknown
areag[Burgardet al,, 2002, Koeniget al,, 2001b, Yamauchi, 1998, Yamaugdti al.,
1999 and to visit the nearest unexplored place. Koenig and Tt2@9d3 have shown
that such a strategy which guides the vehicle to the closestplored point keeps the
traveled distance reasonably small compared to the shaorégsctory which covers
the whole environment. Most approaches applying such aiget solely distinguish
between scanned and unscanned areas and do not take intmtatte® actual infor-
mation gathered at each viewpoint. To overcome this linoitetGonzélez-Bafos and
Latombe[2001] determine the amount of unseen area that might be visibhetmbot
from possible viewpoints. To incorporate the uncertairftthe robot about the state
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Figure 3.11: This image shows the resulting path length ¢anscounting obtained
using a simulator. The cross shows the average path length uwging coverage maps.

of the environment, Moorehead al.[2001] as well as Bourgoukt al.[2009 use oc-
cupancy grids and compute the entropy of each cell in thetgritttermine the utility
of scanning from a certain location. Whaite and Fefti@97 have presented an ap-
proach that also uses the entropy to measure the unceriaity geometric structure
of objects that are scanned with a laser range sensor. Iresbitd our work, they use
a parametric representation of the objects to be scanned.

Grabowskiet al.[2003 present an exploration technique based on occupancy grids
which is optimized for sonar sensors. In their approachrabet is forced to observe
obstacles from different angles. In this way, they obtaiargbr boundaries between
obstacles and free space area. To select the next viewpoaytchoose the closest
one.

Edlinger and von Puttkamé¢i994 developed a hierarchical exploration strategy
for office environments. Their approach first explores roantsthen traverses through
doorways to explore other parts of the environment. Taitat Kriegman[1993 de-
scribe a system for visiting all landmarks in the environtridrthe robot. Their robot
maintains a list of unvisited landmarks that need to be agpgred and mapped by the
robot. Dudeket al.[1991] propose a strategy for exploring an unknown graph-like
environment. Their algorithm does not consider distanc&ioseand is designed for
robots with very limited perceptual capabilities.

Additionally, several researchers focus on the problenmofikaneous localization
and mapping during exploratidiBourgoultet al,, 2002, Choset, 2001b, Makarenko
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et al, 2004, an aspect that we do not address in this chapter. We assanthéh
relative pose information of the robot is accurate enougimtiegrate a sequence of
measurements correctly into a grid map.

Our representation of the environment can be seen as ansexiesf occupancy
grid maps introduced by Moravec and EIfd984 (see also Chapter 2). Coverage
maps are able to model partly occupied cells and providestmoleason about the
uncertainty of the system about the state of grid cells. Gaegbto occupancy grids,
our approach is a richer representation because it can rstore information about
cells. As a result, it has the disadvantage of high memonyirements since it stores
histograms instead of a single probability values. Furttwee, the update of the cells
upon sensory input is computationally more expansive.

Very recently, our exploration framework including covgeanaps have been reim-
plemented by Rochat al. [2005 and applied to a stereo camera sensor instead of
sonars. In their system, they use the concept of coverags toamuild up a three-
dimensional grid instead of a two-dimensional one. A furitiéference to the work
presented here is that they compute a gradient field basduecentropy to generate
smoother trajectories for the robot. Their experimentdicmed the results reported
in this thesis: Experimental results obtained with a real robot and stevexien suc-
cessfully validated the proposed framewolRochaet al., 2009.

3.8 Conclusion

In this chapter, we introduced coverage maps as a prokabrepresentation scheme
for grid-based maps built by mobile robots from sensor dataerage maps store in
each cell a posterior about the coverage of that cell. Inwlig, they offer the op-
portunity to model partly occupied cells. We also developesgnsor model designed
to update coverage maps upon sensory input. We then prdsediecision-theoretic
approach to guide a vehicle during exploration. This teghaiuses the coverage pos-
terior in the map to reason about the uncertainty of the rabotit each location in the
environment. It simulates potential observations to baiokd at the different target
locations and takes into account their effect on the map indde goal is to choose
the viewpoint that minimized the overall uncertainty in thap model.

Our technique has been implemented and evaluated in exg¢esisnulation runs
and in real world experiments. The experiments illustraigt by using coverage
maps it is possible to build accurate maps even with noisg@sn Additionally, they
demonstrate that our decision-theoretic exploration @ggr can be used to control a
robot in order to obtain maps not exceeding a given level oéuainty, which is useful
especially if the robot uses noisy sensors such as ultrasolxperiments analyzing
different exploration strategies indicate that a techaigombining the maximum un-
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certainty reduction and the distance to be traveled yiéld$est trade-off between the
number of necessary measurements and the length of thémgsaths.
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Chapter 4

Coordinated Multi-Robot Exploration

4.1 Introduction

n the previous chapter, we introduced a framework for mabitet exploration.

The goal of our approach was to select appropriate viewpantasingle robot

in order to build a map with low uncertainty. In contrast tatthwe consider

in this chapter the problem of exploring unknown environtsemth ateam of
cooperating robotsThe use of multiple robots is often suggested to have adyast
over single robot systen{€aoet al, 1997, Dudeket al, 1994. First, cooperating
robots have the potential to accomplish a task faster thangéesrobot[Guzzoniet
al., 1997. By using several robots, redundancy can be explicitelpéhiced so that
such a team can be expected to be more fault-tolerant thamgke spbot. Another
advantage of robot teams arises from merging overlappingosenformation, which
can help to compensate for sensor uncertainty. As a rekalingp can be expected
to be more accurate. Multiple robots have also been showacalite themselves
more efficiently, especially when they have different sercspabilities[Fox et al,,
1999a, Rekleitigt al, 2001.

However, when robots operate in teams there is the risk effarence between
them[Schneider-Fontan and Matéyi1998, Goldberg and Mat&ti1997. For exam-
ple, if the robots have the same type of active sensors suglirasound sensors, the
overall performance can be reduced due to cross-talk. The mbots that are used,
the more time each robot may spend on detours in order to aadlidions with other
members of the team. Efficient exploration techniques thek $0 minimize the over-
all time to complete the task should consider techniquesstoilolte the robots over
the environment and to reduce the number of redundantlyexglareas.

Most approaches to multi-robot exploration proceed in tleding way. First, a
set of potential target locations or target areas is detexdhiSecondly, target locations
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are assigned to the individual members of the team. The sdhenh approach those
target locations and include their observations obtainedgathe paths into a map.
This process is repeated, until the environment has coslpleéen explored. A stop-
ping criterion can be a threshold on the entropy as appli¢idemprevious chapter or a
scan counting technique (see Section 3.6.3) which reqthieg®ach cell is covered at
least once by the sensor of one robot.

In this chapter, we present an algorithm for coordinating@ug of robots that
enables them to efficiently explore their environment. Tbal gs to complete the task
as fast as possible. Our technique assigns a utility to eagettlocation and follows
a decision-theoretic approach to explicitly coordinate tbbots. It does so by max-
imizing the overall utility and by minimizing the potentitdr overlap in information
gain amongst the various robots. The algorithm simultaglgawonsiders the utility of
observing unexplored areas and the cost for reaching threas.aBy trading off the
utilities and the cost and by reducing the utilities accegdio the number of robots
that are already heading towards this area, coordinatiachgved in an elegant way.
The basic idea of discounting the utility of target locasdhat might be visible by a
different robot has originally been presentedMoors, 2000 and has been integrated
into two different systemiBurgardet al., 2000, Simmonst al., 200d.

In practice, one also has to deal with problems like limitechmunication ranges
of the network that limit the ability of the vehicles to excgg data. Naturally, the
task of exploring a terrain with limited communication ranig harder than without
this constraint. If the distance between the robots becdawekarge to be bridged by
the wireless network or if a temporal network error occurbots may explore an area
another robot has already explored before, which can leadstaboptimal behavior.
We describe how to use our algorithm with robot teams thatigeoonly a limited
communication range.

Our technique has been implemented on teams of heterogeneoots and has
been proven to work effectively in real-world scenarios.d#idnally, we have car-
ried out a variety of simulation experiments to explore thepgrties of our approach
and to compare the coordination mechanism to other appesatdveloped so far. As
the experiments demonstrate, our technique significaatiyees the time required to
completely cover an unknown environment with a team of relcoimpared to an ap-
proach which lacks our centralized coordination. We alstster other coordination
techniques and provide comparisons to our approach. Fortie, we describe ex-
periments in which we analyze our algorithm in the contextains of mobile robots
with a limited communication range.

The rest of this chapter on multi-robot exploration is otigad as follows. In the
next section, we present the decision-theoretic approacdoardinated exploration
with mobile robots. In Section 4.3, we briefly describe thehteque used by our
system to acquire and communicate maps of the environmewtio8 4.4 presents a
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series of experiments carried out with real robot systendsimisimulation and Sec-
tion 4.5 provides comparisons to exiting coordination tegbes. Finally, we discuss
related work in Section 4.6.

4.2 Coordinating a Team of Robots during Exploration

The goal of the exploration process is to cover the wholerenment in a minimum
period of time. Therefore, it is essential that the robotgkieack of which areas of the
environment have already been explored. Furthermore pthats have to construct a
global map online in order to plan their paths and to cooneitiaeir actions. We first
assume that at every point in time both, the map of the arelmexpso far and the
positions of the robots in this map, can be communicated d@tvthe robots. We
focus on the question of how to coordinate the robots in otdezfficiently cover
the environment. We then consider the situation in whichrtimts have a limited
communication range.

In this chapter, we focus on the coordination aspect of theoeation problem.
Since we deal with large teams of robots, we are interesté@eping the memory
requirements small. We therefore use standard occupamnty igstead of coverage
maps to model the environment since they store only a biremgam variable for
each cell instead of a histogram. In case we had enough meeswyrces available,
coverage maps would have been a better choice. Howeverptirdioation aspect
can be regarded as independent from the underlying repgegsen We furthermore
assume throughout this chapter that “exploredness” is @aypiconcept, since we fo-
cus on the coordination aspect. We regard a cell as explaatd@n as it has been
intercepted by a sensor beam. This concept is also knowraascsainting.

To guide the exploration process, we adopt the notation aftiers which has
originally been introduced by Yamaucki99d. As a frontier cell we denote each
already explored cell that is an immediate neighbor of amonln, unexplored cell.
If we direct a robot to such a cell, we can expect that it gaifisrmation about the
unexplored area when it arrives at its target location. Hut that a map generally
contains several unexplored areas raises the problem ofd@sgign exploration tasks
represented by frontier cells to the individual robots. liltiple robots are involved,
we want to avoid that several of them move to the same locafiordeal with these
problems and to determine appropriate target locationthiindividual robots, our
system uses a decision-theoretic approach. We simultaheoonsider the cost of
reaching a frontier cell and the utility of that cell. For baobot, the cost of a cell is
proportional to the distance between the robot and that ddlé utility of a frontier
cell instead depends on the number of robots that are mowititat cell or to a place
close to that cell.
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In the following sections, we describe how we compute thd obseaching a
frontier cell for the individual robots, how we determine ttility of a frontier cell,
and how we choose appropriate assignments of frontier toeftsbots.

4.2.1 Costof Reaching a Target Location

To determine the cost of reaching a frontier cell, we comth#eptimal path from the
current position of the robot to all frontier cells based ategerministic variant of the
value iteration a popular dynamic programming algoriti®ellman, 1957, Howard,
196d. In the following,c, , corresponds to the-th cell in the direction of the-axis
and they-th cell in direction of thegy-axis of the two-dimensional occupancy grid map.
In our approach, the cost for traversing a grid egl| is proportional to its occupancy
valuep(c, ,). The minimum cost path is computed using the following twepst

1. Initialization. The grid cell that contains the robot location is initiatiagith O,
all others withoo:

Vx?y

0, if (z,y) is the position of the robot
oo, otherwise

2. Update loop. For all grid cellsc, , do:

V:Jc,y «~— min {V:B+A:Jc,y+Ay + Az? + Ay2 ' p(cx+A:v,y+Ay> |

AIL’, Ay € {_17 07 1} A p(cx-i-Ax,y-i—Ay) € [07 Occmax]}a

whereocc,,q, is the maximum occupancy probability value of a grid cell tbiot is
allowed to traverse. This technique updates the value gjrallcells by the value of
their best neighbors, plus the cost of moving to this neighHere, cost is equivalent
to the probabilityp(c,,) that a grid cellc, , is occupied times the distance to the
cell. The update rule is repeated until convergence. Theh ealuel, , corresponds
to the cumulative cosbf moving from the current position of the robot tp,. The
convergence of the algorithm is guaranteed as long as thécosaversing a cell is not
negative and the environment is bounded. Both criteria@dfdléd in our approach.
The resulting cost functioiv can also be used to efficiently derive the minimum cost
path from the current location of the robot to arbitrary geasitionsc, ,. This is done
by steepest descent in, starting at, ,,.

The computation o is done independently for each robot. This allows us to
coordinate also heterogenous teams of robots. For examptot traveling faster
than its team mates can be modeled by assigning lower tragtltc this vehicle.
As a result, this robot will be send to more distant targettimns compared to its
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(b)

Figure 4.1: Typical cost functions obtained for two diffieteobot positions. The black
rectangle indicates the target points in the unknown aréaminimum cost.

team mates. Additionally, it is possible to model robots iffedent size. This can be
achieved by expanding the size of the obstacles in the mapeg obbots individually.

Figure 4.1 shows the resulting cost functions for two défeémrobot positions. The
black rectangle indicates the target point in the unknovea avith minimum travel
cost. Note that the same target point is chosen in both gitwgat Accordingly, if the
robots are not coordinated during exploration, they woutivento the same position
which obviously is not optimal.

Our algorithm differs from standard value iteration in thiaegards all actions of
the robots as deterministic, which seriously speeds updimgatation. To incorporate
the uncertainty in the motion of the robots into the process ® benefit from the
efficiency of the deterministic variant, we smooth the inmaps by a convolution
with a Gaussian kernel. This has a similar effect as gerysvaierved when using the
non-deterministic approach: It introduces a penalty fayistg close to obstacles so
that the robots generally prefer to move in open spaces.

4.2.2 Computing Utilities of Frontier Cells

Estimating the utility of frontier cells is more difficultnifact, the actual information
that can be gathered by moving to a particular location isl harpredict, since it

strongly depends on the structure of the corresponding bl@aever, if there already
is a robot that moves to a particular frontier cell, the tytitif that cell can be expected
to be lower for other robots. But not only the designateddtigcation has a reduced
utility. Since the sensors of a robot typically cover a dertagion around a particular
frontier cell as soon as the robot arrives there, even thea®gd utility of frontier cells
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in the vicinity of the robot’s target point is reduced.

In this section, we present a technique that estimates feceed utility of a fron-
tier cell based on the distance and visibility to cells that @ssigned to other robots.
Suppose that in the beginning each frontier gethas the utilityU; which is equal
for all frontier cells if no additional information aboutetusefulness of certain posi-
tions in the environment is available. Whenever a targettgpis selected for a robot,
we reduce the utility of all frontier cellg’ close tof. This is done according to the
probabilityp,;s(f, f') that the robot’s sensors will covéf given the robot moves tf.

One can estimate,;;(f, f’) by learning a posterior about the estimated distances to
be measured. The longer the average proximity measurerenis an environment,
the more likely the target’ can be observed frorfi. While the robot moves through
the environment, this posterior can be updated and in thisadapt to the spacial
structure.

Accordingly, we compute the utility/ (f,, | f1, ..., fn_1) of a frontier cellf,, given
that the cellsfy, . . ., f,_1 have already been assigned to the roliots. ,n — 1 as
n—1
U(fn | flv---afn—l) - Ufn_zpvis(fnvfi)' (41)

i=1

The more robots move to a location from whefgis likely to be visible, the lower

is the utility of f,,. Note that we also take into account whether there is an clesta
between two frontier cellg and f’. This is achieved by a ray-casting operation on the
grid map. If there is an obstacle betwegand f’, we setp,;s(f, ') to zero.

The obtained function fop,;, typically has the shape of a decreasing, more or
less linear function. The gradient of that function was ggitmilar for different envi-
ronments. We observed only small differences in the respbixploration time when
applying the learned posteripy;, in a different environment. We therefore use a linear
function to represent,;; and use the same parameters for all environments according
to

Puis (f f’) = {1'0_%7 if ||f— f'|| < maz_range

4.2
0, otherwise, (4.2)

wheremazx_range is the maximum range of the used proximity sensor.

4.2.3 Target Point Selection

To compute appropriate target points for the individuabtsbwe need to consider for
each robot the cost of moving to a location and the utilityhaetiocation. In particular,
for each robot we trade off the cosvfi to move to the locatiorf and the utilityU;
of f.
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To determine the assignment of target points to robots, weeansiterative ap-
proach. In each round, we compute that tuple’) where: is the number of a robot
and f is a frontier cell which has the best overall evaluation— 5 - V; (Whereg is
a constant as explained below). We then recompute theiagiltf all frontier cells
given the new and all previous assignments according toZg). (Finally, we repeat
this process for the remaining robots. This results in Athan 4.1. The complexity
of this algorithm isO(n? - F') wheren is the number of robots anfd is the number of
frontier cells.

Algorithm 4.1 Goal assignment for coordinated multi-robot exploration.
1: Determine the set of frontier cells.

Compute for each robatthe costV;' for reaching each frontier cefl.
Set the utilityU; of all frontier cells to 1.
while there is one robot left without a target podu

Determine a robot and a frontier cellf which satisfy:

(i, f) = argmax; yy (Up — 6 - Vfl,/)
6: Reduce the utility of each target poifitin the visibility area according to

Up = Upr — puis(f, [').

7. end while

The quantity? > 0 determines the relative importance of utility versus c&st-
periments showed that the exploration time stays nearlgteonif 5 € [0.1, 50]. For
bigger values of3 the exploration time increases because the impact of thedicoo
nation is decreased too much. Adfis close to 0, the robots ignore the distance to be
traveled which also leads to an increased exploration tifxsea result of our experi-
ments,5 is set to 1 in our current implementation.

Figure 4.2 illustrates the effect of our coordination tege. Whereas uncoordi-
nated robots would choose the same target position (seeeHgl), the coordinated
robots select different frontier cells as the next exploratargets. When coordinating
a team of robots, one question is when to recompute the tlrggions. In the case
of unlimited communication, we compute new assignmentsnewer one robot has
reached its designated target location or whenever thardisttraveled by the robots
or the time elapsed after computing the latest assignmeeeels a given threshold.

4.2.4 Coordination with Limited Communication Range

In practice, one cannot assume that the robots are able baege information at ev-
ery point in time. For example, the limited range of nowadaygless networks can
prevent robots from being able to communicate with otheot®ht a certain point in
time. If the distances between the robots become too largeasamot all robots can
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(b)

Figure 4.2: Target positions obtained using the coordamedpproach. In this case, the
target point for the second robot is to the left in the comido

communicate with each other, a centralized approach asibded@bove can no longer
be applied. However, our algorithm can easily be adaptedje @vith a limited com-
munication range. The key idea is to apply our centralizgat@gch to each sub-team
of robots which are able to communicate with each other. @lsly, this can, at least
in the worst case, lead to a situation in which all robotsvidlially explore the whole
environment. In practical experiments, however, we fourat this approach still re-
sults in a quite efficient exploration process, since thet®lzan quickly exchange
the necessary information and coordinate with each othenas soon a connection
between them has been reestablished.

In our experiments, we furthermore found that the risk ofurethnt work is in-
creased if the robots forget about the assignments of ottvets as soon as the com-
munication breaks down. Instead, if each robot stores ttestldarget locations as-
signed to all other robots the overall performance is irgedan situations in which
the communication range has been exceeded, since the @lmitsgoing to places
already explored by other robots. This approach turnedmbetuseful especially in
the context of small robot teams.

4.3 Collaborative Mapping with Teams of Mobile Ro-
bots

As mentioned before, the robots must be able to build mapeenhile they are in
motion. The online characteristic is especially importanthe context of the explo-
ration task since mapping is constantly interleaved wittisien making as to where
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to move next.

Additionally, to map an environment a real robot has to cofih noise. Our sys-
tem applies the statistical framework presented in detdifhrun, 2001bto compute
consistent maps while the robots are exploring the envieamnEach robot starts with
a blank grid map in which each cell is marked as unseen. Duxpdpration, each
robot simultaneously performs two tasks: It determines @imam likelihood esti-
mate for its own position and a maximum likelihood estimatetfie map. To recover
from possible localization errors, each robot maintainestgrior density characteriz-
ing its “true” location. The current version of the multibat mapping system relies
on the following two assumptions:

1. The robots must begin their operation in nearby locatisosthat their range
scans show substantial overlap.

2. The software must be told the approximate relative ini@se of the robots.
Errors up to 50 cm and 20 degree in orientation are admissible

To achieve the coordination, the team must be able to conatenthe maps of
the individual robots during exploration. In our currens®m, we assume that the
robots set up an ad-hoc network which forms clusters. Thesages sent by a robot
are forwarded to all team-mates within the correspondiogtel.

Whenever two clusters are merged, care has to be taken witmadirobots do not
become overly confident in the state of the environment. 8sgphat each cluster
maintains an occupancy grid map built from all observatimasie by the robots of
that team and that two robots which currently share a mdpave their communica-
tion range. As long as they explore the environment indizilyyieach robot needs to
maintain its own map and update it. As a result, they obtaodifferent mapsn; and
mo. NOW suppose the robots can communicate again and exchagigenps. If they
use the recursive update rule for occupancy grids to comhinandm, the informa-
tion originally contained inn is integrated twice in the resulting map. Integrating the
same information several times leads to overly confident ofitipe environment.

There are several ways to avoid the multiple use of sensornrdtion. One so-
lution is to prevent the robots from exchanging informatioare than oncéFox et
al., 2004, which reduces the benefit of a multi-robot system. An attivie solution
is that each robot maintains an individual map for each otbieot. These maps can
be combined to a joint map and at the same time be updatedaselyarin our cur-
rent system, we apply a different approach that we found tessememory intensive
and requiring less communication bandwidth. In this apphoaach robot stores for
each other robot a log of sensor measurements perceivedshybot and integrates
this information into its own map. A robot only transfers skomeasurements that
have not been transmitted to the corresponding robot scAfdlitionally, the robots
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start locations

Figure 4.3: Coordinated exploration by a team of three ®ath unlimited com-
munication abilities in a real world experiment. This expant has been carried out
by Mark Moors at the Forschungsgesellschaft flir Angewahtteirwissenschaften
(FGAN), Wachtberg, Germany.

maintain a small data structure containing the time stamih@fmost recent sensor
measurement of a robot that was transmitted to all othertsoftis allows the robots

to discard those measurements which have been received dthed robots already.

In this scenario, one of the robots of each sub-team is ralydegtected as the leader.
This leader performs all the necessary computations tegbkr assignment of target
locations to robots.

4.4 Experimental Results

The approach described has been implemented on real ratabis different environ-
ments. Additionally, we performed extensive simulatiope&xments.

4.4.1 Exploration with a Team of Mobile Robots

The first experiment is designed to demonstrate the capabilour approach to effi-
ciently cover an unknown environment with a team of mobileots. To evaluate our
approach, we installed three robots (two Pioneer 1 and ooledRB21) in an empty
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(d)

Figure 4.4: Uncoordinated exploration with two robots, eman ActivMedia Pio-
neer robot and an iRobot B21. In the images (a) and (b) botbtsadirive along the
corridor, but robot 1 is slower than robot 2. In image (c),abb reached the end of
the corridor, but robot 2 already has explored the right rodhrerefore, robot 1 turns
around and follows the corridor. In image (d) robot 2 has reatéhe left room from
the right hand side and explored it. This experiment has loaemed out by Mark
Moors.

(d)

Figure 4.5: Coordinated exploration using two heterogemobots. In image (b), both
robots focus on different frontiers due to the coordinastrategy. Therefore, robot 1
explores the left room and robot 2 the right one. This leads better performance
compared to the uncoordinated behavior. This experimesitbean carried out by
Mark Moors.

laboratory environment. Figure 4.3 shows the map of thisrenmnent. The size of
the environment is 18 m by 14 m. Also shown are the paths ofdbets which started
in the upper left room. As can be seen from the figure, the solvete effectively dis-
tributed over the environment by our algorithm. In this expent, the robots could
communicate all the time.
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Figure 4.6: Simulated exploration with three robots.

4.4.2 Comparison between Uncoordinated and Coordinated Ex
ploration

The goal of the second experiment described here is toréitesthe advantage of our
coordination technique over an approach in which the roslodse a map but in which
there is no arbitration about target locations so that eabbtrapproaches the closest
frontier cell[Yamauchi, 199B This technique is callednplicit coordination For
this experiment, we used two different robots: An iRobot Ba@hot equipped with
two laser range scanners covering a 360 degree field of vadvo(rl) and a Pioneer 1
robot equipped with a single laser scanner covering a 18@ddeeld of view (robot
2). The size of the environment to be explored in this expenitmvas 14 m by 8 m and
the range of the laser sensors was limited to 5m.

Figure 4.4 shows the behavior of the two robots when theycegpiheir envi-
ronment without coordination, i.e., when each robot moweehé closest unexplored
location. The white arrows indicate the positions and dioes of the two robots.
Both robots decide first to explore the corridor. After raaghthe end of the corridor
robot 2 enters the upper right room. At that point, robot ligassthe highest util-
ity to the upper left room and therefore turns back. Befolsotd reaches the upper
left room, robot 2 has already entered it and has complet@xploration mission.
As a result, robot 2 explores the whole environment almostsoown while robot 1
does not contribute much. The overall time needed to comhetexploration was 49
seconds in this case.

However, if both robots are coordinated, they perform muettelo as illustrated
in Figure 4.5. Like in the previous example, robot 2 movestédnd of the corridor.
Since the utilities of the frontier cells in the corridor aeeluced, robot 1 directly enters
the upper left room. As soon as both robots have entered thmasothe exploration
mission is completed. This run lasted 35 seconds.
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Figure 4.7: The left image illustrates an assignment oftfers to robots computed
by Algorithm 4.1. Here, yellow corresponds to known areas white to unknown.
The assignment is suboptimal, when considering the ovémadl to complete the ex-
ploration task. The situation shown in the right image pdesi a better assignment
because it leads to a shorter exploration time. In both gegisituation, the sum of
the travel cost of both robots are equal but the right one iserhalanced.

4.4.3 Simulation Experiments

The previous experiments demonstrate that our approachftetively guide robots
to collaboratively explore an unknown environment. To getaae quantitative assess-
ment, we performed a series of simulation experiments fierdiit environments.

To carry out these experiments, we developed a simulatistesy, that allows us
to consider the effects of various parameters on the expdarperformance. The sim-
ulator can handle an arbitrary number of robots and can reatielrferences between
the robots. Whenever robots are close to each other, thensystrforms the planned
movement with a probability of 0.7. Thus, robots that stayselto each other move
slower than robots that are isolated. This approach is deditp model time delays
introduced by necessary collision avoidance maneuvers.

Screenshots of this simulation system during a run in whicke robots explore
the environment are shown in Figure 4.6. The simulator dlswathe specification of
different properties of the robot systems and sensors. ifg oat these experiments,
we used sensors with a 360 degree field of view as is the casexdmple, for robots
equipped with two laser range sensors or with a ring of udiasl sensors. Note that
our approach does not require a 360 degree field of view. Weesstully applied our
approach even to robots with a limited field of view, equippaty with a single laser
scanner.

Throughout the experiments presented in this section, wepece three differ-
ent strategies. The first approach is thmplicit coordinationtechnique used by Ya-
mauchi[1994 as well as Singh and Fujimufd99d, in which each robot always
approaches the closest unexplored area of a joint map. Ieettpeel, this approach
is denoted asincoordinated exploratiosince it lacks a component that arbitrates be-
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tween the robots whenever they choose the same frontiar délle second approach
is our coordination approach specified by Algorithm 4.1. Wddally, we evaluated
an alternative approach that seeks to optimize the assigisronemputed in lines 4-7
of our algorithm. Figure 4.7 illustrates a situation in whitie assignment computed
by our approach is suboptimal. Here, two robots are exgjoaircorridor with two
rooms. The already explored area is depicted in yellow. S8s@both target poinis
andb have the same utility. In the first round of the iteration, algorithm assigns
robot 2 to target: since this assignment has the least cost of all other pessdsign-
ments. Accordingly, in the second round, robot 1 is assigoedrgetb. The resulting
assignment is depicted in the left image of Figure 4.7. If w&uane that both robots
require the same period of time to explore a room, this asséy is suboptimal. A
better assignment is shown in the right image of Figure 4y diBecting robot 1 to
the left room and robot 2 to the right room, the whole team caistithe task faster,
because the overall time required to reach and than exgier®bms is reduced. The
sum of the travel cost, however, is the same for both assigtsme

One approach to solve this problem is to consider all passibinbinations of tar-
get points and robots. As before, we want to minimize thestraifi between the utility
of frontier cells and the distance to be traveled. Howewst, adding the distances to
be traveled by the two robots does not make a differenceuatsins like that depicted
in Figure 4.7. Since the robots execute their actions inlighthe time to complete
the whole task depends on the longest trajectory. To mirmthie completion time (by
choosing more balanced trajectories for the individuabtely we therefore modify
the evaluation function so that it considers squared diststo choose target locations

fl,...,fn:

?;gm?))(z [U(fz | fl)"'vfi—lvfi-i-lv"'vfn) _ﬁ (szz)z}
Leesfn) =1

Algorithm 4.2 Goal assignment over all permutations.
1: Determine the set of frontier cells.
2: Compute for each robatthe cosﬂ/j for reaching each frontier cell.
3: Determine a set of target locationsfi,...,f, for the robots
= 1,...,n that maximizes the following evaluation function:

ST UG Fooeos Fiots fosts o f) — B (V2.

The resulting algorithm that determines in every round theneal assignment
of robots to target locations according to this evaluationction is given in Algo-
rithm 4.2. Compared to the selection scheme of our previtgmithm, the major
problem of this approach lies in the fact that one has to fi% possible
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Figure 4.8: Maps used for the simulation experiments: uctired (left), office (mid-
dle), and corridor environment (right).

assignments wheré€' is the number of target locations, is the number of robots,
andn < F!. This number can be handled for small teams of robots butcioines
intractable for larger teams, because the number of pesagisignments grows expo-
nentially in the number of robots. In practice, one therefoeeds appropriate search
techniques to find good assignments in a reasonable peritchef In the experi-
ments described here, we applied a randomized search geehcombined with hill-
climbing to search for optimal assignments of frontiersaioats. The approach starts
with the assignment provided by Algorithm 4.1 and tries ttirajze the assignment
by exchanging target locations between the robots. It ades several restarts based
on the solution provided by Algorithm 4.1 in order to redulse tisk of getting stuck
in a local maxima. This technique is in the following calleeshdomizedstrategy.

To compare the different exploration strategies, we choeetdifferent environ-
ments which are depicted in Figure 4.8. For each environrmedteach number of
robots, we performed 50 different simulation experimentsefach strategy. In each
comparison of the three strategies, the robot team wa®dtattthe same randomly
chosen location. We then evaluated the average numberebteps the robots needed
to complete the job. The resulting plots are shown in Figuée Zhe error bars in-
dicate the 5% confidence level. As can be seen from the figlheetetm using our
algorithm significantly outperforms the uncoordinatedtsgswith respect to the ex-
ploration time. This is mainly due to the fact that Algorithtrl provides a better
distribution of the robots over the environment.

The randomized optimization strategy usually yields gligbetter results than our
coordination technique although the improvement is natigant. Thus, the usage of
the complex search technique that seeks to determine theadatssignment from all
ﬁ permutations appears to yield only slight improvementspan®d to our orig-
inal algorithm which has complexit9(n* - F'). Given the computational overhead
introduced by the randomized search in the space of all pgatioos (see Figure 4.10)

!In casen > F, we allow each frontier to be assigng#] times to a robot.
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Figure 4.9: Performance of the different coordinationtetyges for the environments
shown in Figure 4.8: unstructured environment (top), ofiseéironment (middle), and
corridor environment (bottom).
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Figure 4.10: Time required on a Pentium-4, 2.8 GHz machireiopute the assign-
ment of target locations to robots for three different siyéds.

especially for large teams of robots, Algorithm 4.1 appéarse preferable over Al-
gorithm 4.2.

4.4.4 Exploration with Limited Communication

The next experiments are designed to analyze the perfoenainour coordination
strategy in case the robots have only a limited communicatmge. As explained
above, if the communication range is limited the robots camgtobally coordinate
their actions anymore. As a result, different robots maylaepthe same regions
which reduces the overall efficiency.

The next real world experiment was carried out with threetsbThroughout this
experiment, we limited the communication range to 5m. Feglidl depicts the ex-
ploration process. Each row shows the maps of the individloedts at different points
in time. The initial situation is depicted in the first row. & bommunication ranges of
the robots are highlighted by colored disks around eachtré&mscan be seen from the
second row, the robots quickly split up in this experimert bad to plan their trajec-
tories individually. In row three, the robofg, and R3 are able to communicate again
and therefore can exchange their maps and coordinate #teawtor again. Robak,,
however, still acts independently of the other two robatsolw five, R, and R3 again
leave their communication range, wherdasand R; are able to merge their maps
and approach the last unexplored area in the top left coiméhne last row, the robots
R, and R3 have covered the whole environment and in this way have cetegblthe
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exploration task.

To analyze the influence of the communication range, we pedd a series of
simulation experiments. We carried out 50 simulation rumsefich configuration us-
ing a different number of robots and different communicatianges. In each run,
we chose a random starting point for the robot team. We retfp@r@éxploration task
as completed as soon as the known area in the map of one romtsdbe whole
environment. The results are depicted in Figure 4.12. d-agis shows the commu-
nication range of the robots in relation to the maximum diséin the map and the
y-axis depicts the average exploration time. If the commaftioa range is close to
zero the coordinated and uncoordinated strategies belradarsbecause all robots
act independently most of the time. As the communicatiogeancreases, the ben-
efit of the coordinated approach improves. An interestisglteof this experiment is
that a communication range of 30% of the diameter of the enwirent appears to be
sufficient to yield the same performance as with unlimitechocwnication.

4.5 Comparisons to Other Coordination Techniques

In this section, we compare our approach to other existicigrtigues to assign targets
to a team of robots. First, we compare our approach to the &timmgmethodKuhn,
1955. We then discuss a priorization technique to distributerttmts over the en-
vironment. Finally, we discuss exploration techniqued #aply a solution to the
traveling salesman problem (TSP) to coordinate the tearobuits.

4.5.1 Target Assignment using the Hungarian Method

In 1955, Kuhn[1959 presented a general method to assign a set of jobs to a set of
machines given a fixed cost matrix. This method is often reteto as the Hungarian
method. Consider a givenx n cost matrix which represents the cost of all individual
assignments of targets to robots. The Hungarian method;hwikiable to find the
solution with the minimal cost given that matrix, can be susmnimed by the following
three steps:

1. Compute a reduced cost matrix by subtracting from eacgheziethe minimal
element in its row. Afterwards, do the same with the minimah®ent in each
column.

2. Find theminimal numbetrof horizontal and vertical lines required to cover all
zeros in the matrix. In case exacthlines are required, the optimal assignment
is given by the zeros covered by thdines. Otherwise, continue with Step 3.
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Robot 11 Robot 2C—1 Robot 3——1

Figure 4.11: Coordinated exploration by a team of three totaith limited commu-
nication abilities. Each column shows the evolution of thepnof one robot over
time. This experiment has been carried out by Mark Moors arhlE Schneider
at the Forschungsgesellschaft fur Angewandte Naturwssdeiten (FGAN), Wacht-
berg, Germany.
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Figure 4.12: Performance of the coordinated strategy wiithtdd communication
range for the different environments (unstructured (t@ffice (middle), and corri-
dor environment (bottom)). The-axis shows the communication range in relation to
the size of the environment, theaxis the average exploration time. As can be seen,
the results of these experiments look very similar in aligdfnvironments.
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3. Find the smallest nonzero element in the reduced cosbntiadt is not covered
by a horizontal or vertical line. Subtract this value froncleancovered element
in the matrix. Furthermore, add this value to each elemetiterreduced cost
matrix that is covered by a horizontal and a vertical linentdwe with Step 2.

The computationally difficult part lies in finding the minimunumber of lines
covering the zero elements (Step 2). Details can be fourl&imn, 1955, Kuhn,
1954. The overall algorithm has a complexity©@fn?). This method can be applied to
assign a set of frontiers or target locations to the indigldabots. In such a scenario,
the cost matrix is defined by the result of a deterministiagaleration carried out for
each robot (see Section 4.2.1).

Since the implementation of the Hungarian method describede requires that
the number of jobs and the number of machines is equal, wetoestigihtly adapt the
cost matrix computed in that way. We can distinguish twoaditins:

1. In casen < F, wheren is the number of robots anfl the number of frontier
cells, we add” —n dummy robots which introduce zero cost for any assignment.
The frontier cells to which these dummy robots are assigoedgresent target
locations that are not selected by a real robot.

2. In casen > F, some robots need to be assigned to the same target location.
achieve a balanced distribution of robots over the envimimwve copy each
frontier [ ] times so that not more thar: | robots are assigned to a single
target location. In case < F'- [ |, we then add” - [ ] — n dummy robots.

In this way, we obtain a square cost matrix evem i F'. In the worst case, the matrix
has a dimension df - max{n, F'}. Thus, the overall cost of coordinating a tearmof
robots givenF’ possible target locations 3(max{n, F'}?).

The advantage of that method compared to our approach bedani Algorithm 4.1
is that the Hungarian method computes the optimal assighometer the given cost
matrix. In contrast to that, our algorithm applies a greesthhique to assigned robots
to frontiers. On the other hand, the Hungarian method is hi& & adapt the cost
matrix during the assignment process. Such an adaptionrisrped by our algo-
rithm in order to account for the fact, that assigning a fiemtell f to a robot affects
the unassigned frontier cells close fto This fact cannot be modeled when using the
Hungarian method, since it requires a constant cost matrix.

We applied the Hungarian method in the same scenarios thanooudination
technique presented in Algorithm 4.1 to evaluate its peméorce. We figured out, that
the Hungarian method yields similar results as our coottingechnique for large
teams of robots. Plots showing the performance of both @ges are depicted in
Figure 4.13. As can be seen from this figure, if the team of t®lsosmall, our coor-
dination approach performs better. This is due to the fhaat,@aur technique considers
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the visibility between frontiers when computing their iiyiin the assignment process.
This leads to a better distribution of robots over the emnnent, which typically re-
sults in shorter exploration times. However, as soon asizleeo$ the team gets bigger,
this effect vanishes and both techniques perform equally wa additional advan-
tage of our approach is that it is much easier to implemenipeoed to the Hungarian
method.

4.5.2 Using a Priorization Scheme to Coordinate a Team of Ralts

The second method we compared our approach to is the usageiofiaation scheme
while selecting target locations. First, this approachgasspriorities to the individual
robots. After a target location is assigned to a robot, thigrmation is transmitted
to all other robots. Each robot plans its action by taking iatcount the decisions
made by robots with higher priority. Such a technique withxedipriorization scheme
typically performs worse than our coordination technigspeeially in the context
of large robot teams. The reason for that is, that our apprcaa be regarded as a
priorized approach where in each planning step the pritozacheme is adapted so
that it promises the highest utility.

However, we compared this approach to our coordinationrsehsince a fixed pri-
orization scheme can be directly applied in multi-roboteyss using a decentralized
architecture. In contrast to this, our coordination altdon requires a central coordi-
nator (or a coordinating robot within each sub-team) thammates the assignment.
Furthermore, such a decentralized priorization schemédsiess network bandwidth
compared to the centralized approach. Therefore, it makeseso apply such a tech-
nique, if only a slow network connection is available. Thislgem has been addressed
in detail in a joined work with Daniel Meier (sddeier et al, 2004). In this ap-
proach, a polygonal approximation of the environment isgoted. The polygons are
incrementally refined depending on the available networidbadth. The operations
to carry out the refinement are computed using the minimurmaedit between the
polygons. In this way one is able to substantially reducenttevork traffic.

As can be seen in the plot in Figure 4.14, the quality of therjzéd scheme is
satisfactory for small teams of robots. However, as soohagtoup gets larger, the
performance of the algorithm decreases. In some situatisimg around 20 robots,
this approach was even worse than the uncoordinated behae reason for that
is that the robots with a low priority do not gather any usefiibrmation and are
often redirected before they really reach their desired lgoation. At the same time,
they cause interferences between robots. We believe tisatnthod can be further
optimized by, for example, reassigning prioriti@ennewitz, 2004or auction-based
approaches that allow the robots to trade with their taxgestiond Zlot et al., 2007.
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4.5.3 Coordination of a Team of Robots by Solving a TSP

An alternative solution to the multi-robot coordinatioroplem is to solve a multi-
agent traveling salesman problem (multi-agent TSP). Is #pproach, all available
target locations are assigned to the robots and each rolids laupath by visiting
multiple target locations instead of approaching a singke o

It should be noted that the computation of the optimal sotuts in most cases
impossible due to the online-characteristics of the exgion problem. Approxima-
tive solutions, however, open additional problems likeghestion how to balance the
number of tasks assigned to the individual robots. &ta@l.[2004 who used an online
auction-based approach similar to a TSP wisiace new frontiers generally originate
from old ones, the robot that discovers a new frontier wileéafbe the best suited to go
on it (the closest). This observation indicates that often it is sufficient tosider only
a single target location. A typical situation, in which a spbmal solution is obtained
when the workload is not balanced between the robots, istizhin Figure 4.15. In
this example, all the work is done by one robot and the othreaies idle. This effect
can get even stronger if the size of the team grows.

Applying TSP solutions in the context of exploration makess® if, for example,
the structure of the environment is (partly) known but theld/aeeds to be covered by
the sensors of the robots. This can be the case in the coritégtraining or cleaning
tasks. There exits evaluations of different approximasigkitions in the literature
(compard Lagoudakiset al, 2009), but they typically assume that the environment is
at least partly known.

4.6 Related Work

The various aspects of the problem of exploring unknownrenwments with mobile
robots have been studied intensively in the past. Many ages have been proposed
for exploring unknown environments with single robf@&hoset, 2001b, Dudedt al.,
1991, Edlinger and von Puttkamer, 1994, Gonzalez-Batad., 2000, Kuipers and
Byun, 1991, Mooreheaet al., 2001, Stentz, 1994, Tailor and Kriegman, 1993, Zelin-
sky et al,, 1993. Most of these approaches guide the robot to the closesplorex
area, just as our approach does when applied to a single sgbtdm. These tech-
niques mainly differ in the way the environment is represdntPopular representa-
tions are topologicdlChoset, 2001b, Kuipers and Byun, 199metric[Edlinger and
von Puttkamer, 1994 or grid-based Yamauchi, 1998, Yamaucket al., 1999, Zelin-
skyet al, 1993. Furthermore, there exists theoretical works providingeihmamatical
analysis of the complexity of exploration strategies idahg comparisons for single
robots[Albers and Henzinger, 2000, Albegs al,, 2002, Dencgt al, 1991, Deng and
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Figure 4.15: An environment in which an online multi-ager@PFsolution can be
problematic. (a) Two robots start in a Y-shaped corridoe ®hly frontier is assigned
to robot B since itis the closest to this frontier. (b) The riemtier originates from the
old one and so robot B is the best suited to go on it. (c) Robadghes the junction
and the shortest path in this TSP is to guide robot B to frodti&nd than to frontier 2.
(d) Robot B enters the upper corridor, robot A has still nd @ssigned. (e) Robot B
explores the upper corridor and turns back. Since the umpedor is shorter than the
horizontal one, robot B still has the frontier labeled as itsmoute. (f) Robot B enters
the lower corridor until the whole environment is explorgdl (This solution is clearly
suboptimal, since robot A was not used at all.
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Papadimitriou, 1998, Koenigt al, 2001b, Koenig and Tovey, 2003, Zhesrgal,
2005, Lumelskyet al, 1990, Racet al., 1993. Additionally, Lee and ReccE1997
provide an experimental analysis of the performance oéckffit exploration strategies
for one mobile robot.

Also the problem of exploring terrains with teams of mobidaots has received
considerable attention in the past. For example, Rekleital. [1997, 1998, 2001]
focus on the problem of reducing the odometry error duringi@ation. They sep-
arate the environment into stripes that are explored ssin@dyg by the robot team.
Whenever one robot moves, the other robots are kept stayiand observe the mov-
ing robot, a strategy similar to the one presented by Kurazand Shigemj1994.
Whereas this approach can significantly reduce the odoreetoy during the explo-
ration process, it is not designed to distribute the robw&s the environment like our
approach does. The robots are rather forced to stay closacto @her in order to
remain in the visibility range. Thus, using these stratefpe multi-robot exploration
one cannot expect that the exploration time is significameititiced compared to single
robot systems.

Yamauchi 1994 presented a technique to learn maps with a team of mobilésobo
He introduced the idea of frontiers between known and unknargas in a grid map.
The frontier technique is also used throughout this thesise it is well-suited to find
potential target locations for singe as well as for multiabsystems. In the approach
of Yamauchi, the robots exchange information via a joint i is continuously up-
dated whenever new sensor input arrives. They also use mapimgtechniquefya-
mauchiet al,, 1999 to improve the consistency of the resulting map. To acquise n
information about the environment all robots move to theset frontier cell. The
authors do not apply any strategies to distribute the robats the environment or to
avoid that two or more robots exploring the same areas. Vpis of implicit coordi-
nation via a joint map is used as a reference technique fopaasons throughout this
chapter. We called it the “uncoordinated technique” in thapter. As shown in the
experimental section, our coordination technique pravigenore efficient coverage
of terrain for multi-robot systems.

Cohen[1994 considers the problem of collaborative ohavigatorthat has to
reach an initially unknown target mapping and navigatioteains of mobile robots.
The team consists location and a setcaftographersthat randomly move through
the environment to find the target location. When a robotaviscs the goal point,
the location is communicated among the cartographers toatigation robot which
then starts to move to that location. In extensive experimyehe author analyzes
the performance of this approach and compares it to the apsiatution for different
environments and different sizes of robot teams. In our @ggr, the robots do not
have that different capabilities or different tasks to ctetgn Our systems allows
the robots to travel with different speeds or to have a dfiersize. Compared to
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Cohen[1994, we do not consider robots supposed to solve only one a spéask
within the exploration mission.

Koenig and colleagueldoenig et al, 2001a, Koenig and Tovey, 2003, Zheely
al., 2004 presented several evaluations of different terrain cqetachniques for
single and multi-robot systems. Koenig and Toy2903 for example demonstrated
that for single robot systems, the greedy approach thaegtlte robot always to the
closest frontier behaves reasonable well compared to thealpsolution. Recently,
Zhenget al.[2009 showed that under certain assumptions like fixed sensoerangd
grid cell ratios as well as unlimited communication, theieegy coverage algorithm
needs in the worst case only eight time longer than the opsoiation.

Koenig et al. [20014 analyze different terrain coverage methods for ants which
are simple robots with limited sensing and computationpbhbdities. They consider
environments that are discretized into equally spaced.célstead of storing a map
of the environment in their memory like done in our explaratapproach, the ants
leave markers in the cells they visit. The authors conswderdifferent strategies for
updating the markers. The first strategy is “Learning RealeTA*” (LRTA *), which
greedily and independently guides the robots to the clagestplored areas and thus
results in a similar behavior of the robots as in the appraddtamauchi[1999. The
second approach is “Node Counting” in which the ants simplynt the number of
times a cell has been visited. The authors show that LeaRé&ad-Time A (LRTA*)
is guaranteed to be polynomial in the number of cells, whetlade Counting” can
be exponential.

Billard et al.[2004d introduce a probabilistic model to simulate a team of mobile
robots that explores and maps locations of objects in aleiremvironment. In several
experiments, they demonstrate the correspondence ohtloeie! with the behavior of
a team of real robots.

In [Balch and Arkin, 1994 the authors analyze the effects of different kinds of
communication on the performance of teams of mobile robb@sgerform tasks like
searching for objects or covering a terrain. The “graze’teakied out by the team of
robots corresponds to an exploration behavior. One of thatseis that the commu-
nication of goal locations does not help if the robots caecdhe “graze swathes” of
other robots.

The technique presented by Kurabayashial. [1994 is an off-line approach,
which, given a map of the environment, computes a coopertdivain sweeping tech-
nique for a team of mobile robots. In contrast to most oth@r@gches, this method
is not designed to acquire a map. Rather the goal is to mieithie time required to
cover a known environment which can lead to a more efficiehabier in the context
of cleaning or mowing tasks.

One approach towards cooperation between robots has besenped by Singh
and Fujimura[1993. This approach especially addresses the problem of heterog
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neous robot systems. During exploration each robot idestffunnels” to the so far
unexplored area. If a robot is too big to pass through a tuibimglorms other robots
about this task. Whenever a robot receives a message abeut &ask, it either ac-
cepts it or delegates it to smaller robots. In the case of lygmmeous teams, the robots
follow a strategy similar to the system of Yamaufh999.

Howardet al.[2009 presented an incremental deployment approach that isagimil
to the technique described here. Their approach explidiglgls with obstructions.
They consider situations in which the path of one robot isckdal by another but
they do not consider the problem of limited communicatiofot Zt al. [2004 have
recently proposed an architecture for mobile robot teamghich the exploration is
guided by a market economy. In contrast to our algorithmy tumsider sequences of
potential target locations for each robot like in a TSP. Tthen trade the tasks using
single-item first-price sealed-bid auctions. As illustchin this chapter, the usage
of a TSP-approach can be disadvantageous in unknown emwais. Whenever a
robot discovers a new frontier during exploration, thisabtwill often be the best
suited to go on it (se€Zlot et al,, 2004). As illustrated in Section 4.5.3, we found
that this can lead to an unbalanced assignment of tasks tasrgb that the overall
exploration time is increased. Kat al.[2003 present a variant of our approach that
uses the Hungarian methfiduhn, 1959 to compute the assignments of frontier cells
to robots. The main focus of this work is to cooperativelylerpan environment with
a team of robots in case the starting locations of the indafidobots are not known
in advance. Practical experiments presented in this chaptsved that the Hungarian
method yields a similar performance as our coordinatiooritlyn. Only in the case
of small robot teams our approach appeared to be slightlgrgupsince it provides a
better distribution of the robots over the environment.

Furthermore, there are approaches that address the praolbleoordinating two
robots. The work presented by Bender and Slofi®94 theoretically analyzes the
complexity of exploring strongly connected directed gptith two robots. Roy
and Dudek{2001] focus on the problem of exploring unknown environments with
two robots and present an approach allowing the robots withised communication
range to schedule rendezvous. The algorithms are analywdytiaally as well as
empirically using real robots.

There exist also coordination techniques optimized forex#ic domain. For ex-
ample, Weigelet al. [2004 presented an approach to coordinate a team of soccer
playing robots. This technique does not directly addresgthblem of exploring un-
known environments but of assigning roles to the individaggnts. These roles are
soccer specific ones like, for example, “defense playerthisway, the team is able
to adapt itself to the current situation of the soccer field.

Several researchers have focused on architectures farmoiodtt cooperation. For
example, Grabowslet al. [200d consider teams of miniature robots that overcome
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the limitations imposed by their small scale by exchangimgping and sensor infor-
mation. In this architecture, a team leader integratesrifegrnation gathered by the
other robots. Furthermore, it directs the other robots teeraround obstacles or to
direct them to unknown areas. Jung and Zelinkk§99 present a distributed action
selection scheme for behavior-based agents which hasssiictig been applied to a
cleaning task. Stroupet al.[2004 recently presented the MVERT-approach. Their
system uses a greedy approach that selects robot-targebpaed on proximity. The
goal of the action selection is to maximize cooperative pFsg toward mission goals.
In contrast to our algorithm, the MVERT system does not dist@reas close to the
selected goal locations. Matarind Sukhatmf001] consider different strategies for
task allocation in robot teams and analyze the performahtieedteam in extensive
experiments. Parkd200d3 described a project in which a large team of heteroge-
neous robots is used to perform reconnaissance and sangalitasks. This work
differs from our approach in that it investigates how to flyimccomplish a task with
heterogeneous robots that cannot solve it individually.

4.7 Conclusion

In this chapter, we presented a technique for coordinatiregia of robots while they
are exploring their environment. The key idea of our techaits to simultaneously
take into account the cost of reaching a so far unexploreatilme and its utility. The
utility of a target location depends on the probability tthas location is visible from
target locations assigned to other robots. Our algorithways assigns that target
location to a robot which has the best trade-off betweertyutind costs. We also
presented an extension of our technique to multi-robotesystthat have a limited
communication range. In this case, the robots form sub4esnthat they are able to
communicate locally. The assignment problem is then sahiddn each sub-team.

Our technique has been implemented and tested on real rabdts extensive
simulation runs. The experiments demonstrate that ourigthgo is able to effectively
coordinate a team of robots during exploration. They furtiegeal that our coordi-
nation technique significantly reduces the exploratioreteompared to exploration
approaches that do not explicitly coordinate the robotsthen experiments demon-
strate that our technique works well even if the robots cay partially exchange
data. Additionally, we compared our approach to three radtire coordination tech-
niques, namely the implicit coordination approach basea jomt map, the Hungarian
method, and a coordination approach using a fixed prioritgste.



Chapter 5

Multi-Robot Exploration Using
Semantic Place Labels

5.1 Introduction

n the previous chapter, we introduced a technique to eftigienordinate a team
of exploring robots. So far, we made no assumption aboutthieament itself.
In this chapter, we extend our coordination approach pteden Chapter 4 so
that it takes into account additional information abouté¢hgironment.

Indoor environments constructed by humans often contataioestructures like
corridors with adjacent rooms or offices. However, it is nhatmexplored how robots
can utilize such background information to more efficieistiyve an exploration task.
One of our observations is that the more potential targedtions are known when
assigning targets to robots, the faster the team can exyplerenvironment. This is
due to the fact that especially large teams of robots can terlabstributed over the
environment when more target locations are available. isway, the amount of
redundant work and the risk of interference is reduced. dtefore makes sense to
focus on areas first which are likely to provide a large nunaberew target locations
in order to obtain a better assignment of targets to robots.

The contribution of this chapter is a technique to estimatéwilize semantic in-
formation during collaborative multi-robot exploratioin our approach, the robots
get a higher reward for exploring corridors, since theyagfly provide more branch-
ings to unexplored areas like adjacent rooms compared tosatself. This allows
us to make better assignments of target locations to rob&dsa result, the overall
completion time of an exploration task can be significargiyuced.

This chapter is organized as follows. First, we introduceteahnique to estimate
semantic labels of places. In Section 5.3, we then preseitdei Markov model-
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based extension to the labeling approach which improvesléissification in the con-

text of exploration. We then propose our coordination témpie and describe how to
utilize the place information in Section 5.4. Section 5.6gants experimental results
on exploration using semantic place labels. Finally, ®adi.6 discusses related work.

5.2 Semantic Place Labeling

This section explains how semantic place labels can berdstanith mobile robots
based on laser range observations. We apply a techniquiafae glassification which
was presented in a joint work with Martinez MozZddartinez Mozoset al,, 2004.
The techniques allows a mobile robot to robustly classi&cps into different semantic
categories. In this chapter, we focus on learning a clasdifiat is able to distinguish
corridors from other kinds of indoor structure. To obtaiolsa classifier, we apply the
AdaBoost algorithm introduced by Freund and Schajdig97.

The key idea of AdaBoost is to form a strong binary classifieerga set of weak
classifiers. The weak classifigts only need to be better than random guessing. Sim-
ilar to the work of Viola and Jond2001], we construct our weak classifier based on
simple, single-value featurels € R

' _ L ifpj- fi(z) <pj-0;
hi(w) = {0 otherwise (5.1)

This weak classifier returns 1 if the training examplés supposed to be a positive
example and O otherwisd, is a threshold value angl is either—1 or 41 and thus
represents the direction of the inequality. The AdaBoagbrthm determines during
the training process for each weak classifieithe optimal parameter tupl@;. p;),
such that the number of misclassified training examplesgmized. To achieve this,
it considers all possible combinationsygfandé;, whose number is limited since only
an finite numberV of training examples is given. A training example is defingdHe
tuple (z,, y,) wherex, is the example ang, € {0, 1} the classe,, belongs to. Using
the training examples§;, p;) is determined by

N
(05,p;) = argminz |hi(2n) — Ynl - (5.2)

(22 R—

Figure 5.1 illustrates the process to compute the optimakvef §;. First, one com-
putes for each training examp(e,,, y,) the feature valug;(z,) and adds it to a list
which is sorted according to that value; Second, one itetat®ugh this list and com-
putes the error of the weak classifier using; aalue between the feature value of the
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Figure 5.1: This figure illustrates how the optimal valuedpfis found. In the left
image, ther-value of each data point represents the feature value afrartg example
and they-value its true class. By iterating through this list of dataints, one can
determine the optimal valuk for the given training examples. The rightimage depicts
the weak classifiek;;.

current and the next element. Thgvalue which provides the highest classification
rate is the optimal value fat; given the training set.

We compute two sets of simple features for each observaliba.first set is cal-
culated using the raw beams;, i = 1,..., M in the full range scan,. The second
set of features is calculated from a polygonal approxinmeit¢z, ) of the area covered
by z;. The vertices of the closed polygdh z;) correspond to the coordinates of the
end-points of each beam relative to the robot.

P(z) = {(ztx-cosay,zy-sinayg) | k=1,..., M}, (5.3)

whereq, is the angle of thé-th beamz,, k of the observation;.

Examples for features extracted from laser range data guietdd in Figure 5.2.
Such features are, for example, the average distance betwasecutive beams, the
area covered by a range scan, or the perimeter of that aréauAleatures are rota-
tional invariant to make the classification of a position elegent only on théz, y)-
position of the robot and not on its orientation. Most of teatfires are standard
geometrical features used in shape analjGisnzalez and Wintz, 1987, Russ, 1992
Table 5.1 and 5.2 provide a full list of features used by ostesy to learn classifier
for place recognition.

The input to the AdaBoost algorithm is a set of labeled, pasand negative train-
ing exampleqz,, y,}. In our case, this is a set of laser range observations redand
a corridor and a second set taken outside corridors. In assefil’ rounds, the algo-
rithm repeatedly selects the weak classifiewith the lowest error under the training
data. To do so, AdaBoost uses a weighted error function. Mip@itance weighty,,
for each example is updated in each round. The algorithm fiesdihe set of im-
portance weights by increasing the weights of the most difficaining examples in
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Figure 5.2: Examples for features generated from laser dataely the average dis-
tance between two consecutive beams, the perimeter oféhecavered by a scan, and
the length of the major axis of the ellipse that approximétesgpolygon described by
the scan.

Table 5.1: Simple features based on the individual beam$aska range observatian

1. The average difference between the length of consedutiams.

1%

2. The standard deviation of the difference between thetlenf consecutivs
beams.

Same as 1), but considering different max-range values.
The average beam length.

The standard deviation of the length of the beams.

o o M w

Number of gaps in the scan. Two consecutive beams builg & tjaeir differ-
ence is greater than a given threshold. Different featuresised for differen
threshold values.

—

7. Number of beams lying on lines that are extracted fromahge scafSack and
Burgard, 2004

—

8. Euclidean distance between the two points correspongirige two smalles
local minima.

9. The angular distance between the beams correspondihg todal minima in
feature 8).
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Table 5.2: Features computed based on the polRjan

=

10.
11.
12.
13.

N oo o M w Db

. The ratio of the major and minor.

Area ofP(z).

Perimeter oP(z).

Area ofP(z) divided by Perimeter oP(z).

Mean distance between the centroid to the shape boundary.
Standard deviation of the distances between the ceritrdiee shape boundar
200 similarity invariant descriptors based on the Fauransformation.

Major axis of the ellipse that approximaf$:z) using the first two Fourier c¢
efficients.

Minor axis of the ellipse that approximdi =) using the first two Fourier coe
ficients.

Seven invariants calculated from the central momenky of.
Normalized feature of compactnest:).
Normalized feature of eccentricity Bf z).

Form factor ofP(z).

D

—h
1




102 CHAPTER5: MULTI-ROBOT EXPLORATION USING SEMANTIC PLACE LABELS

each round. The optimal parametéfs, p;) for each weak classifigr; are also com-
puted using the weighed examples. As a result, a singlerkeaain generate several
weak classifiers with different parameters in the individwainds of the AdaBoost
algorithm.

The final strong classifiek is a weighted majority vote of the béBtweak classi-
fiers

_ U ) > 53
Hz) = { 0 otherwise (5-4)

where the value od; is computed according to the weighted error rates of theviddi
ual weak classifiers. The full algorithm is given in Algornthb.1. In our system, the
resulting strong classifier takes as input a single 360 @glgieer range scan recorded
by a robot and is able to determine whether the position frdnckvthe scan was taken
belongs to the clagsorridor or not.

5.3 Estimating the Label of a Goal Location

The idea described in the previous section is well-suitatetermine the type of place
the robot is currently in given a 360 degree laser range séamen if the place to
classify is not the current pose of the robot, one can siradlataser range observation
in the map of the environment and apply the classifier to tinelsited scan. This works
well for poses whose surroundings are completely known.

In the context of exploration, however, we are interestedl@ssifying potential
targets of the robot. Typically, target locations are ledaat the frontiers between
known and unknown areas. This means that large neighboreas dave not been
observed so far which makes it impossible to generate ampppte observation taken
from that location. As we will demonstrate in the experinserdiassifying a place
at a frontier with the approach presented in the previousmseteads to high false
classification rates of around 20%. In the following, we #fere introduce a HMM-
based technique that takes into account spacial deperddretiveen nearby locations
in order to obtain a lower error rate for places located attfevs.

In our approach, we generate a potential target locatiordch group of frontier
cells lying on the same frontier. This process is repeateceéach frontier. As an
example, the left image of Figure 5.3 depicts a potentigielocation extracted for
the right-most frontier (the targets for the other two fierd are not shown in that
image).

Due to the structure of environments made by humans, thergenwass does
not change randomly between nearby poses. Therefore, ksmsdnse to consider
smoothing or filtering between places located close togefhie do so, we generate
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Algorithm 5.1 The AdaBoost algorithm
Input: Input: set of example&ey, 1), ..., (zn, yn)-
1: k = number of negatives examples
2: | = number of positive examples.
3:forn=1,...,Ndo
if y, = 1then
1

4

5 Wi,n = 7

6: else

7 Win = %

8 end if

9: end for

10: fort=1,...,7 do

11:  Normalize the weightsy,,, so that>"™_ w,, = 1.
12:  for all featuresf; do

13: Train a weak classifiel; for the featuref;.

14: Compute the error’ of a classifier;according to

N
e;- = Zwm . ‘h;(xn) — yn‘ )
n=1

15: end for
16: Determine the weak classifier with the lowest error:

s
(ht, €;) = argmin e
(].))

17: B = 1?&

18: forn=1,...,Ndo

19: Wi1n = Wen - tl_‘ht(rn)_yﬂ
20: end for

21: oy = log é

22: end for

23: The final strong classifier is given by

H(z) = { 1oif 30 () - ap > %thl oy

0 otherwise

24: return 'H
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a short virtual trajectory to the desired goal location. Wert simulate a laser range
observation within the partially known map along the vittwajectory. Whenever the
ray-casting operation used to simulate a beam reaches aownlcell in the grid map,
the virtual sensor reports a maximum-range reading. Wedbety a hidden Markov
model (HMM) and maintain a posteridtel(L,) about the typd., of the placer the
virtual sensor is currently at

Bel(L,) = n-plos | Ly) Y p(Ly | Lar) - Bel(Lyr). (5.5)

L./

x

In this equationg, is the result of the classifier learned with AdaBoost for tleeex
andn is a normalizing constant ensuring that the left-hand simhessup to one over all
semantic labels.

To implement this HMM, three components need to be knowrstFive need to
specify the observation modeglo,. | L,) which is the likelihood that the classification
output iso, given the actual class i5,. The observation model is learned based on
5.000 observations, recorded at randomly chosen locaitodsferent environments
combined with the corresponding manually created grourtd tabeling.

Second, we need to specify the transition maaddl, | L..) which defines the
probability that the virtual sensor moves from cldss to classL,. To determine
this motion model, we evaluated typical trajectories afdiduring exploration. We
can directly compute(L, | L,/) by counting the transitions between places on that
trajectories. The correct labels were manually set.

Furthermore, we need to specify how the beligf (L) is initialized. In our
current system, we choose a uniform distribution, which mse&at all classes (here
corridor andnon-corridor) have the same likelihood.

Finally, we have to describe how the virtual trajectory isgmted. The endpoint
of the trajectory is the frontier cell to be classified. Sihoeations which have less
unknown grid cells in their surroundings can typically basdified with a higher suc-
cess rate, the other positions on that trajectory should fer away from the unknown
locations as possible. Therefore, we apply the euclidiatadce transformatidei-
jsteret al, 2004 with respect to unknown and occupied cells in the local afe¢he
frontier. We then select the pose in the free space withiridlcal area with the highest
distance to unknown areas. An A* planner is used to genehnateittual trajectory to
the target location. An illustrating example is depictedrigure 5.3.
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Figure 5.3: This figure illustrates the generation of théuwal trajectory used for the

HMM filtering. The left image depicts the current locationtbé robot, the frontiers

(dashed lines), and a potential target location to be eteduaTo do so, the robot
generates a virtual trajectory as shown in the right imagesamulates observations
at several positions located on the trajectory. These seguef observations is used
as the input of the HMM in order to obtain a more robust classiifon result.

5.4 Using Semantic Place Information for Efficient
Multi-Robot Exploration

In this section, we describe how to integrate the semanficcrimation into the coordi-
nation technique presented in the previous chapter. Asudt ifshat integration, the
robots prefer to explore corridors first. In this way, they adentify more target loca-
tions in the beginning of the exploration run. As mentionetbbe, our observations is
that the more unexplored target locations are known whegraag targets to robots,
the faster the team can explore the environment. This isaltieetfact that especially
large teams of robots can be better distributed over the@mwvient when more target
locations are available.

The knowledge about the semantic labels is integratedatatility function used
to select the next target locations for the individual rebdthe places which are sup-
posed to provide several branchings to adjacent placesitisdized with a high utility.

In our current implementation, all corridor locations get times higher initial utility
(U;niz) compared to all other potential target locations. In thég/wthe robots prefer
targets in corridors and eventually make slight detoursrdeoto explore them first.
To determine the actual value pfwe performed exploration runs in different environ-
ments with varyingy. We figured out that we obtained the best results usipgalue

of around 5. Algorithm 5.2 depicts the resulting coordioattechnique used in our
current system (using the same notation as in Chapter 4).

Our approach distributes the robots in a highly efficient nearover the envi-
ronment and reduces the amount of redundant work by takiiogaiccount visibility
constraints between targets and their semantic labelslabeés are used to focus the
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Algorithm 5.2 Target assignment algorithm using semantic place labels.
1: Determine the set of frontier cells.
2: Compute for each robatthe costV;' for reaching each frontier cefl.
3: Estimate for each frontier celf the semantic labelind.; (according to Sec-
tion 5.3).
4: Set the utilityU of all frontier cellsf to U,,.:(L, n) according to their semantic
labeling L ; and the size: of the team (see text below).
5. while there is one robot left without a target podu
6: Determine a robot and a frontier cellf which satisfy:
(4, f) = argmax; g, (Up — Vf’,/)
7. Reduce the utility of each target poifitin the visibility area according to
Up = Up = Pis(f, ')
8: end while

exploration on unexplored corridors, because they tylyigabvide more branchings
to adjacent rooms than other places. The high number of biage from the places
explored first results in a higher average number of aval#dniget locations during
exploration. This leads to a more balanced distributiorobbts over the environment
when doing the assignment. As we will demonstrate in the raxgats, the integra-
tion of such semantic labels helps to reduce the overalbeapbn time of multi-robot

exploration approaches for large robot teams.

Please note that for very small teams of robots, we do notgaela reduction of
the exploration time using our technique. This fact can lpgasemed by considering the
single-robot exploration scenario. In this case, it makesanse to focus on exploring
the corridors first, since the robot has to cover the overairenment with its sensors.
Moving through the corridors first will in general lead to aclieased trajectory length
and in this way will increase the overall exploration timee Wbserved this effect for
robots teams smaller than five robots.

To prevent a loss of performance compared to approache$wbiciot consider
semantic place information for small robot teams, we tnigpe influence of the se-
mantic place information depending on the size of the teamliéarly decrease the
influencey for teams smaller than 10 robots. The linear interpolatithe influence
of the semantic labels is encoded in the utility functiép, (L, n) in Algorithm 5.2,
wheren denotes the number of robots.
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Figure 5.4: Maps of the Fort Sam Huston hospital and the Réslearch Lab.

5.5 EXxperiments

This section is designed to evaluate the improvements ofmulii-robot coordination
technique which makes use of semantic place informatiore twthe high number
of robots in the team, we evaluated our collaboration tegmionly in simulation
experiments.

5.5.1 Performance Improvement using Semantic Place Inforiaex
tion

The first experiment has been carried out in the map of theFamt Huston hospital
which is depicted in the left image of Figure 5.4. This enmirent contains a long
horizontal corridor, vertical corridors, and several r@oeadjacent to the corridors.
We varied the size of the robot team from 5 to 50 robots andieghphe coor-

dination technique with and without taking into account aatit information about
places. Figure 5.5 depicts the result of the exploratioregrpent by plotting the ex-
ploration time versus the number of robots. The error batsahplot indicate the 5%
confidence level. As can be seen, our technique significaatiyerforms the collabo-
ration scheme that does not consider the place informatfibis. significant reduction
of exploration time is due to the fact that the robots focugrploring the corridors
first. As aresult, a big number of frontiers emerges due twélly numerous adjacent
rooms. Especially in the context of large teams, this resalt better distribution of
robots over the environments and thus speeds up the ovepédiration process. This
effect can be observed in Figure 5.6. The graphs plot the eumibavailable target
locations over time during an exploration task carried aihg the Fort Sam Hous-
ton map. During the assignment process, most of the time uh&ar of available
target locations is higher compared to our previous approdtis leads to a better
assignment of target locations to robots and as a resulinoeiat of redundant work
is reduced.
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Figure 5.5: Coordination results obtained in the Fort Sarstbtu hospital map em-
ploying the coordination strategy with and without the ussemantic place labels.
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Figure 5.7: Results obtained in the Intel Research Lab.

Furthermore, we observed a reduction of interferencesdmtwobots when they
plan their paths through the environment. The interfereread to a lower speed
of the robots, since they often block their paths. Therefoeducing the number of
interferences allows the robots to accomplish their tastefaln our experiments, we
observed a reduction of robot-robot interferences of uih 2

We performed similar experiments in different environnsetike for example in
the Intel Research Lab depicted in the right image of Figude Bhe result is compara-
ble to the previous experiment and again the knowledge d@helwgemantic categories
of places allows the robots to complete the exploration taske efficiently. The ac-
tual evolution of the exploration time in this experimentlepicted in Figure 5.7. The
same holds for experiments carried out using the floor plaheoDLR building shown
in Figure 5.8.

5.5.2 Influence of Noise in the Semantic Place Information

In the experiments presented above, we assumed that this langoable to correctly
classify the different target location into the semantitegaries. This assumption,
however, is typically not justified. In this experiment, wakiate the performance of
our approach for different classification error rates. Wa@ated the exploration time
for a classifier which randomly misclassified 5%, 10%, and 13%e places. Fig-
ure 5.9 depicts a plot comparing the different error ratesc#n be seen, even at a high
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results of our exploration system.
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Figure 5.9: Exploration results with wrongly labeled plsice

error of 10%, our approach significantly outperforms therdowtion technique that
ignores the semantic information. When the error of thestligation exceeds 15%,
the exploration time is still reduced, although this re@uitiot significant anymore.
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5.5.3 Applying a Trained Classifier in New Environments

This experiment is designed to illustrate that it is pogstol train a classifier in an

environment and transfer it to a totally different one. Ot@is®, the performance of
the classifier decreases, however, we obtained promisswtreFigure 5.10 shows

two labeled maps. The one in the first row was labeled manaaiti used to learn

the classifier using AdaBoost. For the environment depictdte lower image, we

simulated an observation for each grid cell and than usettdiveed classifier to label

the positions. As can be seen, the spacial structures aeedifierent but the classifi-

cation is good expect of a small areas which are wrongly ifiledsLarge parts of the

misclassified areas in this experiment are located at the ehtthe corridors. This is

mainly due to the fact that large parts of the area coveredchgssrecorded at these
locations actually cover a corridor.

We then used this classification result to perform an explmraask. The results of
this experiment are depicted in Figure 5.11. The figure plesime needed to explore
the environment using our approach with the true labeld) thié labels estimated by
our classifier, and without using place information at als. @an be seen, there is only
a small time overhead when using the estimated labels cadpathe true ones. This
indicates that even transferring such a classifier to unknemvironments provides a
speed-up in the context of multi-robot exploration.

5.5.4 Improvements of the HMM Filtering and Error Analysis of
the Classifier

In this experiment, we want to analyze the actual error ofppace classification sys-
tem and illustrate the improvements of the HMM filtering. To sb, we labeled an
environment, trained a corridor classifier using AdaBoastl used a test set to evalu-
ate the success rate. Whenever a single full 360 degreeréaggr scan was available,
we obtained highly accurate classification results in diifé office environments. In
this case, the error-rate was typically between 2% and 4%.

Figure 5.12 depicts the result of our classifier dependinthemumber of invalid
readings caused by unknown grid cells close to frontierg 2Faxis shows the size of
a continuous block of maximum range measurements (hereawitingular resolution
of the laser of 1 degree). As can be seen, if only half of thentations are available,
the classification error rate is between 18% and 19%.

First, we determined the success rate of directly claggjffiontier cells without
using HMM filtering. In this case, the average classificatate was in average 81.2%.
By considering the exploration speed-up depending on @msilcation rate depicted
in Figure 5.9, such a high error rate is not sufficient to obgai significant speed-up.
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Figure 5.10: The training examples for the classifier weaéd in the map shown in
the top image. In contrast to this, the lower image showsdkalting classification

output. The classification for each place was performeddasea laser range scan
simulated at the corresponding location in the map. As caseba, even if the struc-
ture of the environment is significantly different, the slifisation output is reasonable.
Red corresponds to corridor locations, blue to rooms.
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Figure 5.11: Results obtained in the Intel Research Lalgukie ground truth and the
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Second, we applied our HMM-based filtering approach thaegeas virtual tra-
jectories towards frontiers and in this way incorporates gpatial dependencies be-
tween the nearby locations. As a result, we obtained an geeiaccess rate of 92.8%.
This is a good result considering that we obtained an avesageess rate in this sce-
nario of 96.2% if all observations are perfectly known (séguFe 5.12). This fact
illustrates that the HMM is an useful tool to improve the @dabeling especially if
not the full 360 degree range scan is available. It allowsousstimate the semantic
labels with a comparably low error rate. In this way, our teghe can be used to sig-
nificantly speed up multi-robot exploration by considersegnantic information about
places in the environment.

In sum, our experiments demonstrate that semantic plaoeniattion can signifi-
cantly reduce the exploration time even under classifinagioors.

5.6 Related Work

In order to improve the navigation capabilities of a teamalfats, we use semantic
place information learned from sensor data. Several asithddressed the problem
of classifying typical structures of indoor environmentsor example, Koenig and
Simmons[1999 use a pre-programmed routine to detect doorways from raage d
In [Buschka and Saffiotti, 2002a virtual sensor is described which automatically
segments the space into room and corridor regions, and deshaset of characteristic
parameters for each region. The algorithm is incrementahénsense that it only
maintains a local topological map of the space recently aepl by the robot and
generates information about each detected room whilstsa@mvisited. Althaus and
Christenseh200d use the Hough transform from sonar readings to detect tvailphr
lines which are considered to be part of a corridor. The dieteof doorways is carried
out using the gaps between these lines. With the detectioaratlors and doorways,
they construct a topological map for navigation and obstagbidance.

Some authors also apply learning techniques to localizeothat or to identify dis-
tinctive states in the environment. For example, Catral.[1997 train a neural net-
work to estimate the location of a mobile robot in its envirant using the odometry
information and ultrasound data. Kuipers and Bed&8®7 apply different learning
algorithms to learn topological maps of the environmentdifidnally, Anguelov and
colleagues [Angueloet al., 2002, 2004] apply the EM algorithm to cluster different
types of objects from sequences of range data. In a recekt Warralbaet al.[2003
use hidden Markov models for learning places from image.data

In our work, we apply a technique based on the place clagsificapproach pro-
posed in a joint workMartinez Mozost al, 2009. The idea is to use simple features
extracted from laser range scans in order to train a set ssifiers using AdaBoost.
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In this way, it is possible to label a place given a singledaaage observation. Fur-
thermore, our filtering technique bears resemblance wehagiproach presented in a
joint work with Rottmanret al.[2004, in which a hidden Markov model is applied to
improve the classification result. In contrast to the workalded here, we combine
in [Rottmannet al, 2009 laser data and visual information to obtain more features
and in this way are able to distinguish between more classes.

Different authors apply the AdaBoost algorithm to learnssliers. Treptowet
al. [2003 use the AdaBoost algorithm to track a ball without color mfation in
the context of RoboCup. Viola and Jori@901] presented a robust face detector using
AdaBoost and single-value features. Their approach cersidtegral images in order
to compute such features.

Our classifier used to label places can be seen as backgroondddge about the
environment. Foxt al.[200d3 presented a technique which aims to learn background
knowledge in typical indoor environments and later on ussrtor map building.
Their approach learns a Dirichlet prior over structural eledrom previously explored
environments. The presented technique is applied to dedidéher the robot is seeing
a previously built portion of a map, or is exploring new tery. This can be especially
useful if the pose information of the robots are affected big@ or they do not know
their relative locations.

In the context of coordination techniques for multi-robgplkeration, we would
like refer the reader to Section 4.6 which discusses commproaches in detail. Due
to the best of our knowledge, there is no work that investéigabw semantic informa-
tion about places in the environment can be used to optirh&edllaboration behavior
of a team of robots. The contribution of this chapter is arrepgh that estimates and
explicitly uses semantic information in order to more eéfitly spread the robots over
the environment. This results in an more balanced targatilmtassignment with less
interferences between robots. As a result, the overall tigezled to cover the whole
environment with the robots’ sensors can be significantiyiced.

5.7 Conclusion

In this chapter, we proposed a novel technique that takesaictount semantic in-
formation about places in the context of coordinated nroltiet exploration. Since
indoor environments are made by humans, they typicallyisbagstructures like cor-
ridors and rooms. The knowledge about the type of place otenpial target location
allows us to better distribute teams of robots over the enmirent and to reduce redun-
dant work as well as the risk of interference between theteol#s a result, the overall
exploration time can be reduced compared to collaborappncaches that ignore se-
mantic place information. The semantic labels are detexthby learning a classifier
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using AdaBoost in combination with an HMM to consider spbhdependencies.

Our approach has been implemented and tested in extensiuéasion runs with
up to 50 robots. Experiments presented in this chaptettridtesthat a team of robots
can complete their exploration mission in a significantlprsér period of time us-
ing our approach. Furthermore, we believe that utilizingaetic information during
exploration is not restricted to our exploration technigne that it can be easily inte-
grated into other coordination approaches.
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Chapter 6

Efficient Techniques for
Rao-Blackwellized Mapping

6.1 Introduction

o far, we focused on guiding robots through the environmeitder to per-
ceive it with their sensors. We assumed that the poses ofothats were
nown. This assumption, however, does not hold in real waitlgations. In
the second part of this thesis, we therefore take into acaberuncertainty
about the pose of a mobile robot.

In this chapter, we focus on how to estimate the trajectorgt odbot as well as
the map of the environment given the perceived sensor datah@nodometry infor-
mation. In the literature, the mobile robot mapping problemder pose uncertainty
is often referred to as tr@multaneous localization and mappi(§LAM) or concur-
rent mapping and localizatiofCML) problem[Dissanayaket al., 2000, Doucett al.,
2000, Eliazar and Parr, 2003, Gutmann and Konolige, 1998nel&t al., 2003a, Mon-
temerloet al,, 2003, Montemerlet al,, 2002, Murphy, 1999, Thrun, 2001a, Leonard
and Feder, 2040 SLAM is considered to be a complex problem because to oeal
itself a robot needs a consistent map and for acquiring the timarobot requires a
good estimate of its location. This mutual dependency antbegose and the map
estimates makes the SLAM problem hard and requires segrébira solution in a
high-dimensional space.

Murphy, Doucet and colleaguéMurphy, 1999, Douceét al., 2004 introduced
Rao-Blackwellized particle filters as an effective meansdlve the simultaneous lo-
calization and mapping problem. The key idea of this apgrosito first use a particle
filter to estimate the trajectory of the robot. One then ubeés trajectory estimate
to compute a posterior about the map of the environment. Tdia problem of the
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Rao-Blackwellized approaches is their complexity, meadum terms of the number
of particles required to build an accurate map. Reducing diantity is one of the
major challenges for this family of algorithms. Additiohalthe resampling step is
problematic since it can eliminate good state hypotheseis. éifect is also known as
the particle depletion problefiboucet, 1998, van der Merwat al., 2000, Doucett
al., 2001.

In this work, we present two approaches to substantiallsegse the performance
of a Rao-Blackwellized particle filter applied to solve theA8/ problem based on
grid maps:

e A proposal distribution that considers the accuracy of greser of the robot and
allows us to draw patrticles in an highly accurate manner.

¢ An adaptive resampling technique, which maintains a restslenvariety of par-
ticles and in this way enables the algorithm to learn an ateumap and to
reduce the risk of particle depletion.

As explained in Chapter 2, the proposal distribution withiparticle filter is used
to draw the next generation of particles. In our approach pttoposal distribution is
computed by evaluating the observation likelihood aroumparicle-dependent most
likely pose obtained by a scan registration procedure. iy, the last reading is
taken into account while generating a new particle. Thisnalus to estimate the evo-
lution of the system according to a more informed and thuseraccurate model than
the one obtained using only a scan-matching procedure wid tovariance as done
by Hahnelet al.[2003d. The use of this refined model has two effects. The resulting
map is more accurate because the current observation is itatkeaccount when esti-
mating the movement of the vehicle which yields a more ateyrase estimate. The
reduced error additionally leads to a smaller number ofigdartequired to represent
the posterior. The second technique, the adaptive resagnglrategy, allows us to
perform a resampling step only when it is needed and in thisallaws us to keep a
reasonable particle diversity. This significantly reduttesrisk of particle depletion.
Our approach has been validated by a large set of experinreiridoor as well as
in outdoor environments. In all experiments, our approaategated highly accurate
metric maps. Additionally, the number of the required mdes is around one order of
magnitude smaller than with previous approaches.

This chapter is organized as follows. After explaining howao-Blackwellized
filter can be used to solve the SLAM problem, we describe oyoraved mapping
technique in Section 6.3. Experiments carried out on rdabtoas well as in simu-
lation are presented in Section 6.5. Section 6.4 then aeslilee complexity of the
presented approach and finally Section 6.6 discussesdepfgroaches.
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6.2 The Concept of Rao-Blackwellized Mapping

Rao-Blackwellized particle filters for SLANMurphy, 1999, Doucett al., 2004 are
used to estimate the posteripfz,.;, m | z1.4,ui4—1) about the trajectory;., of the
robot and the map: given its observations;.; and its odometry measurements _ ;.
The key idea of Rao-Blackwellized mapping is to separatestienation of the trajec-
tory from the map estimation process

p(ﬁlm m ‘ Z1:t, U1;t—1)

duct rul
proeEt e p(T1 | 21, ur—1) - (M| T1e, 208, Ur—1) (6.1)

= p(xm ‘ 21;t7U1;t—1) ~p(m | L1, Zl:t)- (6-2)

where Eq. (6.2) is obtained from Eqg. (6.1) by assuming thas independent of the
odometry measurements;_; given the poses;.; of the robot and the corresponding
observationg ;.

This factorization, which is also called the Rao-Blackizallion, allows us to ef-
ficiently computep(xy.,,m | z1.4,u1.4-1), Since the posterior about the mapn |
T1.4, 214) Can be computed analytically, given the knowledgeafandz;.,. Learning
maps under given pose information is also called “mappirt kmown poses” (see
Chapter 2).

To estimate the posterignzy., | 21., u1.,—1) about the potential trajectory, Rao-
Blackwellized mapping uses a particle filter similar to Me@tarlo localization (MCL)
[Dellaertet al., 1999. In contrast to MCL, the Rao-Blackwellized particle filt@nr f
mapping maintains amdividual mapfor each sample. Each map is built given the
observationg,.; and the trajectory:,.; represented by the corresponding patrticle.

One of the most common particle filtering algorithms is slaenpling importance
resampling(SIR) filter. A Rao-Blackwellized SIR filter for mapping irementally
processes the observations and the odometry readingsyaarthavailable. This is
achieved by updating a set of samples representing therfwosstbout the map and the
trajectory of the vehicle. The process can be summarizetéfotlowing four steps:

1. Sampling: The next generation of particles is obtained from the curgenera-
tion by sampling from a proposal distributian

2. Importance Weighting: An individual importance Weightutm is assigned to
each particle, according to

i p(xy | I[llz}t—bzlit?ulit—l) o]

t = Wy q- (6.3)

7T($1[ti] ‘ x[li:]t—la Zl:t7u1:t—1)

The weightswtm account for the fact that the proposal distributiom general
is not equal to the target distribution.
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Figure 6.1: Example for three particles used within RaceBizellized mapping to
represenp(zi., m | 214, u1..—1). Each particle estimates the trajectory of the robot and
maintains an individual map which is updated according éoetstimated trajectory.

3. Resampling Particles with a low importance weight are typically reqgd by
samples with a high weight. This step is necessary sinceafihjite number of
particles is used to approximate a continuous distributfannthermore, resam-
pling allows us to apply a particle filter in situations in whithe true distribution

differs from the proposal.

4. Map Estimating: The map of each particle is updated using “mapping with

known poses.”

An example for such a filter is illustrated in Figure 6.1. Ipdds three particles
with the individually estimated trajectories and the mapslated according to the
estimated trajectory. In the depicted situation, the rabmged a loop and the different
particles produced different maps. Particle 1 has a corbpasgcurate pose estimate,
whereas the map of particle 3 shows big alignments errorsrefbre, particle 1 will
get a higher importance weight compared to particle 3. Thghtef particle 2 will
be between the weight of particle 1 and 3 because its alighareor is smaller than
the one of particle 3 but bigger than the one of particle 1.

In the literature on particle filtering, several methodsdomputing improved pro-
posal distributions and techniques for reducing the dartiepletion problem have
been describefDoucet, 1998, Morales-Menéndetz al., 2002, Pitt and Shephard,
1997. Our approach applies two concepts that have previously ioleatified as key
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pre-requisites for efficient particle filter implementatsooy Doucef1999g: the com-
putation of improved proposal distributions and an ad&gtsampling technique. Our
idea of computing an improved proposal is similar to the tegie applied by Mon-
temerloet al. [2003 in FastSLAM-2. The major difference lies in the fact that we
compute the proposal based on dense grid maps and not batsmtlomarks. To the
best of our knowledge, adaptive resampling has never b&estigated in the context
of mapping with Rao-Blackwellized particle filters.

6.3 Improved Proposals and Selective Resampling

The generic algorithm specifies a framework for Rao-Bladkzesl mapping but it
leaves open how the proposal distribution is computed arehwie resampling should
be carried out. Throughout the remainder of this chapteqegeribe a technique that
computes an accurate proposal distribution and that addyptietermines when to
resample.

As described in Section 6.2, one needs to draw samples frampagal distribu-
tion 7 in the prediction step. In general, the proposal can be atrampfunction (see
Section 2.1 for further details). However, the more simifer proposal is to the target
distribution, the better is the approximation of the nexteyation of samples. There-
fore, = should approximate the true distribution as good as passilfortunately, in
the context of SLAM, a closed form of this posterior is notikatde. The samples are
usually drawn from the transition mode(x; | =;_1, u;_1) of the robot. Following the

importance sampling principle, the Welghytg can be computed as in the localization
scenario (see Chapter 2)

t[] x p(z |mt 1>$£}) wtml (6.4)

The motion model, however, is not the best choice for the gsapdistribution. This
fact has already been identified by Doueetl. [2001]. According to this work, the
following equation is the optimal choice of the proposatriisition with respect to
the variance of the particle weights and under the Markouragsion

p(xt | myllv xz[tillv Zt, ut—l) -

p(z | my} 1 Te) - p(ay | xﬂuut—l)

G g (6.5)
fp z | mt 17$) p(a |zl ) da

We will now describe an efficient way for computing a per-detproposal distribu-
tion, which uses the information of the most recent laseenlagionz;.
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Figure 6.2: The motion model for odometry as well as for ladma. Within the
region L the product of both functions is dominated by the obseruatikelihood.
Accordingly, the model of the odometry error can safely bgrapimated by a constant
value.

6.3.1 Using Laser Range Data to Compute an Improved Proposal
Distribution

In most particle filter applicationtDellaertet al., 1998, Montemerlaet al, 2004,

the odometry motion model(x; | z;_1,u,_1) has been chosen as the proposal dis-
tribution. When modeling a mobile robot equipped with a fasage finder, this
choice is suboptimal in most cases, since the accuracy daslee range finder leads
to extremely peaked likelihood functions. In such a S|tnraa,tthe likelihood function

(2 | mt}l,xt) domlnates the produgt z; | mt 1,xt) p(zy | xt 1, Ug—1) Within the
meaningful regior.” of this distribution as illustrated in Flgure 6.2.

In our current system, we therefore approximate, | z\” ,, u,_) by a constant:
within the regionL!” given by
1 = o] pa | mily2) > e} (6.6)

Under this approximation, Eq. (6.5) turns into

p(z | mi . )

Joernp(zt | myly, x) dat

p(x |mt 1,x£}1,zt,ut 1) =~

(6.7)
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We furthermore have to specify the computation of the partieights. For the im-
portance weigh’wtm of i-th particle, we obtain

w[i] . p(x[f:}t | Z1;t,U1:t—1) (6 8)
t = ; .
(x[l]t | thault 1)
ox p(2 | mt 17$£}) -p(xy} | xﬂput—l)
7(@ |mt—17x1[€]17zt7ut 1)
_ p(x[ﬂt—l | Z1:0-1, Ur—2) (6.9)
7T($[12}t_1 ‘ Zl:t—laulzt—2)J
"
t—1
0 e m ) pa |l wn)
7 L R 5 E ARl Bt S LA (6.10)
7T( 3 |ml[fl]17x£}lvzt7ut l)
. [i] (4] (4] (4]
Eq. (6.7 .
q:( ) wﬂl~p(zt | my2y,2)) - p(a 2 | 22y, up 1) (6.11)
p(zt\mt 175% )
fz’eL[]p(zt‘mt ') da’
[2]
odometry const. i (Z |m , L ) k
= wzul ’ tl [L] (6.12)
(zt‘mt—l’_ i)
fw’EL[i] P(Zt\myll,x') da’
= wil, - k‘/ . p(z | mi,, a) da'. (6.13)
z'eLl

Additionally, we locally approximate our proposal giverg. (6.7) around the maxi-
mum of the likelihood function by a Gaussian. This leads &epproximated proposal

p(zy | mﬂl,xg]l,zt,ut 1) =~ pn(z | mﬂl,xt). (6.14)
wherep, refers to the Gaussian approximationyof With this approximation, we
obtain a closed form which is suitable for efficient samplik@r each particle, the
parametergu,[f] and EL"] can be determined by evaluating the likelihood function for
a set of pointz;} sampled around the corresponding local maximum found by the
scan-matching process:

d

K
i 1
w = EZ jopa | my ;) (6.15)
. 1K
o = —Z (2 | MLy y) - p(ay — ) (2 — )T (6.16)
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where

p(zt | mt 17%) (6.17)

IIMN

is a normalizer.

Observe that the computation @5‘] andZL"] as well as the scan-matching process
are carried out for each particle individually. In our cunrgeystem, we apply a scan-
matching routine similar to that of Hahnet al. [2004. The sampled point$z;}
are chosen to cover an area dependent on the uncertainty sifreaent odometry
information

z; € {xy | p(wy | o1, ue—1) > €}. (6.18)

By assuming that the Gaussian approximation of the obsenviitelihood is close to
its real value (which is actually often the case) and by aberang sampled points in
L, the weights can be expressed by

R L R Y CED)
/el
use pointse; € LIl [ K (i
= wiZy - Y plz | miZy, xy) (6.20)
j=1
Bq. (6.17) ;
a1 wi, -, (6.21)

wheren in EqQ. (6.21) corresponds to the normalizer as given in Eq.7(6

The computations presented in this section allow us to ohéter the parameters
of a Gaussian proposal distribution for each particle iliglly. The proposal takes
into account the most recent laser observation and at the sara allows us efficient
sampling. The resulting densities have a lower uncertdimay in the situation in
which the odometry motion model is utilized. To illustratéstfact, Figure 6.3 depicts
typical particle distribution obtained with our approaticase of a straight featureless
corridor, the samples are typically spread along the magctdon of the corridor as
depicted in Figure 6.3 (a). Figure 6.3 (b) illustrates tHaotaeaching the end of such a
corridor. As can be seen, the uncertainty in the directiotmefcorridor decreases and
all samples are centered around a single point. Figure $sh@ws how the particle
spread out when they are draw from the odometry motion model.

During filtering, it can happen that the scan-matching psedails because of poor
observations or a small overlapping area among the curoam and the previously
computed map. In the case the scan-matcher reports antbeogw motion model
of the robot is used as a proposal. Such a situation in whieHaber observation
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L4

(@) (b) (©)

Figure 6.3: Particle distributions typically observedidgmapping. In an open corri-
dor, the patrticles distributes along the corridor (a). Ireadlend corridor, the uncer-
tainty is small in all dimensions (b). In a featureless opeace the proposal distribu-
tion is the raw odometry motion model (c). The trajectorylod tobot is depicted by
the red line.

does not provide any information is depicted in Figure 6)3 lowever, we observed
that these kind of situations occur rarely in real datasse @lso Section 6.5.4 in the
experiments of this chapter).

6.3.2 Selective Resampling

A further aspect that has a major influence on the performahagatrticle filter is the
resampling step. During resampling, the particles withvailmportance Weigh’wtm
are typically replaced by samples with a high weight. On the leand, resampling is
necessary since only a finite number of particles are usedh®ather hand, the re-
sampling step can delete good samples from the sample gsingaarticle depletion.
In the context of map building, this is critical especialiythe context of nested loops.
During mapping an inner loop, hypotheses that are not natsthe ones with the
highest weight are often needed later on to correctly closeuéer loop. Accordingly,
it is important to find a criterion when to perform a resamglatep.

Liu [1994 introduced the so-calleeffective number of particles effective sam-
ple sizeto estimate how well the current particle set representsrtiegposterior. This

guantity is defined as
1

N2°
Ei]il <wi]>

The intuition behindV.; is as follows. If the samples were drawn from the true pos-
terior, the importance weights of the samples would be euadch other, due to the

N = (6.22)
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importance sampling principle. The worse the approxinmatibe higher the variance
of the importance weightsN.; can be regarded as a measure for the dispersion of
the importance weights. Thus, it is a useful measure to at@alwow well the particle
set approximates the true posteridy.; takes values between 1 and the number
of particles. Whenever the weights are equally distribyitsdvalue isN. In case all
the probability mass is concentrated in a single sample, aslyalue is 1. Nz can
be used to determine whether or not a resampling should bead@aut. Whenever its
value is high, resampling is typically not required since @ipproximation of the target
distribution is good. We resample each titNgy drops below a certain threshold. In
our current implementation, this threshold was se¥{@. In extensive experiments,
we found that this approach substantially reduces the fis&gmacing good particles,
because the number of resampling operations is reduce@sahpling operations are
only performed when needed.

6.4 Complexity

This section discusses the complexity of the presentedapprto Rao-Blackwellized
mapping using grid maps. Since our approach uses a partieletb represent the
joint posterior about the map and the trajectory, the numberf samples is the cen-
tral quantity. To compute the proposal distribution for rmgse¢ particle, our approach
samples around the most likely position reported by the staticher. This sampling
step is performed a constant numberfoftimes for each sample and there is no de-
pendency between the particles when computing the proposal

The most recent observation which is used to comptiteand>! (see Eq. (6.15)
and (6.16)) covers only an local area in the environment.i#aidlly, the area of the
sampled points is bounded by the odometry error. Since thgpuatation needs to be
done for each sample, the complexity of this computatiopgdds only on the number
N of particles. The same holds for the update of the individueghs associated to each
particles.

The computation of the particle weights is done by computiegdikelihood of the
observatiore; according to Eq. (6.8). Again this leads only to a complekitgar in
the number of particles.

During a resampling action, the information associated pawicle needs to be
copied. In the worst caséy — 1 samples are replaced by a single particle. In our
current system, each particle stores and maintains its eidmgap. To duplicate a
particle, we therefore have to copy the whole map. As a reausampling action
introduces a complexity @@(N - M), wherel is the size of a grid map. However, the
size of the environment in which the robot moves is typicéftyited. Furthermore,
using our adaptive resampling technique, only a few resagglre required during
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Table 6.1: Complexity of the different operations for inting one observation.

| Operation | Complexity |
Computation of the proposal distributionO (V)
Update of the grid map O(N)
Computation of the weights O(N)
Test if resampling is required O(N)
Resampling O(N - M)

Figure 6.4: Different types of robot used to acquire reabtatata used for mapping
(ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and an iRobot B21r)

mapping. To decide whether or not a resampling is needed:fteetive number of
particles (see Eq. (6.22)) needs to be taken into accouné cbmputation of this
guantity introduces a linear complexity .

Table 6.1 depicts the complexity of the individual openasio As a result, if no
resampling operation is required, the overall complexatyifitegrating a single obser-
vation depends only linearly on the number of particles. iésampling is required,
the additional facton/ which represents the size of the map is introduced and leads t
a complexity ofO(N - M).

6.5 EXxperiments

The approach described above has been implemented and tesitgy real robots
and datasets gathered with real robots. Our implementatios online on several
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platforms like ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, arRibbot B21r robots

equipped with a SICK LMS and PLS laser range finders (see €i§u). The exper-

iments carried out in a variety of environments have shovenetfiectiveness of our
approach in indoor and outdoor environments. The qualitthefresulting maps is
extremely good, allowing in some cases to generate a mapawikolution of 1 cm,

without observing considerable inconsistencies. Evengmeal world datasets cover-
ing an area of approximately 250 m by 250 m, our approach nmegelired more than
80 particles to build accurate maps. Except of the MIT dai@se below), 30 particles
where sufficient to build high quality maps of different emviments. In this section,
we discuss the behavior of the filter in different real womdieonments. Furthermore,
we give a quantitative analysis of the performance of thegmreed approach.

Note that all the maps presented in this chapter are avail@blhigh resolution
images on the InterndéStachniss and Grisetti, 20D4We also provide a set of ani-
mations showing the evolution of the different trajectoppbtheses during mapping.
Furthermore, an efficient open-source implementation ohoapping system as well
as all corrected datasets presented here are available.

6.5.1 Mapping Results

The datasets discussed here have been recorded at thedsézlrBh Lab in Seattle, at
the Killian Court at MIT, and on the campus at the University-eeiburg. The maps
of these environments are depicted in Figures 6.5, 6.6, ahd 6

Intel Research Lab The Intel Research Lab is depicted in the left image of Fig-
ure 6.5 and has a size of 28 m by 28 m. The dataset has beengéeuitd a Pioneer 2
robot equipped with a SICK sensor. To successfully corfgstdataset, our algorithm
needed only 15 particles. As can be seen in the right imagéegofé-6.5, the quality

of the final map is so high that the map can be magnified up todutésn of 1 cm
without showing any significant errors or inconsistencies.

Freiburg Campus The second dataset has been recorded outdoors at the Breibur
campus. Our system needs 30 particles to produce a goodygualp such as the one
shown in Figure 6.6. Note that this environment partly vieéathe assumptions that the
environmentis planar. Additionally, there were objedts lbushes and grass which are
hard to be mapped with a laser range finder. Furthermores there moving objects
like cars and people. Despite the resulting spurious measemts, our algorithm was
able to generate an accurate map. Note that no GPS, compdsit) information is
used in all our experiments.
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Figure 6.5: The Intel Research Lab: The robot starts in theeupart of the circular
corridor, and runs several times around the loop, beforeriexgt the rooms. The left
image depicts the resulting map generated with 15 partidles right image shows a
magnified view with a grid resolution of 1 cm to illustrate thecuracy of the map in
the loop closure point.

MIT Killian Court ~ The third experiment was performed with a dataset acquired a
the MIT Killian court and the resulting map is depicted in tig 6.7. This dataset is
extremely challenging since it contains several nestegddpahich can cause a Rao-
Blackwellized particle filter to fail due to particle deptat. Furthermore, there where
people walking in front of the robot while it was moving thgiua nearly featureless
corridor.

Using this dataset, our selective resampling procedurestlout to be extremely
important. A consistent and topologically correct map caménerated with 60 parti-
cles. However, the resulting maps sometimes show artificiable walls. By employ-
ing 80 patrticles it is possible to achieve high quality majmsgive an impression about
the size of this dataset, Figure 6.8 provides a satellite gleowing the MIT campus
around the Killian Court as well as the learned map on top @ftitellite image.

6.5.2 Quantitative Results

In order to measure the improvement in terms of the numbeauigtes, we compared
the performance of our system using the informed propostiblition to the approach
done by Hahnett al. [20034. Table 6.2 summarizes the number of particles needed
by both RBPFs for providing a topologically correct map imeatst 60% of all runs of
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Figure 6.6: The Freiburg campus: The robot first runs arobadxkternal perimeter in
order to close the outer loop. Afterwards, the internalgaftthe campus are visited.
The overall trajectory has a length of 1.75km and covers aa af approximately

250 m by 250 m. The depicted map was generated using 30 patrticl
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Figure 6.7: The MIT Killian Court: The robot starts from theipt labeled: and then
traverses the first loop labeléd It then moves through the loops labeledd and
moves back to the place labele@nd the loop labelebl It the visits the two big loops
labeledf andg. The environment has a size of 250 m by 215 m and the robotiécve
1.9km. The depicted map has been generated with 80 partithesrectangles show
magnifications of several parts of the map.
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Figure 6.8: The MIT Killian Court from a satellite perspeeti The corridors plotted
on top of the satellite view are the result of our mapping atgm. Satellite image
source: Massachusetts Geographic Information Systems®&3.
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Table 6.2: The number of particles needed by our algorithmpzared to the approach
of Hahnelet al.

| Proposal Distribution | Intel | MIT | Freiburg |

our approach 8 60 20
approach ofHahnelet al, 2003a | 40 | 400 400

% 100 SO B inted Lab -

= 80 -7 Freiburg Campus-———- .

o 50 [ MIT -

@ MIT-2 e

Q40 il -

3 20 1
100 1000

number of particles

Figure 6.9: Success rate of our algorithm in different eminents depending on the
number of particles. The binary decision if a run was sudaéss not was done by
manual inspection of the resulting map. Each success raheiplot was determined
using 20 runs. For the experiment MIT-2, we disabled the taapesampling while
correction the MIT dataset.

our algorithm (initialized with different random seeds).

It turns out that in all of the cases, the number of partickegiired by our approach
was approximately one order of magnitude smaller than tieerequired by the other
approach. Moreover, the resulting maps are better due tormgaroved sampling pro-
cess that takes into account the most recent sensor reading.

Figure 6.9 summarizes results about the success ratio algarithm in the en-
vironments considered here. The plots show the percentiageriectly generated
maps, depending on the number of particles used. The bireigidn if a run was
successful or not was done by manual inspection of the reguttap. As a measure
of success, we used the topological correctness. Map fodasas incorrect typically
showed double walls or corridors and/or wrongly alignedidors.
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6.5.3 Effects of Improved Proposals and Adaptive Resamplm

The increased performance of our approach is due to theplateof two factors,
namely the improved proposal distribution, which allowsgenerate samples with
an high likelihood, and the adaptive resampling controdgdmonitoring N.;. For
proposals that do not consider the whole input history, & baen proven tha¥.;
can only decrease (stochastically) over tifP®ucet, 1998 Only after a resampling
operation doesV.y recover its maximum value. It is important to notice that the
behavior of N.; depends on the proposal: the worse the proposal, the faster
drops.

In our experiments, we found that the evolution/6f; using our proposal dis-
tribution shows three different behaviors depending orirtfemation obtained from
the robot’s sensor. Whenever the robot moves through unkmessain, N,z typically
drops slowly. This is because the proposal distributiorobes less peaked and the
likelihoods of observations differ only slightly. The secbbehavior can be observed
when the robot moves through a known area. In this case, eaticle keeps local-
ized within its own map due to the improved proposal distidouand the weights are
more or less equal. This results in a constant evolutioN gf. Finally, when closing
a loop, some particles are correctly aligned with their mé&dewvothers are not. The
correct particles have a high weight, while the wrong one famlow weight. Thus
the variance of the importance weights increases &g drops substantially. This
behavior is illustrated in Figure 6.10.

Accordingly, our resampling criterion based iy typically forces a resampling
action when the robot is closing a loop. In most cases, tlempkng is avoided which
results in keeping the necessary variety of different higpsés in the particle set. To
analyze this, we performed an experiment in which we contptre success rate of
our algorithm to that of a particle filter which resamples\arg step. The experiment
was carried out based on the MIT Killian Court dataset. AsuFeg5.9 illustrates, our
approach more often converged to the correct solution (MiVe) for the MIT dataset
compared to the particle filter with the same number of plagiand a fixed resampling
strategy (MIT-2 curve).

To give a more detailed impression about the accuracy of ewrmapping tech-
nique, Figure 6.11 and 6.12 depict a collection of maps E&from commonly used
and freely available real robot dataspt®ward and Roy, 2043 The datasets used to
build the maps shown in Figure 6.11 have been recorded at the&Cimputer Science
and Al Lab, at the University of Washington, at Belgioiosodat the University of
Freiburg. Figure 6.12 depicts maps from the Bruceton mime Liniversity of Texas,
and the Acapulco Convention Center. Each map was built (Bingarticles to repre-
sent the posterior about the map of the environment anddjectory of the vehicle.
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Figure 6.10: The graph plots the evolution of tNgy function over time during an
experiment in the environment shown in the right image. AetiB the robot closes
the small loop. At time C and D resampling actions are carigelr the robots closes
the big loop.

6.5.4 Situations in Which the Scan-Matcher Fails

As reported above, it can happen that the scan-matcher Beuttafind a good pose
estimate based on the laser range data. In this case, weestiomlthe raw odometry
model to create the next generation of particles. In mottdeadoor dataset, however,
such a situation never occurred at all. Only in the MIT databes effect was observed
once due to a person walking directly in front of the robotleline robot was moving
though a corridor that mainly consists of glass panes. Aupgcdf that glass corridor
can be found in Figure 6.8.

In outdoor datasets, such a situation can occur if the rolmtesnthrough large
open spaces and therefore the laser range finder mainltsegpaximum range read-
ings. During mapping the Freiburg campus, the scan-matserreported such an
error at one point. In this particular situation, the robotesed the parking area (in
the upper part of the map, compare Figure 6.6). On that dagaed were removed
from the parking area due to construction work. As a reswltcars or other objects
caused reflections of the laser beams and most parts of thesnaisted of maximum
range readings. In such a situation, the odometry infommagtrovides the best pose
estimate and this information is used by our mapping systepnedict the motion of
the vehicle.
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Figure 6.11: Maps of the MIT Computer Science and Al Lab (shgwalso the trajec-
tory of the robot), of the 4th floor of the Sieg Hall at the Unisigy of Washington, of
the Belgioioso building, and of building 101 at the Univeysif Freiburg.
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Figure 6.12: Maps of the Bruceton mine, of the ACES buildihgiversity of Texas,
and of the Acapulco Convention Center.
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Table 6.3: Average execution time using a standard PC.

| Operation | Average Execution Time]
Computation of the proposal distributiop, 1910 ms
the weights, and the map update
Test if resampling is required 41 ms
Resampling 244 ms

6.5.5 Computational Cost

In this last experiment, we analyze the memory and commutatresources needed by
our mapping system. We used a standard PC with a 2.8 GHz garcéde recorded
the average memory usage and execution time using the tefaameters that allows
our algorithm to learn correct maps for all real world dataggovided to us. In this
setting, 30 particles are used to represent the posterart diire map and the trajectory.
A new observation which consists of a full laser range scamégrated whenever the
robot moved more than 0.5 m or rotated more than 25 degreelnidldResearch Lab
dataset (see Figure 6.5) contains odometry and laser raagegs which have been
recorded over 45 min. Our implementation required aroun@\B of memory to
store all the data using a map with a size of approx. 40 m by 40draayrid resolution
of 5cm. The overall time to correct the log file using our s@fteswas less than 30 min.
This means that the time to record a log file is around 1.5 tilmeger than the time
to correct the log file. Table 6.3 depicts the average exectime for the individual
operations.

6.6 Related Work

Mapping techniques for mobile robots can be roughly clasidiccording to the map
representation and the underlying estimation techniquree @pular map representa-
tion are occupancy grid maps. Whereas such grid-based agpes typically require
a lot of memory resources, they do not require a predefingdrieaxtractor and pro-
vide detailed representations. Feature-based représastare attractive because of
their compactness. However, they rely on feature extractanich assumes that some
structures in the environments are known in advance.

The estimation algorithms can be roughly classified acogrth their underlying
basic principle. The most popular approaches are extenddémadf filters (EKFSs),
maximum likelihood techniques, sparse extended infownatilters (SEIFs), least
square error minimization approaches, smoothing teckesioand Rao-Blackwellized
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particle filters (RBPFs). The effectiveness of the EKF apphes comes from the
fact that they estimate a fully correlated posterior abamdmark maps and robot
posed Smithet al, 1990, Leonard and Durrant-Whyte, 199Their weakness lies in
the strong assumptions that have to be made on both, themadiain model and the
sensor noise. Moreover, the landmarks are assumed to beelyidentifiable. There
exist technigue$Neira and Tardds, 209010 deal with unknown data association in
the SLAM context, however, if certain assumptions are vemathe filter is likely to
diverge[Frese and Hirzinger, 2001Similar observations have been reported by Julier
et al.[1999 as well as by Uhimanf1995.

A popular least square error minimization algorithm coneguthe map given the
history of sensor readings by constructing a network oftiela that represents the
spatial constraints among the poses of the rébetand Milios, 1997. Gutmann and
Konolige [1999 proposed an effective way for constructing such a networkfan
detecting loop closures while running an incremental esiion algorithm. When a
loop closure is detected, a global optimization on the i@hahetwork is performed.
Similar approaches use relaxatidduckettet al., 2002, Freset al, 2009 in order to
find configurations that reduce the overall least square grtbe network of relations
between poses.

Hahnelet al.[2003H, proposed an approach which is able to track several trajec-
tory and map hypotheses using an association tree. It exdwdys the best node in
that tree. As a result, it switches to a different hypothesesoon as the current one
seems to lead to an inconsistent map. However, the necesgaaysions of this tree
can prevent the approach from being feasible for real-tipgration. Furthermore, it
is somewhat unclear, how the different hypotheses can la¢ect@utonomously.

Thrun et al. [2004 proposed a method to correct the poses of robots based on
the inverse of the covariance matrix. The advantage of spattended information
filters (SEIFs) is that they make use of the approximativessfyaof the information
matrix and in this way can perform predictions and updateirstant time. Eustice
et al.[2009 as well as Walteet al.[2004 presented a techniques to more accurately
compute the error-bounds within the SEIF framework and ia wmy reduces the
risk of becoming overly confident. PaskKiz003 presented a solution to the SLAM
problem using thin junction trees. In this way, he is ablegduce the complexity
compared to the EKF approaches since thin junction treesgea linear time filtering
operation.

Recently, Dellaert proposed a smoothing method calledreqoat smoothing and
mapping[Dellaert, 2005. It has several advantages compared to EKF since it better
covers the non-linearities and is faster to compute. Inreshto SEIFs, it furthermore
provides an exactly sparse factorization of the infornratiatrix.

Bosseet al. [2003 describe a generic framework for SLAM in large-scale envi-
ronments. They use a graph structure of local maps withivelabordinate frames
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and always represent the uncertainty with respect to a fomale. In this way, they
are able to reduce the complexity of the overall problem a&aldice the influence of
linearization errors.

Modayil et al.[2004 presented a technique which combines metrical SLAM with
topological SLAM. The topology is utilized to solve the leofosing problem and
metric information is used to build up local structures. famdeas have been realized
by Lisienet al.[2003, which introduce a hierarchical map in the context of SLAM.

In a work by Murphy{1999, Rao-Blackwellized particle filters (RBPF) have been
introduced as an effective means to solve the SLAM probleachtparticle in a RBPF
represents a possible robot trajectory and a map. The frarkdwas been subsequently
extended for approaching the SLAM problem with landmark siontemerlcet al,,
2002, Montemerlo and Thrun, 2003To learn accurate grid maps, RBPFs have been
used by Eliazar and Paf2003 and Hahnekt al. [2003d. Whereas the first work
describes an efficient map representation, the second esergs an improved motion
model that reduces the number of required particles.

It should be noted that improvements on particle filtersltegyfrom an informed
proposal distributions and an intelligent resampling teghe are known techniques
within the particle filter community. We would like to espaity refer to the work
of Doucet[1999 who already addressed these issues in his work. However, due
to the best of our knowledge, the adaptive resampling hasrria»en used in the
context of map learning. The computation of our proposatritstion is similar to
the FastSLAM-2 algorithm presented by Montemesloal. [2003. In contrast to
FastSLAM-2, our approach does not rely on predefined lanklsreard uses raw laser
range finder data to acquire accurate grid maps. Particesfilising proposal distri-
butions that take into account the most recent observat®ialao called look-ahead
particle filters. Morales-Menéndet al.[2004 proposed such a method to more re-
liably estimate the state of a dynamic system outside robothere accurate sensors
are available.

The work described in this chapter can be seen as an exteoifstbr algorithm
proposed by Hahnat al.[20034. Instead of using a fixed proposal distribution, our
algorithm computes an improved proposal distribution oreaparticle basis on the
fly. This allows to directly use most of the information olotad from the sensor while
evolving the particles. As a result, we require around omkeioof magnitude fewer
samples compared to the approach of Halenel.

The advantage of our approach is twofold. First, our alaritiraws the particles
in a more effective way. Second, the highly accurate prdmbstibution allows us to
utilize the number of effective particles as a robust intticéo decide whether or not
a resampling has to be carried out. This further reducesskef particle depletion.

One aspect which has not been addressed so far in this clefterquestion on
how to deal with dynamically changing environments. Higtjgnamic objects like
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walking persons or moving cars can be filtefetfihnelet al., 2003d so that accurate
maps without spurious objects can be obtained. The probfedealing with low-
dynamic or temporarily dynamic objects will be addresse@hapter 10 of this thesis.

6.7 Conclusion

In this chapter, we presented an approach to learning hegtdurate grid maps with
Rao-Blackwellized particle filters. Based on the likelidanodel of a scan-matching
process for the most recent laser range observation, oupagp computes an in-
formed proposal distribution. This allows us to draw pédescin an more accurate
manner which seriously reduces the number of required sanpAdditionally, we
apply a selective resampling strategy based on the eféentimber of particles. This
approach reduces the number of unnecessary resampliog®ati the particle filter
and thus substantially reduces the risk of particle degpieti

The approach has been implemented and evaluated on dateedcgith differ-
ent mobile robots equipped with laser range scanners. Weefunore successfully
corrected a large number of available robotic datasets abtished an open-source
implementation of our mapping software. Tests performett wur algorithm in dif-
ferent large-scale environments have demonstrated itsstobss and the ability of
generating high quality maps. In these experiments, thebeurof particles needed
by our approach often was by one order of magnitude small@peoed to previous
approaches.
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Chapter 7

Actively Closing Loops During
Exploration

7.1 Introduction

e presented so far approaches to autonomous exploratidmeipt€r 3-

5 and a solution to the SLAM problem in Chapter 6. In genefa, t

task of acquiring models of unknown environments requioesirul-

taneously address three tasks, which are mapping, lotahzand
path planning. In the this chapter as well as in the two foll@ones, we focus on
integrated approaches which aim to solve these three tamk#t@neously in order to
build accurate models of the environment.

A naive approach to realize an integrated technique coutd bembine a SLAM
algorithm, which covers mapping and localization, with apleration procedure.
Since classical exploration strategies often try to coménown terrain as fast as pos-
sible, they avoid repeated visits to known areas. Thiseggathowever, is suboptimal
in the context of the SLAM problem because the robot typycadleds to revisit places
in order to localize itself. A good pose estimate is necgssamake the correct data
association, i.e., to determine if the current measuresrfénnto the map built so far.
If the robot uses an exploration strategy that avoids meltigsits to the same place,
the probability of making the correct association is redlcghis indicates that com-
binations of exploration strategies and SLAM algorithmaidt consider whether it is
worth reentering already covered spaces or to explore neairte It can be expected
that a system, which takes this decision into account, camawe the quality of the
resulting map.

Figure 7.1 gives an example that illustrates that an intedrapproach perform-
ing active place revisiting provides better results thaoragches that do not consider
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Figure 7.1: This figure shows two maps obtained from real dvdata acquired at Sieg
Hall, University of Washington. The left image depicts apesment in which the

robot traversed the loop only once before it entered the tmmgdor. As can be seen,
the robot was unable to correctly close the loop, which ledrt@rror of 7 degrees in
the orientation of the horizontal corridor. In the case inahiithe robot revisited the
loop, the orientation error was reduced to 1 degree (seeingige).

#eT

reentering known terrain during the exploration phase.hindituation shown in the
left image, the robot traversed the loop just once. The ralast not able to correctly
determine the angle between the loop and the straight corpecause it did not col-
lect enough data to accurately localize itself. The secoap slhown in the right image
has been obtained after the robot traveled twice aroundothie tio relocalize before
entering the corridor. As can be seen from the figure, thisages the orientation error
from approximately 7 degrees (left image) to 1 degree (rigtetge). This example
illustrates that the capability to detect and actively elémops during exploration al-
lows the robot to reduce its pose uncertainty during expilmmaand thus to learn more
accurate maps.

The contribution of this chapter is an integrated algorifemgenerating trajec-
tories to actively close loops during SLAM and exploratioBur algorithm uses a
Rao-Blackwellized mapping technique to estimate the majpthe trajectory of the
robot. It explicitely takes into account the uncertaintpabthe pose of the robot dur-
ing the exploration task. Additionally, it applies a tealume to reduce the risk that
the robot becomes overly confident in its pose when actiMelirg loops, which is a
typical problem of particle filters in this context. As a réswe obtain more accurate
maps compared to combinations of SLAM with standard exfilmma

This chapter is organized as follows. In Section 7.2, we gmesur integrated
exploration technique. We describe how to detect loops andd actively close them.
Section 7.3 presents experiments carried out on real ra@sotgell as in simulation.
Finally, we discuss related work in Section 7.4.
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s* S*

Figure 7.2: Evolution of a particle set and the map of the nlikety particle (here
labeled ass*) at three different time steps. In the two left images, theicle trav-
eled through unknown terrain, so that the uncertainty exed. In the right image,
the robot reentered known terrain so that samples repiagemtlikely trajectories
vanished.

7.2 Active Loop-Closing

Whenever a robot using a Rao-Blackwellized mapper explueesterrain, all samples
have more or less the same importance weight since the nuasttrsmeasurement is
typically consistent with the part of the map constructeafithe immediately preced-
ing observations. Typically, the uncertainty about theepaofsthe robot increases. As
soon as it reenters known terrain, however, the maps of samtielps are consistent
with the current measurement and some are not. Accorditigdyweights of the sam-
ples differ largely. Due to the resampling step, unlikelytisées usually get eliminated
and thus the uncertainty about the pose of the robot dece&s®e typical example
is shown in Figure 7.2. In the two left images, the robot esgdaew terrain and the
uncertainty of the sample set increases. In the right iméngerobot travels through
known terrain and unlikely particles have vanished.

Note that this effect is much smaller if the robot just movaskward a few meters
to revisit previously scanned areas. Thisis because thessmgiated with a particle is
generally locally consistent. Inconsistencies mostlgeawhen the robot reenters areas
explored some time ago. Therefore, visiting places se¢hduback in the history has
a stronger effect on the differences between the importaeaghts and typically also
on the reduction of uncertainty compared to places recemtgrved.

7.2.1 Detecting Opportunities to Close Loops

The key idea of our approach is to identify opportunitiesdimsing loops during ter-
rain acquisition in order to relocalize the vehicle. Hetesimg a loop means actively
reentering the known terrain and following a previouslyé&sed path. To determine
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Figure 7.3: The red dots and lines in these three image reprédse nodes and edges
of G, In the left imageZ(s) contained two nodes (indicated by the arrows) and in
the middle image the robot closed the loop until the pose nmicgy is reduced. After
this, it continued with the acquisition of unknown terraiigfit image).

whether there exists a possibility to close a loop, we cardido different represen-
tations of the environment. In our current system, we assedo each particle an
occupancy grid mapn!*) and a topological mag!*). Both maps are updated while
the robot is performing the exploration task. In the top@afmapg!, the vertices
represent positions visited by the robot. The edges repréise estimated trajectory
of the corresponding particle. To construct the topoldgicap, we initialize it with
one node corresponding to the starting location of the rohet :cts} be the pose of
particle s at the current time step We add a new node at the positimh} to Gl if
the distance betweerf] and all other nodes il exceeds a thresholti(here set to
2.5m) or if none of the other nodes@#! is visible fromz*

Vn € nodes(G®) 1 |dist, (xﬁ,n) >d V
not_visiblem[s}(xf],n) : (7.1)

Whenever a new node is created, we also add an edge from ttstoadhe most
recently visited node. To determine whether or not a nodesible from another
node, we perform a ray-casting operation in the occuparidygr..

Figure 7.3 depicts such a graph for one particular partialend different phases
of an exploration task. In each image, the topological rGdpis printed on top of
metric mapm!*l. To motivate the idea of our approach, we would like to refer t
reader to the left image of this figure. Here, the robot alnststed a loop. This can
be observed by the fact that the length of the shortest pdtielea the current pose
of the robot and previously visited locations(here marketth \#(s)) is large in the
topological mapg!*!, whereas it ismall in the grid mapn/!®l.
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The shortest path in from the current pose of the robot toethmsations models a
shortcut in the environment which has not been traverseatté-bllowing such a path
exactly characterized a loop closure.

Thus, to determine whether or not a loop can be closed, we gtnfpr each
samples the setZ(s) of positions of interest. This set contains all nodes thatctose
to the current pose?] of particles based on the grid map!*!, but are far away given
the topological mag!*

I(s) = {xi‘f} € nodes(g[s}) | dist,, (:cf],xﬁ) <d; N\
distg (x5, 217) > dy). (7.2)

Here, dist p((1, x2) IS the length of the shortest path fram to z, given the repre-
sentationM. The distance between two nodesgti is given by the length of the
shortest path between both nodes. The length of a path isuwtechpy the sum over
the lengths of the traversed edges. Depending on the nunilbedes inZ(s), this
distance information can be efficiently computed usingegithe A* algorithm[Nils-
son, 1969, Russel and Norvig, 19%# Dijkstra’s algorithn{Ottmann and Widmayer,
1994. The termsi; andd, are constants that must satisfy the constrajnt d,. In
our current implementation, the values of these constaai$ a= 6m andd, = 20m.

In caseZ(s) # ), there exist at least one shortcut from the current pgsef the
particles to the positions irf (s). These shortcuts represent edges that would close a
loop in the topological mag!*!. The left image of Figure 7.3 illustrates a situation in
which a robot encounters the opportunity to close a loopesiiie) contains two nodes
which is indicated by two arrows. The key idea of our apprdath use such shortcuts
whenever the uncertainty of the robot in its pose becomgs larhe robot then revisits
portions of the previously explored area and in this way cegduthe uncertainty in its
position.

To determine the most likely movement allowing the robotdtioiv a previous
path, one in principle has to integrate over all particle$ eonsider all potential out-
comes of that particular action. Since this would be too tamesuming for online-
processing, we consider only the partigtewith the highest accumulated logarithmic

observation likelihood
t

st = argmaleogp(zt/ | m[s},xf]). (7.3)
S =1
If Z(s*) # 0, we select the node,, from Z(s*) which is closest ta:}"”
x;, = argmin dist,, (xESﬂ, x). (7.4)
x€Z(s*)
In the sequely,, is denoted as thentry pointat which the robot has the possibility to
close a loopt,. corresponds to the last time the robot was at the ngde
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7.2.2 Representing Actions under Pose Uncertainty

One open question is how to express an action if the robouacksr pose uncertainty.
A list of positions expressed in a global coordinate framesigally not a good solu-
tion since this action is only valid for a single particle. @fever the particle* which
is used to compute the plan changes, the robot would need¢oonpite its action.
An alternative solutions is to express the action as a seguafrelative motion com-
mands. This works fine as long as the robot moves through wknerrain or the
pose uncertainty is not too big.

We use a slightly different method that provides more stplales. Instead of using
a sequence of relative motions commands with respect taitiert pose of the robot,
we use the nodes in our topological maps as reference fraAresxample for such
an actions (expressed in human language) could be “movestpdkition 1 m north
of the node 5, turn 90 degree right and move to node 7.” As roeetl before, in our
approach the actions are planned based on the pasticla case a different particle
becomes the particl€, it is likely that we do not need to replan our action sinceit i
expressed relative to the nodes of the topological map.nQifteh a plan is still valid
after s* changed. Valid means in this context that the planned pagk dot lead to a
collision. In case a collision with a wall is detected, thé@tis recomputed or the
loop-closing procedure is aborted.

7.2.3 Stopping the Loop-Closing Process

To determine whether or not the robot should activate thp-ldosing behavior, our
system constantly monitors the uncertaiffyabout the robot’s pose at the each point
in time. The necessary condition for starting the loop4ciggrocess is the existence
of an entry pointz,, and thatH (¢) exceeds a given threshold. Once the loop-closing
process has been activated, the robot approachesd then follows the path taken
after previously arriving at;,. During this process, the uncertainty in the pose of the
vehicle typically decreases because the robot is able @itecitself in the map built
so far and unlikely particles vanish.

We have to define a criterion for deciding when the robot dlstlsas to stop
following a loop. A first attempt could be to introduce a thvelsl and to simply stop
the trajectory following behavior as soon as the uncengdgicomes smaller than a
given threshold. This criterion, however, can be problétmespecially in the case
of nested loops. Suppose the robot encounters the opprtorglose a loop that is
nested within an outer and so far unclosed loop. If it eliesaall of its uncertainty
by repeatedly traversing the inner loop, particles necgdsalose the outer loop may
vanish. As a result, the filter diverges and the robot failbuid a correct map (see
Figure 7.4).
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Figure 7.4: An example for particle depletion. A robot expan environment and
travels through the inner loop (a) several times. Due todpeated visits the diversity
of hypotheses about the trajectory outside the inner logpedses (b) too much and

(d)

the robot is unable to close the outer loop correctly (c) a)d (
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To remedy this so-called particle depletion problem, weothiice a constraint on
the uncertainty of the robot. Ld#(¢.) denote the uncertainty of the posterior when
the robot visited the entry point last time. Then the new transt allows the robot to
retraverse the loop only as long as its current uncertdif(ty) exceedsH (¢.). If the
constraint is violated the robot resumes its terrain adipmsprocess. This constraint
is designed to reduce the risk of depleting relevant padiduring the loop-closing
process. The idea behind this constraint is that by obsgithi@ area within the loop,
the robot does not obtain any information about the world&idetthe loop. From a
theoretical point of view, the robot cannot reduce the uadety H (¢) in its current
posterior below its uncertaint (¢.) when entering the loop sindé(t.) is the uncer-
tainty stemming from the world outside the loop.

To better illustrate the importance of this constraint,sdar the following exam-
ple: A robot moves from placd to placeB and then repeatedly observBs While
it is mappingB, it does not get any further information abodit Since each particle
represents a whole trajectory (and the corresponding niéip¢ cobot, hypotheses rep-
resenting ambiguities about will also vanish when reducing potential uncertainties
aboutB. Our constraint reduces the risk of depleting particleseggnting ambigu-
ities aboutA by aborting the loop-closing behavior & as soon as the uncertainty
drops below the uncertainty stemming frotn

Finally, we have to describe how we actually measure thertaiogy in the posi-
tion estimate. The typical way of measuring the uncertawhy posterior is to use the
entropy. To compute the entropy of a posterior representgzhlticles, one typically
uses a multi-dimensional grid representing the possib$ei(etized) states. Each cell
c in this (virtual) grid stores a probability which is given thye sum of the normalized
weights of the samples corresponding to that cell. The pytio®then computed by

H(t) = =Y plc)-logp(c) (7.5)

= => 1> w | - log > wi |1, (7.6)

izlilec ixlilec

wherei : 20 € crefers to the indices of all particles which current pasédie within
the area which is covered by the grid cell

In the case of multi-modal distributions, however, the @myrdoes not consider the
distance between the different modes. This distance, hemisvan important property
when evaluating the pose uncertainty of a mobile vehicleaAssult, a set ot dif-
ferent pose hypotheses which are located close to eachlmthdp not belong to the
same celt leads to the same entropy value than the situation in whitypotheses are
randomly distributed over the environment. The resultiraps) however, would look
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similar in the first case, but quite different in the seconskecdn our experiments, we
figured out that we obtain better results if we use the voluxpaeded by the samples
instead of the entropy. We therefore calculate the posertaicty by determining the
volume of the oriented bounding box around the particle @¢lo& good approxima-
tion of the minimal oriented bounding box can be obtainedieffitly by a principal
component analysis.

Note that the loop-closing process is also aborted in casbat travels for a long
period of time through the same loop in order to avoid a — thigwally possible —
endless loop-closing behavior. In all our experiments, d@x, this problem has never
been encountered.

7.2.4 Reducing the Exploration Time

The experiments presented later on in this chapter denatedtrat our uncertainty
based stopping criterion is an effective way to reduce tble of particle depletion.
However, it can happen that the perceived sensor data &ftgng a loop does not
provide a lot of new information for the robot. Moving thrduguch terrain leads
to an increased exploration time since the robot does rexhindork which does not
provide relevant information. It would be more efficient tooa the loop-closing
procedure in situations in which the new sensor data doesatpto identify unlikely

hypotheses.

To estimate how well the current set &f particle represents the true posterior,
Liu [1996 introduced the effective number of particlds; (see Eq. (6.22)). In the
previous chapter, we described how to &g to resample in an intelligent way but it
is also useful in the context of active loop-closing. We narthe change ol .; over
time, which allows us to analyze how the new acquired infaiomeaffects the filter. If
N,z stays constant, the new information does not help to ideatifikely hypotheses
represented by the individual particles. In that case, #r@amce in the importance
weights of the particles does not change over time. If, intres, the value ofV.4
decreases over time, the new information is used to deterthat some particles are
less likely than others. This is exactly the information weed in order to decide
whether or not the loop-closing should be aborted. As longeasinformation helps
to identify unlikely particles, we follow the loop. As soon the observations do not
provide any new knowledge about the environment for a pesiokl time steps, we
continue to explore new terrain in order to keep the expilongtme small.

Note that this criterion is optional and not essential fouecessful loop-closing
strategy. It can directly be used if the underlying mappipgraach applies an adap-
tive resampling technique. If no adaptive resampling islueae needs to monitor the
relative change iV.; after integrating each measurement, because after eah+es
pling step the weights of all particles are set%;o In the experimental section of this



154 CHAPTER 7: ACTIVELY CLOSING LOOPSDURING EXPLORATION

Figure 7.5: Active loop-closing of multiple nested loops.

chapter, we illustrate thaY.; is a useful criterion in the context of active loop-closing
and how it behaves during exploration.

As long as the robot is localized well enough or no loop canlbsed, we use
a frontier-based exploration strategy to choose a targsttilon for the robot. As
described before, a frontier is any known and unoccupieldticat is an immediate
neighbor of an unknown, unexplored cBffamauchi, 1998 By extracting frontiers
from a given grid map, one can easily determine potentigktdocations which guide
the robot to so far unknown terrain. As in Chapter 4, the cbsth® target locations
is given by the cost function presented in Section 4.2.1. unaurrent system, we
determine frontiers based on the map of the partitle

A precise formulation of the loop-closing strategy is ginmnAlgorithm 7.1. In
our current implementation, this algorithm runs as a bamkgd process that is able
interrupt the frontier-based exploration procedure.

Algorithm 7.1 The loop-closing algorithm
1: ComputeZ(s*)
2: if Z(s*) # () then begin
33 H = Ht)

4 path = 21 4 Shortest_pathg[s*](xte,xf*})

5. while H(t) > H A var(Neg(n—k),...,Neg(n)) > e do
6: robot_follow (path)

7: end

7.2.5 Handling Multiple Nested Loops

Note that our loop-closing technique can also handle malmested loops. During
the loop-closing process, the robot follows its previodaken trajectory to relocalize.
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It does not leave this trajectory until the termination enibn (see line 5 in Algo-

rithm 7.1) is fulfilled. Therefore, it never starts a new ledpsing process before the
current one is completed. A typical example with multiplsteel loops is illustrated
in Figure 7.5. In the situation depicted in the left pictuhe robot starts with the loop-
closing process for the inner loop. After completing the toser loop, it moves to

the second inner one and again starts the loop-closing ggoc®ince our algorithm
considers the uncertainty at the entry point, it keeps enaagiance in the filter to

also close the outer loop correctly. In general, the qualitthe solution and whether
or not the overall process succeeds depends on the numbartmigs used. Since
determining this quantity is still an open research probligm number of particles has
to be defined by the user in our current system.

7.3 Experiments

Our approach has been implemented and evaluated in a serezd world and simu-
lation experiments. For the real world experiments, we aseidRobot B21r robot and
an ActivMedia Pioneer 2 robot. Both are equipped with a Si&sel range finder. For
the simulation experiments, we used the real-time simulaitthe Carnegie Mellon
robot navigation toolkit (CARMEN]Roy et al., 2003.

The experiments described in this section illustrate thagpproach can be used to
actively learn accurate maps of large indoor environmdrusthermore, they demon-
strate that our integrated approach yields better resudts &an approach which does
not has the ability to actively close loops. Additionallyewanalyze how the active
termination of the loop closure influences the result of tlag@ping process.

7.3.1 Real World Exploration

The first experiment was carried out to illustrate that ourent system can effectively
control a mobile robot to actively close loops during exptmn. To perform this

experiment, we used a Pioneer 2 robot to explore the mairylobkthe Department

for Computer Science at the University of Freiburg. The sizéhis environment is

51 m by 18 m. Figure 7.6 depicts the final result obtained bynaptetely autonomous
exploration run using our active loop-closing technique@ldo depicts the trajectory of
the robot, which has an overall length of 280 m. The robotakgtfour times to reenter
a previously visited loop in order to reduce the uncertaimtis pose. Figure 7.6 shows
the resulting map, the corresponding entry points as wethagpositions where the
robot left the loops (“exit points”). As can be seen, the l&sg map is quite accurate.
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Figure 7.6: The left image shows the resulting map of an e&gittn experiment in the
entrance hall of the Department for Computer Science at tivedisity of Freiburg. It
was carried out using a Pioneer 2 robot equipped with a laseyerscanner (see right
image). Also plotted is the path of the robot as well as entiy exit points where the
robot started and stopped the active loop-closing process.

Figure 7.7: This figure depicts an environment with two laamps. The outer loop
has a length of over 220 m. The left image show the resulting aofia trajectory in
which the robot drove through the loops only once. In the sdean, the robot visited
every loop twice and obtained a highly accurate map (se¢ingge).

7.3.2 Active Loop-Closing vs. Frontier-Based Exploration

The second experiment should illustrate the differencefw@aches that do not con-
sider loop-closing actions. We used real robot data obdaivith a B21r robot in the
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Figure 7.8: This figure compares our loop-closing stratedk @ pure frontier-based
exploration technique. The left bar in this graph plots thierage error in the pose
of the robot obtained with our loop-closing strategy. Thghtione shows the average
error when a frontier-based approach was used. As can be aaetechnique sig-
nificantly reduces the distances between the estimatetigpsand the ground truth
(confidence intervals do not overlap).

Sieg Hall at the University of Washington. As can be seen ftbenmotivating ex-
ample in the introduction of this chapter (see Figure 7Hg,rbbot traversed the loop
twice during map building. To eliminate the influence of unalgmeasurement noise
and different movements of the robot, we removed the datasponding to one loop
traversal from the recorded data file and used this data as topur SLAM algo-
rithm. In this way, we simulated the behavior of a greedy esation strategy which
forces the robot to directly enter the corridor after retognto the starting location
in the loop. As can be seen from the same figure, an approattddba not actively
reenter the loop fails to correctly estimate the angle betwtbe loop and the corridor
which should be oriented horizontally in that figure. Whert#ae angular error was 7
degrees with the standard approach, it was only 1 degreeioabe where the robot
traversed the loop twice. The depicted maps correspondbe tme of the particle*.

A further experiment that illustrates the advantage of @lavisiting is shown in
Figure 7.7. The environment used in this simulation run isnd8y 80 m and contains
two large nested loops with nearly featureless corridorke [Eft image shows the
result of the frontier-based approach which traversed &amghonly once. Since the
robot is not able to correct the accumulated pose errorghdting map contains large
inconsistencies and two of the corridors are mapped ontio etoer. Our approach,
in contrast, first revisits the outer loop before enterirgitiner one (see right image).
Accordingly, the resulting map is more accurate.
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7.3.3 A Quantitative Analysis

To quantitatively evaluate the advantage of the loop-op&iehavior, we performed
a series of simulation experiments in an environment smdaSieg Hall. We per-
formed 20 experiments, 10 with active loop-closing and 1beut. After completing
the exploration task, we measured the average error in theveedistances between
positions lying on the resulting estimated trajectory dmdround truth provided by
the simulator. The results are depicted in Figure 7.8. Asbeaseen, the active loop-
closing behavior significantly reduces the error in the fiasiof the robot.

7.3.4 Importance of the Termination Criterion

In this experiment, we analyze the importance of the comtthat terminates the
active loop-closing behavior as soon as the current uringrté (¢) of the belief drops
under the uncertainty/ (¢.) of the posterior when the robot was at the entry point the
last time.

In this simulated experiment, the robot had to explore airenmnent which con-
tains two nested loops and is depicted in Figure 7.9 (d). énfitist case, we simply
used a constant threshold to determine whether or not tipedlmsing behavior should
be stopped. In the second case, we applied the additionstreort that the uncertainty
should not become smaller thaf(t.).

Figure 7.4 shows the map of the particteobtained with our algorithm using a
constant threshold instead of considerifgt.). In this case, the robot repeatedly
traversed the inner loop (a) until its uncertainty was redioelow a certain threshold.
After three and a half rounds it decided to again explore omknterrain, but the
diversity of hypotheses had decreased too much (b). Aaegigihe robot was unable
to accurately close the outer loop (c) and (d). We repeatisdettperiment several
times and in none of the cases was the robot able to correetpythre environment.
In contrast, our approach using the additional constréuvdys generated an accurate
map. One example is shown in Figure 7.9. Here, the robot stbpe loop-closing
after traversing half of the inner loop.

As this experiment illustrates, the termination of the laxbgsing is important for
the convergence of the filter and to obtain accurate mapsvimoements with sev-
eral (nested) loops. Note that similar results in princigde also be obtained without
this termination constraint if the number of particles ibsiantially increased. Since
exploration is an online problem and each particle carteeswn map it is of utmost
importance to keep the number of particles as small as dessitherefore, our ap-
proach can also be regarded as a contribution to limit thebewraf particles during
Rao-Blackwellized simultaneous localization and mapping
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Figure 7.9: Inimage (a), the robot detected an opportunittdse a loop. It traversed
parts of the inner loop as long as its uncertainty exceed ticertainty H (¢.) of the
posterior when the robot at the entry point and started tbp-tdosing process. The
robot then turned back and left the loop (b) so that enouglotigses survived to cor-
rectly close the outer loop (c) and (d). In contrast, a systensidering only a constant
threshold criterion fails to map the environment correesydepicted in Figure 7.4.
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Figure 7.10: The graph plots the evolution of tNey function over time during an
experiment carried out in the environment shown in the rigiatge. The robot started
at position A. The position B corresponds to the closure efitimer loop and C corre-
sponds to closure of the outer loop.

7.3.5 Evolution of N g

In this experiment, we show the behavior of the optional teation criterion that
triggers the active loop-closing behavior. Additionatlye constraint that the uncer-
tainty H (¢) must be bigger than the uncertainty at the entry p#ift.) of the loop, the
process is stopped whenever the effective number of pesti¢ly stays constant for
a certain period of time. This criterion was introduced toidvthat the robot moves
through the loop even if no new information can be obtainethfthe sensor data. The
robot retraverses the loop only as long as the sensor dasafsluo identify unlikely
hypotheses about maps and poses.

One typical evolution ofV.; is depicted in the left image of Figure 7.10. To
achieve a good visualization of the evolution'6f;, we processed a recorded data file
using 150 particles. Due to the adaptive resampling styatagy a few resampling
operations were needed. The robot started at position A rarldei first part of the
experiment moved through unknown terrain (between thetipasiA and B). As can
be seen)N.; decreases over time. After the loop has been closed corr@atl un-
likely hypotheses had partly been removed by the resamplitign (position B), the
robot retraversed the inner loop andy; stayed more or less constant. This indicates
that acquiring further data in this area has only a smaltefie the relative likelihood
of the particles and the system could not determine whiclothgses represented un-
likely configurations. In such a situation, it therefore rasknore sense to focus on
new terrain acquisition and to not continue the loop-clggirocess.

Furthermore, we analyzed the length of the trajectory teal/by the robot. Due
to the active loop-closing, our technique generates lotrgggctories compared to a
purely frontier-based exploration strategy. We perforsegeral experiments in differ-
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Figure 7.11: Snapshots during the exploration of a simdlateironment with several
nested loops. The red circles represent nodes of the tapalagap plotted on top of
the most likely grid map. The yellow circle corresponds te fiontier cell the robot
currently seeks to reach.

ent environments in which the robot had the opportunity tselloops and measured
the average overhead. During our experiments, we obsenvedasthead varying from
3% to 10%, but it obviously depends on number of loops in thirenment.

7.3.6 Multiple Nested Loops

To illustrate, that our approach is able to deal with seveeated loops, we performed
a simulated experiment shown in Figure 7.11. The individoges in this figure

depict eight snapshots recorded during exploration. Infagdepicts the robot while

exploring new terrain and image (b) while actively closihg tmost inner loop. After

that, the robot focused on acquiring so far unknown terraith @moves through the
most outer loop as shown in (¢) and (d). Then the robot deteptsssibility to close a

loop (e) and follows its previously taken trajectory (f).té&f aborting the loop closing
behavior, the robot again explores the loop in the middle #gnin closes the loop
accurately, and finishes the exploration task (h).
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7.3.7 Computational Resources

Note that our loop-closing approach needs only a few additicesources. To detect
loops, we maintain an additional topological map for eaatiigda. These topological
maps are stored as a graph structure and for typical enveotsronly a few kilo-
bytes of extra memory is needed. To determine the distares=dlon the grid map
in Eq. (7.1) and Eq. (7.2), our approach directly uses thelres a value iteration
(alternatively Dijkstra’s algorithm) based on the mapsof which has already been
computed in order to evaluate the frontier cells. Only thetatice computation using
the topological map needs to be done from scratch. Howeirere she number of
nodes in the topological map is much smaller than the numibgria cells, the com-
putational overhead is comparably small. In our experigiehe time to perform all
computations in order to decide where to move next increageatound 10 ms on a
standard PC when our loop-closing technique was enabled.

7.4 Related Work

Several previous approaches to SLAM and mobile robot eaptor are related to our
work. In the context of exploration, most of the techniquesspnted so far focus
on generating motion commands that minimize the time neédedver the whole
terrain[Koenig and Tovey, 2003, Wei& al., 1994, Yamauchi, 1998 Other methods
like, for example, the one presented in Chapter 3 or the wioBabowskiet al.[2003
seek to optimize the viewpoints of the robot to maximize tkgeeted information gain
and to minimize the uncertainty of the robot about grid céllest of these techniques,
however, assume that the location of the robot is known dwekploration. A detailed
discussion about those approaches is provided in the dedaik sections of Chapter 3
and 4.

In the area of SLAM, the vast majority of papers focuses orapect of state es-
timation as well as belief representation and upfBissanayaket al., 2000, Doucet
et al, 2000, Eliazar and Parr, 2003, Gutmann and Konolige, 19%hnHlet al,
2003a, Montemerlet al., 2002, Murphy, 1999, Thrun, 200/LaA detailed discussion
of related SLAM approaches can be found in Section 6.6. @@sSLAM techniques
are passive and only consume incoming sensor data withqlicikgly generating
controls.

Recently, some techniques have been proposed which gctwatrol the robot
during SLAM. For example, Makarenlat al.[2007 as well as Bourgoulkt al.[2004
extract landmarks out of laser range scans and use an egt&adiman filter to solve
the SLAM problem. Furthermore, they introduce a utility ¢tion which trades off
the cost of exploring new terrain with the utility of selettgositions with respect to
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a potential reduction of uncertainty. The approaches andagito the work done by
Federet al.[1999 who consider local decisions to improve the pose estimatagiu
mapping. Simet al.[2004 presented an approach in which the robot follows a para-
metric curve to explore the environment and considers plagsiting actions if the
pose uncertainty gets too high. These four techniquesratieghe uncertainty in the
pose estimate of the robot into the decision process of wioer@ve next. However,
they rely on the fact that the environment contains landsiénat can be uniquely
determined during mapping.

In contrast to this, the approach presented here makes nmptens about dis-
tinguishable landmarks in the environment. It uses raw les@ge scans to compute
accurate grid maps. It considers the utility of reenteringn parts of the environ-
ment and following an encountered loop to reduce the uriogytaf the robot in its
pose. In this way, the resulting maps become more accurate.

There exist techniques to combine topological maps witlkerokind of spacial
representations. This is typically done to handle largdesmaps or to simplify the
loop-closing probleniBosseet al., 2003, Kuipers and Byun, 1991, Lisienal., 2009.
Those approaches can attach detailed local maps to the abtkestopological map.
Also our approach makes use of topological maps. Howevddibg up such a hi-
erarchy is not intended by our work, since we only use theltapoal map to detect
loops in the environment.

7.5 Conclusion

In this chapter, we presented a novel approach for activp-tbasing during au-
tonomous exploration. We combined the Rao-Blackwellizadigle filter for simulta-
neous localization and mapping presented in the previcastehwith a frontier-based
exploration technique extended by the ability to activdbse loops. Our algorithm
forces the robot to retraverse previously visited loopsiatidis way reduces the uncer-
tainty in the pose estimate. The loop detection is realizeshaintaining two different
representations of the environments. By comparing a grigwith a topological map,
we are able to detect loops in the environment that have rest blesed so far. As a
result, we obtain more accurate maps compared to combnsadicSLAM algorithms
with classical exploration techniques. As fewer particlegd to be maintained to
build accurate maps, our approach can also be regarded agridgtion to reduce the
number of particles needed during Rao-Blackwellized nragpi



164 CHAPTER 7: ACTIVELY CLOSING LOOPSDURING EXPLORATION




Chapter 8

Recovering Particle Diversity

8.1 Introduction

e presented in Chapter 7 a technique that allows an explooipgt

to detect loops and to carry out place revisiting actions. siWewed

that the quality of a map constructed by a mobile robot depam

its trajectory during data acquisition. This is due to thet that the
vehicle needs to relocalize itself during exploration idearto build an accurate model
of the environment. Our loop-closing technique uses a kgastopping criterion in
order to continue with the new terrain acquisition and tacetthe risk that the particle
depletion problem affects the filter. We showed that suchpgomaach works well in
practice, however, the general problem of particle dephein the context of loop-
closing still exists. To overcome this limitation, we presim this chapter a technique
that is able to approximatively recover lost hypothese®nktibles a mobile robot to
store the particle diversity of the filter before enteringad. When leaving the loop,
the robot is then able to recover that diversity and contitneeexploration process.
This technique allows a mobile robot to stay — at least thesaiéy — arbitrarily long
in a loop without depleting hypotheses needed to close ati@uil, outer loop.

Figure 8.1 illustrates the problem of vanished particlethancontext of repeated

loop traversals in environments with nested loops. Duedaitik of particle depletion,
the robot should spend only a limited period of time in an irloep. In situations in
which the robot is forced to move through a loop for a longerqukof time, the par-
ticle diversity is likely to get lost. This can, for examphe the case in environments
with extremely long loops. Even if the robots seeks to exploew terrain, it may
need to travel for long distances through the loop beforauit ieach a frontier (see
Figure 8.2). Such a situation can lead to particle deplgton

The contribution of this chapter is a technique to recovenidriety of trajectory
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Figure 8.1: This figure illustrates that a loss of particleedsity introduced by re-
peated loop closing can lead to a wrong solution in the cargéxnapping with a
Rao-Blackwellized particle filter.

trajectory planned path

Figure 8.2: In this experiment, the robot started the exgtlion process in the lower
right corner of the environment. In the left image, is adigahe loop-closing process
and follows its previously taken trajectory. In the rightage, the robot aborts the
loop-closing process. However, to reach the next frontiex,robots needs to travel
through known areas for a long time. This can lead to partief@etion.
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hypotheses represented by a Rao-Blackwellized partitde fil the context of nested
loops. Our approach determines an approximation of theedosgiven by the parti-

cles at the entry of a loop and propagates its uncertainbugir the loop. This way,
hypotheses needed to close an outer loop are maintained majoe advantage of
this approach is that the robot can, in principle, stay eably long in an inner loop

without losing information necessary to close outer loops.

This chapter is organized as follows. Section 8.2 then d&sshow to recover the
diversity of a particle filter when the robot leaves a loopct®® 8.3 contains experi-
mental results carried out on real robots as well as in siiaumaFinally, Section 8.4
discusses related work.

8.2 Recovering Particle Diversity after Loop Closure

To overcome the problems of particle depletion in the cdraérested loops, we need
away to recover hypotheses vanished from a particle filtenduhe repeated traversal
of an inner loop. Even if our active loop-closing technignecombination with the
stopping criterion based oiN.; makes particle depletion unlikely, the vanishing of
important hypotheses and the resulting problem of filteejence remains. Note that
the risk of particle depletion increases with the size of éngironment. Also, the
smaller the number of particles, the higher is that risk.

As an example, suppose a robot has accurately mapped arloopen an envi-
ronments which contains nested loops. In such a case, @y likat the particle filter
has converged to a highly peaked distribution and only onqmthesis present at the
entry point has survived. Thus, it is not guaranteed that tiypothesis is the one
which perfectly closes the outer loop. In principle, a roti@refore has to maintain
a sufficient variety of particles allowing it to perform thext loop closure. Since the
robot does not know in advance how many loops it will find in émeironment, this
problem cannot be solved in general with a finite number digias only.

If one knew the starting point of such an inner loop in advanoe solution would
be to suspend the particle filter and to start for each partichew filter initialized
with the current state of that particle. After the convergeiof all filters one can
then attach their solutions to the corresponding particléise suspended filter. Apart
from the fact that a loop cannot be recognized in advancefpsoach is not feasible
for online tasks like exploration since the amount of corafiahal resources needed
grows exponentially in the number of loops.

The technique described in the following is an approxinratibthis approach. The
key idea is to simulate this process as soon as the robotisl@t®opportunity to close
a loop using our approach presented in the previous chafpherrobot computes the
trajectory posterioat the entry point of the loogiven the particles in its current belief.
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In this approximative particle set, the states and weiglg@s€amputed according to

o~ predte(xgs]) (8.1)
af! ~ wl (8.2)

Herepredte(xﬁ) IS the state of the ancestorn[tf] at timet.. Note that especially the
weight computation is an approximation. Typically, thisueahas changed between
time ¢ andt. since new observations have been integrated.

Whenever the robot stops the loop closing behavior it usegthsterior to prop-
agate the variety of the particles through the loop. In podistic terms, this corre-
sponds to rewriting the terp(z1.; | z1.4, u1.4—1) IN EQ. (6.1) as

p(xlzt | Zl:taulzt—l)
product rule
= p(xte—i-l:t | T1tes Zl:taulzt—l) 'p(l'lzte

= p($t6+1:t | T1tes Zl:t,Ute:t—l) 'p(xlzte

Zlites ul:te—l) (8-3)
Zl:teaulzte—l)- (8-4)

The last transformation is valid under the assumption thatipus odometry readings
can be neglected given the poses are known.

In our current implementation, the first posterior of the kguation is approxi-
mated by importance sampling from;, 1. | 1.1, 214, ue..c—1)- Then, the trajectory
drawn from this posterior is attached to each particlg(imy.;, | z1.,,u14,-1). This
process propagates the different hypotheses from the paitnyinto the current belief
before leaving the loop. If the robot then has to close a skémp, it is more likely
to maintain appropriate hypotheses to close this loop atelyr

Eq. (8.1) and (8.2) describe approximations of the sampleEseen if no resam-
pling is carried out betweety andt the observation likelihoods have been integrated
into the weight of the particles. However, if a highly acderparoposal like our one
presented in Chapter 6 is used the error is comparably small.

Note that in general a mapping system has to maintain a staskved states
especially in environments with several nested loops. Dubé fact that we actively
control the robot and never start a second loop-closingga®before completing the
current one, we only have to maintain a single saved stat&catgoint in time.

As we demonstrate in the experiments, this technique is &guoitool to recover
vanished hypotheses without restarting the mapping dlgorfrom scratch. It only
needs to attach a local trajectory to each particle whichlmamone within a few
seconds (on a 2.8 GHz Pentium IV PC).
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8.3 Experiments

Our approach has been implemented and evaluated on realdataoand in simula-
tion. The experiments described here are designed tordhesthe benefit of our active
loop closing technique with the ability to recover the dsigr of the particles after
loop closing.

This experiment is designed to show the effect of our teakitp recover the
particle variety when the robot leaves a loop. The enviramrosed to carry out this
experiment is depicted in the right image of Figure 8.3. Tdimt started in the outer
loop, entered the inner loop, and moved through this loomftang period of time.
As shown in Figure 8.1, without our recovering techniquefttier can converge to
a wrong solution. The reason is that at the time when the rgaots the loop only
one hypothesis of the original particle set at the entry {doés survived. Accordingly,
the robot lacks an appropriate particle to accurately ctbheeouter loop. Using our
algorithm, however, the robot can recover the hypothesésea¢ntry point and can
propagate them through the loop (see left and middle imadrégoire 8.3). The most
likely map of the posterior after closing the outer loop iswh in the right image.

To provide a more quantitative analysis, we mapped the emvient 30 times
without the capability of restoring the filter and 30 timestvthis option. The standard
technique was able to build a correct map in only 40% of alérun all other cases the
algorithm did not produce an accurate map. In contrast 8 thir algorithm yielded
a success rate of 93%. We repeated this experiment in differ&/ironments and got
similar results. Figure 8.4 shows two (partial) maps of thiidt Court at the MIT.
The left map has been built without the recovering technigsiag 40 particles and
shows inconsistencies due to vanished hypotheses. Thenraghhas been constructed
using our recovering technique in which the correct hypsithleas been restored. The
average success rate of our approach was 55% whereas ttarstapproach found
the correct data association in only 5% of all runs. We meabkauccess by the fact
that the map was topologically correct. This means thattkgist no double corridors
or large alignment errors. The evaluation if a map was tagiotdly correct, was made
by manual inspection of the resulting map.

Note that the second experiment was carried out based omaleat data taken
from the MIT Killian Court dataset. Since we were unable ttivaty control the robot
during the experiment at the Killian Court, we had to set thekinp and restore points
manually. The corresponding positions are labeled arectigpin Figure 8.4.

Our experiments show that our recovering technique is a gaivextension to
autonomous exploration with mapping systems based on RBs{fexially in the con-
text of (multiple) nested loops. Note that in general thecsgs rate of the standard
approach increases with number of particles used. Sindepaticle carries its own
map, it is of utmost importance to keep this value as smalbasiple.
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Figure 8.3: This figure shows the same experiment as depittadure 8.1, but using
our recovering technique. In the left image the robots s#veset of approximated
particles at time stefy and later on recovers the vanished hypotheses (middle ymage
This allows the robot to correctly close the outer loop (righage).
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Figure 8.4: This figure shows two maps of the Killian Courtet MIT. The size of the
environment is 150 m by 80 m. The left map was constructed thi¢tstandard RBPF
approach. If, in contrast, the robot is able to recover hyps¢s the map becomes
more accurate (right image).
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Additionally, we analyzed in our experiments the approxioraerror obtained
by retrospectively recovering the particles at the entrinpof a loop. Using this
system without adaptive resampling, we observed that ineaperiments typically
around 75% of the particles in the filter at time stgfhad a successor in the current
set and were therefore saved. In principle, this value dfopsoops of increasing
length. To provide a more quantitative comparison, we cdeypth Kullback-Leibler
divergence (KL-divergence) between the recovered parset and the true one. The
KL-divergence between to probability distributionandq is defied as

KLD(p,q Zp ) - log g (8.5)

In out experiments the KLD at time stepwas typically between 1.0 and 1.5 compared
to a value around 13 in the situation in which only a singledtiipsis survived.

We then activated the adaptive resampling approach thag¢saut the resampling
step only if the effective sample size was smaller thai2, whereN is the number of
samples. As a result, the number of resamplings carriednailei whole experiment
was comparably small. We did not observed more than one msanstep between
the timet, andt. The KL-divergence in this second groups of experimentsasasnd
one order of magnitude smaller compared to the set of expatsrcarried out without
adaptive resampling.

The experiments presented in this section illustrate thiatexovering technique is
well-suited to propagate the uncertainty of trajectorydtieses through a loop during
Rao-Blackwellized mapping. Using the technique descrlm@, the robot can move
arbitrarily long through a (nested) loop without depletingportant state hypotheses.

8.4 Related Work

Most of the related work relevant for this chapter, has alydaeen discussed in Sec-
tion 7.4. Most of these papers focus on reducing the unogytaiuring landmark-
based SLAM or do not take into account the pose uncertaintiggrcontext of grid-
based exploration.

In the literature, only a few works address the problem obkéewy a previously
made decision in the SLAM context. For example, Hahetehl. [20034 maintain
a data association tree in which each branch representsuarsag of associations.
Whenever a branch becomes more likely than the current lmesttbeir approach
switches to the alternative data association sequencar Wbk can be regarded as
orthogonal to our technique for recovering the uncertamfity particle filter presented
in this chapter. In fact, both approaches can be combined.
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Particle depletion leads to problems similar to the one obwerly confident fil-
ters in the context of extended Kalman filters or sparse ee@nnformation filters
(SEIFs). Especially the SEIF formulation of Thranhal.[2004 can lead to underesti-
mated landmark covariance matrixes. Recently, Eustie. [2005 as well as Walter
et al.[2004 presented a technique to more accurately compute thelestores within
the SEIF framework and in this way reduces the risk of becgroirerly confident.

Our approach presented here extends our work describechipt€tv and presents
a way to recover particle diversity when applying a Rao-Blaellized particle filter
to solve the SLAM problem. Our technique allows the robot&y s- at least in theory
— arbitrarily long within a loop without suffering from pate deletion. Therefore,
our algorithm enhances the ability to correctly close lo@specially, in the context
of nested loops.

8.5 Conclusion

In this chapter, we presented an extension of our loopfuipEichnique introduced in
Chapter 7. Our approach is able to maintain the particlesityewvhile actively closing
loops for mapping systems based on Rao-Blackwellizedghafilters. When closing
a loop, our approach determines an approximation of thecfedet at the time the
robot entered the loop. It uses this posterior to propadptearticle diversity through
the loop after the robot successfully closed it. Compareduiloprevious approach
which used a heuristic stopping criterion to abort the lofgsing, the technique pre-
sented here allows the robot to traverse a nested loop fortéinaay period of time
without depleting important particles. The approach hanbmplemented and tested
on real robot data as well as in simulation. As experimemsiiits demonstrate, we
obtain a robust exploration algorithm that produces mooeiiate maps compared to
standard combinations of SLAM and exploration approackgsecially in the context
of nested loops.
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Chapter 9

Information Gain-based Exploration

9.1 Introduction

hroughout this thesis, we investigated different aspefctseomap learning

problem. We started in Chapter 3 with an information gaisdobapproach

to exploration, where we assumed that the poses of the rob@ known

during exploration. After dealing with the problem of comrating a team of
robots, we addressed the SLAM problem to find a way to dealtwé@lpose uncertainty
of a mobile robot. We then presented in the previous two @rapn exploration
system that takes into account the pose uncertainty anésaut loop-closing actions
in order to relocalize the robot. This has been shown to pewetter maps than
exploration approaches focusing on new terrain acquisardy.

This chapter describes a decision-theoretic, uncertairien approach to explo-
ration which combines most of the previously presentedtiegles. We use a decision-
theoretic framework similar to the one presented in therb@gg of this thesis. How-
ever, we now reason about sequences of observations andip@mut a single one.
Furthermore, we integrate our SLAM approach in order to el the pose uncer-
tainty of the vehicle. This allows us to simulate observagibased on the posterior
about maps. Last but not least, we consider loop-closingpdance revisiting actions
during exploration in order to relocalize the vehicle.

As illustrated in Chapter 7, the quality of the resulting ntgpends on the trajec-
tory of the robot during data acquisition. In practice, th@on sources of uncertainty
about the state of the world are the uncertainty in the relpmse and the uncertainty
resulting from the limited accuracy of the sensor the rolsgtsuto perceive its envi-
ronment. Therefore, a robot performing an autonomous exfim task should take
the uncertainty in the map as well as in its path into acconisetect an appropriate
action.
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Figure 9.1: Suppose the robot has a high pose uncertaintii@stb decide where to
go next. Shown are three opportunities in the left imageiofct acquires new terrain
and action 2 performs a loop closure without observing unknareas. Action 3 does
both: After closing the loop, it guides the robot to unknowrrain. Our map and pose
entropy-driven exploration system presented in this @drapi@able to predict the uncer-
tainty reduction in the model of the robot. As a result, it@abes action 3 (as depicted
in the right image) since it provides the highest expectexzrtainty reduction.

As a motivating example consider Figure 9.1. The left imdgmass an exploring
robot which has almost closed a loop. Suppose the vehicla hiagh pose uncertainty
and now has to decide where to go next. Three potential actos plotted on the
map. Action 1 leads the robot to unknown terrain and actioarfypms a loop closure
without observing unknown areas. Action 3 does both: Aftesiag the loop, it guides
the robot to unknown terrain.

Classical exploration approaches, which seek to reducarttwaint of unseen area
or which only consider the uncertainty in the posterior alibe map would choose
action 1, since this action guides the robot to the closesttion from which informa-
tion about unknown terrain can be obtained. In contrastat #pproaches to active
localization consider only the uncertainty in the poseneste of the robot. There-
fore, they would choose either action 2 or 3 to relocalizevigtacle. Our loop-closing
approach presented in Chapter 7 would select action 2 tezedtie entropy in the pos-
terior about potential trajectories. However, the besbadio reduce the uncertainty
in the posterior about the map and the trajectory is actiofe8ecuting this action
yields new sensor information to make the correct data &ssmt and closes the loop
accurately. Additionally, it provides information abowtfer unknown terrain. As this
example shows, exploration approaches should considesbatces of uncertainty to
efficiently build accurate maps.

The contribution of this chapter is an integrated technitiz combines simul-
taneous localization, mapping, and path planning. In esttto our previous work
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described in Chapter 7, in which a heuristic was used toveitsa loops, the approach
presented in this chapter is entirely decision-theoréi@sed on the expected uncer-
tainty reduction in the posterior about the trajectory @& thbot as well as about the
map of the environment, we select the action with the highgpected information
gain. We take into account the sensor information, whichxeeted to be obtained
along the path when carrying out an action, as well as theiotyssduced by this ac-
tion. Real world and simulation experiments show the effeaess of our technique
for autonomously learning accurate models of the envirarime

This chapter is organized as follows. Section 9.2 and 9.8gmteour decision-
theoretic exploration technique and explain how to compleexpected change in
entropy. Section 9.4 describes how the set of possiblereci® generated. Then,
Section 9.5 contains experimental results carried out alrobots as well as in simu-
lation. Finally, we discuss related work.

9.2 The Uncertainty of a Rao-Blackwellized Mapper

In this approach to information gain-based exploration,use the SLAM approach
presented in Chapter 6 to estimate the pose of the vehiclelhaasithe map. The goal
of our exploration task is to minimize the uncertainty in gaesterior of the robot. The
uncertainty can be determined by the entrépyFor the entropy of a posterior about
two random variables andy holds

H(p(z,y))

= Eyy[—logp(z,y)] (9.1)
= B y[—log(p(z) - ply | 2))] (9.2)
= E,y[-logp(z) —logp(y | x))] (9.3)
= Eyy[—logp(z)] + Eyy[—logp(y | z)] (9.4)
= H(p(z))+ [ —plz,y) logp(y | z) dz dy. (9.5)

T,y
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The integral in Eq. (9.5) can be transformed as follows:

/ —p(z,y) -logp(y | ) dz dy
x,y

= [ plyl9) pla) logply | ) do dy ©.6)
= [ o) [ sty ) ogply | ) dy do 9.7)
— [ p)- Hply | 2) do ©8)

Eq. (9.5) and Eq. (9.8) can be combined to

Hiploy) = Hp@) + [ o) Hiply| o)) de (©.9)
Based on Eq. (9.9), we can efficiently compute the entropy Rba-Blackwellized
particle filter for mapping. For better readability, we usenstead ofz;.;, uq.;_1:

H(p(z14,m | dy)) =
H(p(z14 | dy)) +/ p(z14 | dy) - H(p(m | 21,4, dy)) dayy (9.10)

T1:t
Considering that our posterior is represented by a set ofhited particles, we can
approximate the integral by a finite sum:

H(p(m,z1y | dy)) ~
#particles

H(p(rre | d))+ > w H(p(m | 2y, d)) (9.12)

i=1

Eq. (9.11) shows that according to the Rao-Blackwellizgtibe entropy of the whole
system can be divided into two components. The first termesgmts the entropy
of the posterior about the trajectory of the robot and th@iséderm corresponds to
the uncertainty in the map weighted by the likelihood of tberesponding trajectory.
Thus, to minimize the robot’s overall uncertainty, one reedreduce the map uncer-
tainty of the individual particles as well as the trajectancertainty. In this section,
we will describe how we determine both terms in our approach.

Throughout this work, we use grid maps to model the envirartméote that
our technique is not restricted to this kind of represeatgtit only requires a way
to compute the uncertainty for the used map representatising occupancy grids,
the computation of the map entropy is straightforward. Adogy to the common
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independence assumption about the cells of such a grid,ntinepy of a mapm is
the sum over the entropy values of all cells. Since each @lid:ds represented by a
binary random variable the entropyafis computed as

= =Y p(e)-logp(c) + (1 = p(c)) -log(1 = p(c)).  (9.12)

cem

Note that the overall entropy calculated for a grid map isindependent from the
resolution of the grid. One potential solution to this peahlis to weight the entropy
of each cell with its covered ared (wherer is the resolution of the grid)

H(m) = ==Y p(c)-logp(c) + (1 - p(c)) -log(1 — p(c)).  (9.13)

cem

As a result, the entropy value stays more or less constanh whanging the grid
resolution. Slight differences in the entropy may be causediscretization errors
when changing the resolution.

Unfortunately, it is more difficult to compute the uncertsit/ (p(x,.|d;)) of the
posterior about the trajectory of the robot since each ppsa the trajectory depends
on the previous locations;.; ;. In the context of EKF-based exploration approaches,
the pose uncertainty is often calculated by considering thrd last pose of the robot,
which corresponds to the approximation B{p(z1.¢|d;)) by H (p(z:|d;)). It is also
possible to average over the uncertainty of the differesepalong the path as done
by Royet al.[1994:

Hp(eys | d) ~ %~ZH(p(xt/\dt)) 9.14)

Instead, one can approximate the posterior about the toayeloy a high-dimensional
(length of the trajectory times the dimension of the posdore¢ of the robot) Gaus-
sian distribution. The entropy ofradimensional Gaussiak (u, X2) is computed as

HN (1,%)) = log((2me)™/? - |%]). (9.15)

Since a finite number of particles is used, the RBPF reprasentoften generates a
sparse trajectory posterior for points in time lying furtback in the history. Unfortu-
nately, this can lead to a reduced rankpfso that|¥| becomes zero and the entropy
H(N (i, X)) approaches minus infinity.

Alternatively, one could consider the individual trajetds represented by the sam-
ples as vectors in a high-dimensional state space and certtpentropy of the pos-
terior based on a grid-based discretization. Since thécfestypically are extremely
sparse, this quantity is in most cases equivalent to ortblighaller than the logarithm
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trajectory uncertainty

0 10 20 30 40 50
time step

Figure 9.2: The trajectory entropy of a robot during a realldrexperiment. The num-
bers in the rightimage illustrate the time steps when thetralas at the corresponding
locations.

of the number of particles, which is the upper bound for theagy computed in this
way.

In our current implementation, we use an approach that igasino the one pro-
posed by Roet al.[1994, who computed the entropy over the trajectory posterior as
the average entropy of the pose posteriors over time (se@Hd})). Instead of aver-
aging only over the time steps, we additionally considerdifferent areas the robots
visited. This allows us to give an area traversed only oncéhbyvehicle the same
influence than an area the robot visited several times. lrcouent implementation,
the places are modeled by a coarse resolution grid. An exaamphow the trajectory
entropy evolves over time using this measure is depictdubiteft image of Figure 9.2.

9.3 The Expected Information Gain

To evaluate an action that guides the robot from its curieedtion to a goal location,
we compute the expected information gain, which is the etgobchange of entropy in
the Rao-Blackwellized particle filter. In the last sectiae described how to compute
the entropy of the robot’s world model and in this section wantwto estimate the
expected entropy after an action has been carried out.

An actiona; generated at time steps represented by a sequence of relative move-
mentsa; = u;.7r_1 (See Section 7.2.2). During the executiorugfit is assumed that
the robot obtains a sequence of observatigng, at the positions:; . ;.7. In the fol-
lowing, all variables labeled with™ correspond to points in time during the execution
of an actiona,;. For better readability, we replade, .7 by = andz;, .7 by Z.
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To compute the information gain of an action, we have to dateuthe change of
entropy caused by the integrationo&nda; into the filter

I(Z2,a;) = H(p(m,z14|dy)) — H(p(m,z14, 2 | dy, ag, 2)). (9.16)

Since in general we do not know which measurements the roitiailwain along its
path while executing action,, we have to integrate over all possible measurement
sequences to compute the expected information gain

Bll(a)] = [ ple | aud:) - I(3,00) d (0.17)

In the following, we will explain how to approximatg z | a,, d;) in order to reason
about possible observation sequente§he posteriop(z | a4, d;) can be transformed
into

p(é ‘ ag, dt)

T1:t

p(é | g, M, xl:tadt) 'p<m7x1:t ‘ dt) dmdx;y (9-18)
(

/ p(2 | Gy, 1, $1:t,dt) 'p(xlzt | dt) -p(m | xl:tadt) dmdx; .. (9-19)

T1:t

Eq. (9.19) is obtained from Eq. (9.18) by using Eq. (6.1). & again assume that our
posterior is represented by a set of particles, we can re&qt (9.19) as follows:

#particles

pland) ~ Y pE|amll 2l d)-w pmt | 2y dy)  (9.20)

i=1

Based on Eqg. (9.20), we can computdor a given actionaz,. The factorp(ml! |
2t d,) in Eq. (9.20) is assumed to be computed analytically duegatisumptions
made in the Rao-Blackwellization (see Eq. (6.1)), namedy e can compute the map
ml! analytically given the positions[fz}t as well as the datd,. We can also estimate
the termp(Z | a, d;) of that equation by simulation. This can be achieved by per-
forming ray-casting operations in the maygy! of thei-th particle to estimate possible
observationg. In other words, the (discretized) posterior about possaiservations
obtained along the path when executing the actioten be computed by ray-casting
operations performed in the map of each particle weightethbylikelihood of that
particle.

In cases where the ray-casting operation reaches an unkzelhin the map, we
have to treat the beam differently. Touching an unknownroelhns that we cannot say
anything about the beam except that its length will be attlaasong as the distance
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Figure 9.3: The plot shows the likelihood of a laser beam toaers an unknown

cell based on recorded sensor data. In this plot, a beamhl@idi2 m represents a
maximum range reading.

between robot pose and the unknown cell (with a high prolgbiSince such beams
typically have a serious influence on the map uncertaintycameputed statistics about
the average change of map entropy introduced by integratipgam which reaches
an unknown cell in the map. One example for such a statistice fecorded laser
range data is shown in Figure 9.3. Note that in this situatioe change of entropy is
approximatively proportional to the number of unknown se&lbvered by that beam.
By computing the average beam length for such sensor oligsrsfrom the statistics,
one can predict the average change of entropy when apprggalfiiontier. In this way,
the system also accounts for unknown areas which are vitdote a planned path to
any other destination.

This approximation dramatically reduces the number of mitaeobservations that
have to be simulated compared to the number of possiblerityxmeasurements a
laser range finder can generate. Several experiments shbeeffectiveness of this
approach for robots equipped with a laser range finder.

Despite this approximation, computing the expected infdrom gain based on
Eq. (9.17) requires a substantial amount of computaticgsdurces. Therefore, we
furthermore approximate the posterior in this equationualpmssible sensory data,
by not considering all possible map instances of the cuesterior. We apply the
computations only on a subset of potential maps. This subs#itained by draw-
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ing particlesy; from the particle set, where each patrticle is drawn with dability
proportional to its weight. We then use the map associatedtmgenerate the mea-
surementg(v;) along the path. This reduces the computational complerityeiows
us to run the exploration system on a real robot. Under thigpkiying assumption,
we can rewrite the expected information gain in Eq. (9.17) by

Bll)) ~ 3 I (9.21)

wheren is the number of drawn samples. An observation sequénggis generated
by a ray-casting operation in the mapuef Note that if more computational resources
are available this approximation can easily be improved tayvihg more particles.
This computation can even be parallelized, since there iatedference between the
integration of measurement sequences into different sagithe RBPF.

Now all necessary equations have been introduced to contipeiexpected infor-
mation gain£|/(a,)] for an actiona,. To summarizeF|[I(a;)] describes the expected
change of entropy in the Rao-Blackwellized particle filtdrem executing;. To rea-
son about possible observation sequences, the robot wdiroblong the path, we
draw a subset of particle according to their likelihood aedigrm a ray-casting oper-
ation in the corresponding maps. The expected measurerentisen integrated into
the filter and the entropies before and after the integratrersubtracted.

The complexity of the computation df[/(a;)] depends on two quantities. First,
the filter needs to be copied to save its current state. Ttiedances a complexity linear
in the size of the filter (which in turn depends on the numbegasficles). The second
quantity is the lengtti(a;) of the planned path from the current pose of the robot to
the desired goal location, because the expected obsarsationg the path are taken
into account. The number of particles drawn to generatereégens is assumed to be
constant. The cost of integrating an observation is line#éné numberV of particles.
This leads to an overall complexity 6f(I(a;) - N) to evaluate an actiom.

Besides the expected entropy reduction, there is a secamityuthe robot should
consider when selecting an action. This is the cost of aagrgut an action measured
in terms of traversability and trajectory length for reahthe target location. The
cost of an action is computed based on the (convolved) oooyparid map of the
most likely particle. Traversing a cell introduces a costgartional to its occupancy
probability (see Section 4.2.1 for further details).

The expected utility=[U(a,)] of an actiona, in our exploration system is defined
as

ElU(a;)] = Ell(a)] —a-V(a). (9.22)
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whereV (a;) refers to the cost of carrying out the action « is a weighting factor
which trades off the cost with the entropy. This free paramean be used to trigger
the exploration process by adapting the influence of theeliray cost. In our work,
we determinedv experimentally.

After having computed the expected utility for each actiader consideration, we
select the action; with the highest expected utility

a; = argmax E[U(a)]. (9.23)

Every time the robot has to make the decision where to go itexdes Eq. (9.23) to
determine the actioa; with the highest expected utility and executes it. As soamoas
action provides an expected reduction of uncertainty anftordiers to unseen areas
are available, the exploration task is completed.

9.4 Computing the Set of Actions

So far, we have explained how to evaluate an action but h&tveden how potential

actions are generated. One attempt might be to generatetageapoint for each

reachable grid cell in the map. Since we reason about oligmrsaeceived along the
path, we need to consider all possible trajectories to atiiable grid cells in the map.
The number of possible trajectories, however, is huge whakes it intractable to
evaluate all of them.

To find appropriate actions to guide a vehicle through thereninent, we con-
sider three types of actions, so callgloration actionsplace revisiting actionsand
loop-closing actions Exploration actions are designed to acquire informatiooua
unknown terrain to reduce the map uncertainty. To genergit®tion actions, we
apply the frontier approach introduced by Yamaud99d. For each frontier be-
tween known and unknown areas, we generate an action ledngpbot from its
current pose along the shortest path to that frontier. Euantre, actions that guide a
robot to cell which have a high uncertainty belong to the $eploration actions.

Compared to the actions generated from frontiers, the pkagsiting actions as
well as the loop-closing actions do not focus on new terraguasition. They guide
the robot back to an already known location or perform arvadtiop closure. The goal
of these actions is to improve the localization of the vehigthich means to reduce
its trajectory uncertainty. In our current implementatipiace revisiting actions are
generated based on the trajectory of the robot. Such amasaiosimply turn the robot
around and move it back along its previously taken path. #altially, we generate so
called loop-closing actions. To determine whether therist&® possibility to close a
loop, we would like to refer the reader to Chapter 7 in whichdeecribe how a mobile
robot can robustly detect opportunities to actively clossop.
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Given this classification, the actions 1 and 3 depicted inntloéivation example
in Figure 9.1 are exploration actions, whereas action 2 isaaeprevisiting action
performing an active loop closure.

9.5 Experiments

Our approach has been implemented and tested in real wadldiarulation exper-
iments. The experiments described here are designed stréta the benefit of our
exploration technique which takes into account the map dlsasdhe trajectory un-
certainty to evaluate possible actions.

9.5.1 Real World Application

The first experiment was a real world experiment carried puiuilding 106 at the

University of Freiburg using an ActivMedia Pioneer 2 robquipped with a SICK

laser range finder. The exploration run was fully autonomaolise robot started in
the lower left room (see Figure 9.4 (a)). The robot movedublothe neighboring
room and entered the corridor. After reaching its targeation in the horizontal

corridor (Figure 9.4 (b)), the robot decided to move backitthe lower left room to

improve its pose estimate (Figure 9.4 (c)). The robot thegricerd the neighboring
room and afterwards returned to the corridor (Figure 9.3 (dXhen approached the
lower horizontal corridor and moved around the loop (Figd4 (e)). Finally, the

robot returned to the lower left room and finished the expionatask. As can be
seen from this experiment, as soon as the robot gets tootanmcabout its pose, it
performs place revisiting actions or chooses exploratatioas which also reduce its
pose uncertainty due to the information gathered along dfie p

9.5.2 Decision Process

The next experiment is designed to show how the robot chaadéms to reduce its
pose uncertainty as well as its map uncertainty. Figure &pcts parts of a simulated
exploration task performed in a map acquired at Sieg Haliy&fsity of Washington.
Each row depicts a decision step of the robot during autonsneaploration. In the
first step shown in the first row, the robot has almost closeddbp. It had to de-
cide whether it is better to move through the loop again ootm$ on exploring the
horizontal corridor. In this situation, the robot moved &oget point 1 and actively
closed the loop, since this provided the highest expectéty see right plot in the
first row of Figure 9.6). Target location 1 had the highesteeted utility because the
robot expected a chance to relocalize itself by closingabe Eind to observe parts of
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Figure 9.4: Six different stages of an autonomous explomatun on the second
floor of building 106 at the University of Freiburg. The mapsaacquired fully au-
tonomously by our integrated approach.
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the unknown areas close to the planned trajectory. Thergfiois actions provided an
expected reduction of map and trajectory uncertainty. érstttcond decision, the robot
focused on acquiring new terrain and approached the hdakoarridor, since target
location 6 had the highest expected utility. The same haggbémthe third decision
step, shown in the last row of this figure. Moving back throtigg known areas of
the loop provided less expected entropy reduction and fitreréhe robot continued
exploring the horizontal corridor (target location 5).

Figure 9.7 shows the map after reaching target location i fitee last decision
step. To visualize the change of entropy over time, the nbt shows the evolu-
tion of the map as well as the pose uncertainty. The labelkendft image show
the time steps in which the robot was at the correspondingfilme. As can be seen,
the entropy stayed more or less constant in the beginninge she map uncertainty
decreased while the pose uncertainty increased. Aftemgjdke loop at around time
step 45, the pose uncertainty dropped so that the overadrtaioty was also reduced.
Moving through known areas between time step 50 and 80 dignowtde a lot of new
information and did not change the entropy that much. As ssdhe robot entered es-
pecially the wide part of the horizontal corridor, the oVlewacertainty dropped again
due to the serious reduction of map uncertainty comparedaetonioderate increase of
pose uncertainty.

9.5.3 Comparison to Previous Approaches

The third experiment addresses the decision problem of thtezating example pre-
sented in the introduction of this chapter. It shows how qusraach chooses the
actions which lead to the highest uncertainty reductiorhan posterior about poses
and maps compared to previous techniques. As can be seeguref.8, the robot
has almost closed the loop. Suppose the robot has a high poséainty and con-
siders three potential actions to approach different tdagations (see left image of
Figure 9.8). Action 1 is a new terrain acquisition action aetlon 2 performs a loop
closure. Action 3 leads the robot to unknown terrain whitawdtaneously closing the
loop. Since action 3 combines a loop closure with new teraguisition, it provides
the highest expected utility (see right image of Figure 9®)erefore, our approach
chooses this target point. This is an advantage comparethéo approaches which
seek to actively close loops in an heuristic way. Such a tegclen(like the one we
presented in Chapter 7) would typically choose action 2doce the pose uncertainty
of the vehicle. Classical exploration approaches, whicly take into account the
map uncertainty or guide the robot to the closest unknowa [a¢eenig and Tovey,
2003, Weil%et al,, 1994, Whaite and Ferrie, 1997, Yamauchi, 1998, Yamaethi,
1999 would select action 1. Even an active localization techaigthich seeks to re-
duce the pose uncertainty of the vehifikaelblinget al, 1996 would choose either
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timestep 97

Figure 9.5: Three points in time in which the robot had to deavhere to move next.
The left images depict the trajectory of the robot up theesponding point in time
and the right images illustrate the best maps and possikitenac Figure 9.6 depicts
the corresponding utilities. The chosen target locatioasyaarked red.

decision at timestep 35 &=—/= decision at timestep 70 &=—/2 decision at timestep 97 /=
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Figure 9.6: The corresponding utilities of different tarfyeeations given the possible
actions depicted in Figure 9.5.
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Figure 9.7: This figure illustrates the evolution of the epir during the experiment
shown in Figure 9.5. The marker in the left image correspaonithié¢ different points
in time when the robot was at the corresponding location. rigte plot depicts the
entropy during the data acquisition phase. It depicts the eméropy, the pose uncer-

tainty, and the overall (combined) entropy over time.
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expected utility
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action

Figure 9.8: This figure illustrates the decision process bémg to go next. Shown

in the left image are three potential actions in the left imagd the corresponding
expected utilities in the middle image. The situation atterrobot has chosen action 3
is depicted in the right image.

action 2 or 3 (with a 50% chance each).

9.5.4 Corridor Exploration

The last experiment was performed in building 79 at the Usite of Freiburg and

is depicted in Figure 9.9. The environment has a long carraghal contains no loop.
To make the pose correction more challenging, we restrittedange of the sensor
to 3m. According to the short sensor range used in this exyert, it was hard for

the robot keep track of its own position. As can be seen, #ubhrique leads to an
intuitive behavior. Due to the large uncertainty in the pogéhe vehicle, the robot
chooses several times actions which guide it back to a wellk place (which is the

starting location in this experiment) to reduce its posecutainty.

9.6 Related Work

In the context of exploration, most of the techniques preskso far focus on gen-
erating motion commands that minimize the time needed terctve whole ter-
rain [Koenig and Tovey, 2003, Wei8t al, 1994, Yamauchi, 1998, Burgaet al.,
200d. Most of these techniques, however, assume that an acqusiton estimate
is given during exploration. Whaite and Ferfie997 present an approach that uses
also the entropy to measure the uncertainty in the geonsdtricture of objects that
are scanned with a laser range sensor. In contrast to the desdribed here, they
use a parametric representation of the objects to be scamtkedo not consider the
uncertainty in the pose of the sensor. Similar techniquee baen applied to mobile
robots like, for example, our approach presented in Ch&ptarthe work of Rocha
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Figure 9.9: The images depict six stages during the autonsmxgploration of a long
corridor. The maximum sensor range in this experiment wagdd to 3 m. The short
sensor range results in a comparably high pose uncertditityg obot when moving
through the environment, since the current scan has typiaasmall overlap with

the previously seen area. Due to the high pose uncertalyexploration system
chooses actions which guide the robot on a path close toahtnsgt location in order
to relocalize.
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et al. [2004. However, none of the approaches mentioned above take e o
certainty into account when selecting the next vantagetpdihere are exploration
approaches that have been shown to be robust against untestan the pose esti-
mateg Duckettet al., 2002, Koet al, 2003, Kuipers and Byun, 199but the selected
actions do depend on the uncertainty of the system. Noteatllatailed discussion
about different exploration strategies for single and irolbot systems has been pre-
sented in Section 4.6.

In the area of SLAM, the vast majority of papers have focusedha aspect
of state estimation as well as belief representation anctej®issanayakeet al.,
2000, Doucett al,, 2000, Eliazar and Parr, 2003, Grisedtial., 2005, Gutmann and
Konolige, 1999, Hahnedt al., 2003a, Montemerlet al., 2002, Murphy, 1999, Thrun,
20014. These techniques are passive and only process incomisgrsgsta without
explicitly generating control commands. Again, Sectighfiesents a detailed discus-
sion of SLAM approaches. In contrast to these techniquesagoroach considers the
active control of the robot while learning accurate maps.

Recently, new techniques have been proposed which actigalyol the robot dur-
ing SLAM. For example, Makarenket al. [2004 as well as Bourgoulét al. [2007
extract landmarks out of laser range scans and use an egtiattaan filter (EKF) to
solve the SLAM problem. They furthermore introduce a wtifitnction which trades
off the cost of exploring new terrain with the expected reauncof uncertainty by mea-
suring at selected positions. A similar technique has bppheal by Simet al.[2004),
who consider actions to guide the robot back to a known plaoeder reduce the pose
uncertainty of the vehicle. These three techniques diffenfthe approach presented
in this chapter in that they rely on the fact that the envirenbcontains landmarks
that can be uniquely determined during mapping. In cont@shis, our approach
makes no assumptions about distinguishable landmarkssasdraw laser range scans
to compute accurate grid maps. One disadvantage of feaasedlexploration sys-
tems is that the underlying models of the environment tyjyico not provide any
means to distinguish between known an unknown areas. Trerein additional map
representation needs to be maintained (like, e.g., an aocypgrid in[Bourgoultet
al., 2002, Makarenket al,, 2009 or a visual map ifSim et al,, 2004) to efficiently
guide the vehicle. Approaches which do not maintain an aufdit model to identify
unknown areas typically apply strategies in which the rdblbaws the contours of ob-
stacledWullschlegeret al.,, 1999 or performs wall following combined with random
choices at decision poinfgolkesson and Christensen, 2003

Duckettet al.[2009 use relaxation to solve the SLAM problem in their exploratio
approach. They condense local grid maps into graph nodesedext goal points based
on that graph structure, but do not consider the expecteagehaf uncertainty when
choosing possible target locations.

In Chapter 7, we presented an approach to mobile robot eatmdorthat is able
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to deal with pose uncertainty and seeks for opportunitiegtve close loops. Those
loop-closing actions are used to relocalize the vehicledeoto reduce the uncertainty
in the pose estimate. As we demonstrated, such an appraatshttebetter maps in the
context of (nested) loops. The work presented in this chagptients our loop-closing
technique and is entirely decision-theoretic. It reasdsauticarrying out different
types of actions, including loop-closing action, and salébhe one which provides
the highest expected uncertainty reduction considerisg thie cost of an action. Our
active loop-closing approach can therefore be regardedcasn@onent integrated in
the technique presented in this chapter.

There are planning techniques that can compute optimak@gmaintaining a
belief over possible states of the world and by computingtregegy that is optimal in
expectation with respect to that belief. One solution ts thithe partially observable
Markov decision process, also known as POMBRelblinget al, 1995. The major
disadvantage of POMDPs are their extensive computatiarstland most solutions
are not applicable to scenarios with more than around onestival statefPineauet
al., 200d3. Since we reason about a high-dimensional state estimptmsiem, we
have to be content with approximative solutions that relysttong assumptions. In
essence, our approach can be regarded as an approximatiom BOMDP with an
one step look-ahead.

Compared to the approaches discussed above, the novelt afdrk reported
here is that our algorithm for acquiring grid maps simultarsdy considers the trajec-
tory and map uncertainty when selecting an appropriateract/e furthermore reason
about the information gathered by the sensor when the roeaiges an action. Our
approach also considers different types of actions, naslyalled exploration ac-
tions, which guide the robot to unknown areas and placeitegsactions as well as
loop-closing actions, which allow the robot to reliably #édoops and this way reduce
its pose uncertainty.

9.7 Conclusion

In this chapter, we presented an integrated approach whiaitaneously addresses
mapping, localization, and path planning. We use a deciienretic framework re-
lated to the one presented in Chapter 3 for exploration. &b wih the noise in the
position of the robot, we applied a Rao-Blackwellized petfilter presented in Chap-
ter 6 to build accurate grid maps. Our exploration approactsiclers different types
of actions, namely exploration actions forcing terrainwastion as well as place re-
visiting and active loop-closing actions that reduce thmtts pose uncertainty. These
actions are generated based on the active loop-closingitpah presented in Chap-
ter 7. By estimating the expected entropy of the particlerfiétfter carrying out an
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action, we are able to determine the action which promisesifhest expected un-
certainty reduction, thereby taking potential measurdémgathered along the whole
path into account. The simulation of observations is dorseth@n the posterior about
the map.

We furthermore showed how the uncertainty in a Rao-Blackxesl particle fil-
ter can be separated into two components: The uncertairtheitrajectory estimate
and the uncertainty in the individual maps weighted withltkelihood of the corre-
sponding particle. Our approach has been implemented atetliten real robots and
in simulation. As a result, we obtain a robust decision-tago exploration algorithm
that produces highly accurate grid maps. In practical exparts, we showed how
the robot is able to select the action that provides the Isigaepected uncertainty
reduction in its posterior about poses and maps. This is sandg@ge compared to
exploration approaches that seek to minimize the uncéytaarthe map model only
and to active localization technigques which consider ohy/uncertainty in the pose
estimate.



Chapter 10

Mapping and Localization in
Non-Static Environments

10.1 Introduction

hroughout all previous chapters of this thesis, we assuhmdhe environ-

ment does not change over time. This assumption howevelt isealistic

especially for environments populated by humans. Peopliedily walk

around, open and close doors, add or remove things, or evee alpects
like furniture. In the literature, most of the approachempping with mobile robots
are based on the assumption that the environment is stadicegorted by Wang and
Thorpe[2004 as well as by Hahnedt al.[2009, dynamic objects can lead to serious
errors in the resulting map. A popular technique to deal wih-static environments
is to identify dynamic objects and to filter out the range nueasents reflected by
these objects. Such techniques have been demonstratedriorberobust than tra-
ditional mapping approaches. They allow a robot, for exan filter out walking
people or passing cars. Their major disadvantage lies ifatt¢hat the resulting maps
only contain the static aspects of the environment.

Avoiding that walking people or moving cars leave spuriobeots in the map is
a desirable feature. However, there exist also non-stéjects for which is makes
sense to integrate them into the model of the environmentarAexample, consider
open and closed doors which can be classified as low-dynamorestatic objects
that do not move randomly.

In this chapter, we explore an alternative solution to dei#h wynamic environ-
ments by explicitely modeling the low-dynamic or quastistatates. Our approach
is motivated by the fact, that many dynamic objects appeaniyn a limited number
of possible configurations. As an example, consider thesdooan office environ-
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ment, which are often either open or closed. Another scenarcars in a parking

space. Most of the time, a parking space is either occupieal ¢gr or is empty. In

such a situation, techniques to filter out dynamic objeabslpce maps which do not
contain doors or parked cars at all. This can be problemateesfor example, in

many corridor environments doors are important featurelt@lization. The explicit

knowledge about the different possible configurations ogrove the localization ca-
pabilities of a mobile robot. Therefore, it is important taegrate such information
into the model of the environment. Our framework preseniethis chapter allows
that highly dynamic objects can be filtered so that they ddeaxe spurious objects in
the map. This can be achieved by applying a filtering techalidge the one of Hahnel
et al.[20034 in a slightly modified way.

As a motivating example consider the individual local maggsicted in Figure 10.1.
These maps correspond to typical configurations of the sdaw® @nd have been
learned by a mobile robot operating in an office environmd@ritey show the same
part of a corridor including two doors and their typical st The key idea of our
work is to learn such local configurations and to utilize thfsrmation to improve the
localization accuracy of the robot.

The contribution of this chapter is a novel approach to magjm low-dynamic
environments. Our algorithm divides the entire map intesavsub-maps and learns
for each of these sub-maps typical configurations for theesponding part of the
environment. This is achieved by clustering local grid mdpsthermore, we present
an extended Monte-Carlo localization algorithm, whichsubeese clusters in order to
simultaneously estimate the current state of the environared the pose of the robot.
Experiments demonstrate that our map representationteatsmproved localization
accuracy compared to maps lacking the capability to modielrdnt configurations of
the environment.

This chapter is organized as follows. First, we introducerapping technique
that models different configurations of non-static objentSection 10.2. We then
present our variant of Monte Carlo localization that estasahe pose of the vehicle
as well as the state of the environment at the same time. ho8el0.4, we present
a series of experiments using our technique for mapping@ealization in non-static
worlds. Finally, Section 10.5 discussed related appraache

10.2 Learning Maps of Low-Dynamic Environments

The key idea of our approach is to use the information aboamgés in the environ-
ment during data acquisition to estimate possible spatigigurations and store them
in the map model. To achieve this, we construct a sub-magpefcin area in which dy-
namic aspects have been observed. We then learn clustarb-ofiaps that represent
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Figure 10.1: Possible states of the same local area. Thexaiff configurations corre-
spond to open and closed doors within a corridor.

possible spacial states in the corresponding areas.

10.2.1 Map Segmentation

In general, the problem of learning maps in dynamic envirents is a high-dimen-
sional state estimation problem. A naive approach could s&re an individual map
of the whole environment for each potential state. Obvigusing this approach, one
would have to store a number of maps that is exponential imtimeber of dynamic
objects. In real world situations, the states of the objatitsne room are often in-
dependent of the states of the objects in another room. fidrerat is reasonable to
marginalize the local configurations of the individual atige

Our algorithm segments the environment into local arediedcaub-maps. In this
chapter, we use rectangular areas which inclose locallgcted dynamic aspects to
segment the environment into sub-maps. For each sub-mapytramic aspects are
then modeled independently.

Note that in general the size of these local maps can varythersize of the overall
environment to the size of each grid cell. In the first caseywwseld have to deal with
the exponential complexity mentioned above. In the secaseé,cone heavily relies
on the assumption that neighboring cells are independdmit¢hwis not justified in the
context of dynamic objects.

In our current system, we first identify positions in whicle tlobot perceives con-
tradictory observations which are typically caused by dayicaelements. Based on a
region growing technique, we determine areas which indgsamic aspects. By tak-
ing into account visibility constraints between regiomgyt are merged until they do
not exceed a maximum sub-map size (currently set to?20mMis limits the number of
dynamic objects per local map and in this way leads to a toéetzomplexity. Notice
that each sub-map has an individual size and different sajpsroan also overlap.
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10.2.2 Learning Configurations of the Environment

To enable a robot to learn different states of the envirorimea assume that it ob-
serves the same areas at different points in time. We cltietdocal maps built from

the different observations in order to extract possiblefigonations of the environ-

ment. To achieve this, we first segment the sensor data pedcby the robot into

observation sequences. Whenever the robot leaves a subHmeapurrent sequence
ends and accordingly a new observation sequence start®asasdhe robot enters
a new sub-map. Additionally, we start a new sequence wherbeerobot moves

through the same area for more than a certain period of ti@® (F his results in a set
® of observation sequences for each sub-map

d = {o1,..., 00}, (10.1)

where each

(bi = Zstart(i) - - - s Rend(i) - (102)

Herez, describes an observation obtained at timEor each sequengg of observa-
tions, we build an individual occupancy grid for the loca@of the sub-map. Such a
grid is then transformed into a vector of probability valuasging from 0 to 1 and one
additional valug to represent an unknown (unobserved) cell. All vectors tviciar-
respond to the same local area are clustered using the furmaks algorithniDuda
et al, 2001. During clustering, we treat unknown cells in a slightlyfeient way,
since we do not want to get an extra cluster in case the sersooticover the whole
area completely. In our experiment, we obtained the besiviehusing the following
distance function for two vectorsandb during clustering

(a; —b;) a; #ENb #E
d(a,b) = > 0 ai=ENb =€ (10.3)

i € otherwise,

wheree is a constant close to zero.

When comparing two values representing unknown cells, orgeneral should
use the average distance computed over all known cellsitoastthis quantity. Such
a value, however, would be significantly larger than zeracéex if the whole map is
empty space). In our experiments, we experienced that tisengverage distance be-
tween cells leads to additional clusters in case a signifigart of a sub-map contains
unknown cells even if the known areas of the maps are neafttichl. Therefore, we
use the distance function given in Eq. (10.3) which setsdisiance value to zero.

Unfortunately, the number of different states is not knowadvance. Therefore,
we iterate over the number of clusters and compute in eacdtida a model using the
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fuzzy k-means algorithm. We create a new cluster initialimeing the input vector
which has the lowest likelihood under the current model. Wauate each modél
using the Bayesian information criterion (BI{3chwarz, 197B

BIC = logp(d|6)— |;i| -logn (10.4)

10.2.3 Map Clustering

The BIC is a popular technique to score a model during clugjerlt trades off the
numbernd| of clusters in the modé multiplied by the logarithm of the number of input
vectorsn and the quality of the model with respect to the given datBhe model with
the highest BIC is chosen as the set of possible configusatiarthe following also
called patches, for that sub-map. This process is repeatedl sub-maps.

The following example is designed to illustrate the map telsg process. The
input to the clustering was a set of 17 local grid maps. Theylkzmeans clustering
algorithm started with a single cluster, which is given bg thean computed over all
17 maps. The result is depicted in the first row of Figure 10.Be algorithm then
increased the number of clusters and recomputed the meaaslinstep. In the fifth
iteration the newly created cluster is more or less equaluster 3. Therefore, the
BIC decreased and the clustering algorithm terminated thizhmodel depicted in the
forth row of Figure 10.2.

In the introduction of this chapter, we claimed that our aggh can also be used
in environments which contain highly dynamic aspects likdking people. This is
be done by applying the filtering technique introduced by édkt al.[20034 to the
observations sequences i = 1,...,n individually and not to the whole seb at
once. As a result, objects currently in motion are elimidatg that technique, but
objects changing their location while the robot moves tgfrodifferent parts of the
environment are correctly integrated into the local mag® different configurations
are then identified by the clustering algorithm.

Note that our approach is an extension of the classical @ypgrid map. It
relaxes the assumption that the environment is static. tiatdns without moving
objects, the overall map is equal to a standard occupandyntap.

The complexity of our mapping approach depends linearlynemumbefl’ of ob-
servations multiplied by the numbérof sub-maps. Furthermore, the region growing
applied to build up local maps introduces in the worst casenaptexity of P2 log P,
whereP is the number of grid cells considered dynamic. This lead@stoverall com-
plexity of O(T - L + P*log P). Using a standard PC, our implementation requires
around 10%-20% of the time needed to record the log file wige&nobot.
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Figure 10.2: Iterations of the map clustering process. @pra@ach repeatedly adds
new clusters until no improvement is achieved by introdgaiew clusters (with re-
spect to the BIC). Here, the algorithm ends up with 4 clussnge cluster 3 and 5 are
redundant.

10.3 Monte-Carlo Localization Using Patch-Maps

In this section, we show how our patch-map representationbeaused to estimate
the pose of a mobile robot moving through its environment.otighout this chapter,
we apply an extension of Monte-Carlo localization (MCL),iefhhas originally been
developed for mobile robot localization in static envireemts[Dellaertet al., 1994.

MCL uses a set of weighted particles to represent possildesf, y, and6) of the

robot. As explained in Chapter 2, the motion model is typycased to draw the next
generation of samples. The sensor readings are used to totmeuweight of each
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particle by estimating the likelihood of the observationeyi the pose of the particle
and the map.

Besides the pose of the robot, we want to estimate the coafigarof the envi-
ronment in our approach. We do not assume a static map inthkelard MCL and
therefore need to estimate the mapas well as the pose, of the robot at time

Bayes' rule
p(xt,mt | Zl:taulzt—l) =

n 'p(Zt | Tt, M, Zl:t—laulzt—l) 'p(%,mt ‘ Zl:t—hulzt—l)- (10-5)

Heren is a normalization constant and_; refers to the motion command which
guides the robot from;_; to z;. The main difference to approaches on simultaneous
localization and mapping (see Chapter 6) is that we do nsoreabout all possible
map configurations like SLAM approaches do. Our patch-mapiocts the possible
states according to the clustering of patches and therefiolyea small number of
configurations are possible.

Under the Markov assumption, the second line of Eq. (10.56)bestransformed to

p(%’mt | Zl:t—laulzt—l)
Markov & total prob.
= p(xumt \ $t—1,mt—1721;t—17ut—1)
Tt—1 me—1

$t 1, Mt—1 | Z1:t—1, Ul:t— 2)d$t 1dmy_y (10-6)

productrule
It|It 1, M1, 21:t—1, Ut— 1)
Tt—1 me—1

mt|It,$t 1, Mg—1, Z1:¢—1, Ug— 1)

93t 1, My—1 | 21:it—1, Ul:g— 2)d1't 1dmy_q (10-7)
= / / $t | Lp—1, Ut— 1) (mt | Ty, My— 1)
me—1
if»'t 1, M—1 | 21:it—1, Ul:g— Q)dif»’t 1 dmy_. (10-8)

Eq. (10.6) is obtained by using the law of total probabilitglahe Markov assumption.
Furthermorey,.;_» is assumed to have no influence on the estimaig ahdm; given
xy_1 IS known. In the recursive term of Eq. (10.6), ; is assumed to have no influence
onz;_1, Sinceu,_; describes the odometry information betwegn, andz;.

Eq. (10.8) is obtained from Eq. (10.7) by assuming thatis independent from
Ti_1, 21:4—1, Us—1 Qiven we knowz; andm;_; as well as by assuming that is inde-
pendent fromm;_1, z1.,—1 given we knowz;_; andu,_;. Combining Eq. (10.5) and
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Eq. (10.8) leads to

p(xtamt | 21ty Ul:p— 1)

= n- pzt‘xtamtazlt 1, Up:t— 1)

/ / xt | Lp—1, Ut— 1) (mt | T, My— 1)
mi_1

(xt 1, M1 | 21:it—1, Ul:g— 2)d$t 1dmy_. (10-9)

EqQ. (10.9) describes how to extend the standard MCL appreatat it can deal with
different spacial configurations. Besides the motion mode] | x;, 1, u, 1) of the
robot, we need to specify a map transition mogleh; | z;,m; 1), which describes
the change in the environment over time.

In our current implementation, we do not reason about thte sfethe whole map,
since each sub-map would introduce a new dimension in the wtator of each par-
ticle, which leads to a state estimation problem, that isoaeptial in the number of
local sub-maps. Furthermore, the observations obtaingdavmobile robot provide
information only about the local environment of the robdtefefore, we only estimate
the state of the current patch each particle is currentlyfims leads to one additional
dimension in the state vector of the particles comparedatodstrd MCL.

In principle, the map transition modg(m; | z;,m,_1) can be learned while the
robot moves through the environment. In our current systeenyse a fixed density
for all patches. We assume, that with probabilitthe current state of the environment
does not change between tirhe 1 andt. Accordingly, the state changes to another
configuration with probabilityl — a. Whenever a patrticle stays in the same sub-
map betweert — 1 and¢, we draw a new local map configuration for that sample
with probability 1 — «. If a particle moves to a new sub-map, we draw the new map
state from a uniform distribution over the possible patdhabkat sub-map. Note that
this is a valid procedure, since one can draw the next geaerat samples from an
arbitrary distribution according to the importance samplprinciple (see Chapter 2).
To improve the map transition model during localizatione @m principle can update
the values for for each patch according to the observations of the robofap#idg
these densities can also be problematic in case of a divdittgzdor a multi-modal
distribution about the pose of the robot. Therefore, weenity do not adapt the
values ofa while the robot acts in the environment.

Note that our representation bears resemblance with apipgeaising Rao-Black-
wellized particle filters to solve the simultaneous locali@n and mapping problem, as
it separates the estimate of the pose of the robot from tivea&tst of the map (compare
Chapter 6). Our approach samples the state of the (local)amaphen computes the
localization of the vehicle based on that knowledge. Thenrddference compared to
Rao-Blackwellized SLAM is that we aim to estimate the curisate of the sub-map
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based on the possible configurations represented in ouneatianap model.

10.4 Experiments

To evaluate our approach, we implemented and thoroughilgdeson an ActivMe-

dia Pioneer 2 robot equipped with a SICK laser range findere &tperiments are
designed to show the effectiveness of our method to idepbBsible configurations
of the environment and to utilize this knowledge to more silyulocalize a mobile
vehicle.

10.4.1 Application in an Office Environment

The first experiment has been carried out in a typical offis&renment. The data was
recorded by steering the robot through the environmententhi¢ states of the doors
changed. To obtain a more accurate pose estimate than thegametry information,
we apply a standard scan-matching technique. Figure 1pi8tde¢he resulting patch-
map. For the three sub-maps that contain the doors whoss state changed during
the experiment our algorithm was able to learn all configanstthat occurred. The
sub-maps and their corresponding patches are shown inrefggure.

10.4.2 Localizing the Robot and Estimating the State of the Bvi-
ronment

The second experiment is designed to illustrate the adgestaf our map represen-
tation for mobile robot localization in non-static enviroants compared to standard
MCL. The data used for this experiment was obtained in theesaifice environment
as above. We placed an obstacle at three different locatighe corridor. The result-
ing map including all patches obtained via clustering isicteg in Figure 10.4. Note
that the tiles in the global map illustrate the average owerimdividual patches. To
evaluate the localization accuracy obtained with our mapasentation, we compare
the pose estimates to that of a standard MCL using a claggichimap as well as
using a grid map obtained by filtering out dynamic object®eatding to[Hahnelet al.,
20034.

Figure 10.5 plots the localization error over time for theethdifferent represen-
tations. The error was determined as the weighted averatgnde from the poses of
the particles to the ground truth. In the beginning of thisesxment, the robot traveled
through static areas so that all localization methods pexd equally well. Close to
the end, the robot traveled through the dynamic areas, whstlits in high pose errors
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Figure 10.3: The patch-map represents the different coradiguns learned for the
individual sub-maps in a typical office environment.
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Figure 10.4: The patch-map with the different configuraditor the individual patches
used in the localization experiment in Figure 10.5.
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Figure 10.5: The error in the pose estimate over time. As @sden, using our
approach the quality of the localization is higher compdaceapproaches using occu-
pancy grid maps.
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Figure 10.6: The image in the first row illustrates the tradgbath with time labels.
The left images in the second row depict the two patches andrtph plots the prob-
ability of both patches according to the sample set. As caseba, the robot identified
that patch 1 correctly models the configuration of the emrirent.

for both alternative approaches. In contrast to that, cchirtgjue constantly yields a
high localization accuracy and correctly tracks the robot.

To further illustrate how our extended MCL algorithm is atdeestimate the cur-
rent state of the environment, Figure 10.6 plots the pastgniobabilities for two
different patches belonging to one sub-map. At time stepti& robot entered the
corresponding sub-map. After a few time steps, the robaecty identified, that the
particles, which localize the robot in patch 1, performetidrehan the samples using
patch 0. Due to the resamplings in MCL, particles with a lovpartance weight are
more likely to be replaced by particles with a high imporeneight. Over a sequence
of integrated measurements and resamplings, this led tocdralpility close to 1 that
the environment looked like the map represented by patchhicbwcorresponded to
the ground truth in that situation).

10.4.3 Global Localization

Additionally, we carried out three global localization expnents in a simulated en-
vironment. First, we used a standard grid map which contaia®sed door. In the
second run, we used a map which did not contain a door at alfinally we used

our patch-map representation using two patches to refdreésestate of the door. The
experiments with standard MCL are depicted in Figure 1h&,dorresponding one
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phase 1 (door was closed) phase 2 (door was open)

true pose . [ —=<—robot . = robot
and state

of ihe /U ﬂ
environmen:  d0Or close door ope

-~

standard
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closed door
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Figure 10.7: This figure shows a global localization expentnusing standard grid
maps. The first row depicts the true pose of the robot and tleesttate of the door.
The second row shows the same situation during a localizakiperiment using a map
in which the door is modeled as closed. In the experimentotieghin the third row the

used map was contained no doors at all. In the beginning skEttperiment the door
was closed (left column) but was later on opened (right colurAs can be seen, both
systems were unable to accurately localize the vehicle.

phase 1 (door was closed) phase 2 (door was open)

- - .
‘.

Figure 10.8: Particle clouds obtained with our algorithm thle same situations as
depicted in Figure 10.7.

using patch-maps is shown in Figure 10.8. During localorgtthe robot moved most
of the time in front of the door, which was closed in the begigrand opened in the
second phase of the experiment.

As can be seen in the left column of Figure 10.7 and 10.8, the Bgproach which
uses the occupancy grid that models the closed door as weliragpproach lead to a
correct pose estimate. In contrast to that, the occupandyadrich models the open
door causes the filter to diverge. In the second phase of theriexent, the door was
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opened and the robot again moved some meters in front of thie(slee right column
of the same figure). At this point in time, the MCL techniquéngsthe occupancy
grid, which models the closed door cannot track the corres¢ mnymore, whereas our
approach is able to correctly estimate the pose of the rdlnis. simulated experiment
again illustrates that the knowledge about possible cordtgans of the environment
is important for mobile robot localization. Without this dnledge, the robot is not
able to correctly estimate its pose in non-static envirome

10.5 Related Work

In the past, several authors have studied the problem afifgamaps in dynamic
environments. A popular technique is to track dynamic disjaad filter out the mea-
surements reflected by those objeddéihnelet al, 2002, Wang and Thorpe, 2002
Enhanced sensor models combined with the Expectation Maairon (EM) algo-
rithm have been successfully applied to filter out arbitidygamic objects by Hahnel
et al.[2003d. The authors report that filtering out dynamic objects caprove the
scan registration and lead to more accurate maps.

Anguelovet al. [2004 present an approach which aims to learn models of non-
stationary objects from proximity data. The object shapeseatimated by applying
a hierarchical EM algorithm based on occupancy grids resmbat different points in
time. The main difference to our approach is that we estityaieal configurations of
the environment and do not focus on learning geometric nsddeldifferent types of
non-stationary obstacles. They furthermore presentedrk iwavhich they estimate
the state of doors in an environmdrtnguelovet al, 2004. They apply the EM
algorithm to distinguish door objects from wall objects aalvas different properties
like color, shape, and motion.

The problem of dealing with walking people has also beenstigated in the con-
text of mobile robot localization. For example, Fekal.[19991 use a probabilistic
technique to identify range measurements which do not spaord to a given model.
In contrast to our work, they use a fixed, static map model andat reason about
configurations the environment can be in. In a differentguhja team of tour-guide
robots has been reported to successfully act in highly @aedlenvironmentkSieg-
wart et al, 2003. Their system uses line features for localization restinghe as-
sumption that such features more likely correspond to whHls to moving people.
Montemerlo and Thruf2004 use a method to track walking people while localizing
the robot to increase the robustness of the pose estimate.

Romeroet al.[2001] describe an approach to global localization that clusters e
tracted features based on similarity. In this way, the radable to reduce the number
of possible pose hypotheses and can speed up a Markov ktgatiprocess. The au-
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thors also perform a clustering of sub-maps, but compareditavork, they do not
consider changes in the environment.

In contrast to most of the approaches discussed so far, wetdmldress the prob-
lem of filtering out or tracking dynamic objects. Our techuegs complementary to
and can be combined with those approaches. In this work, wkedpthe approach
of Hahnelet al. [20034 to eliminate high dynamic objects in the short observation
sequences; instead of in the whole dataset. We are interested in passthtes of
the environment like, for example, open and closed doors @rewh tables. In this
context, it makes sense to filter out measurements reflegtealiking people, but to
integrate those which correspond to obstacles like doonsamed furniture. Our ap-
proach learns possible states based on a clustering ofriwagad. The different state
hypotheses enable a mobile robot to more reliably locatssdfiand to also estimate
the current configuration of its surroundings.

In a recent work, Biber and Duckelf2005 proposed an elegant approach that
incorporates changes of the environment into the map reptason. Compared to
our work, they model temporal changes of local maps whereagim to identify
the different configurations of the environment. In theirrkyothey also construct
local map but do not use grid maps like we do. For each local thep maintain
five different map instances over different time scales sThiachieved by accepting
changes differently fast. During Monte-Carlo localizatithey estimate only the pose
of the robot and not state of the environment. To computertiportance weight for
a particle, they evaluate the observation likelihood inheam@p and then choose the
mode. This is different to our Rao-Blackwellized approattwhich each sample is
evaluated based on its individual map estimate.

Van den Berget al.[2005 presented an approach to motion planning in dynamic
environments using randomized roadmaps. Their approaablésto deal with mul-
tiple configurations of local areas in the environment. Tdlisws a mobile robot to
replan its path given a passage is blocked by an obstacler f€obnique focuses on
path planning and leaves open how such dynamic areas capritdiet and mapped.

10.6 Conclusion

In this chapter, we presented a novel approach to model -gt&t&i environments
using a mobile robot. In areas where dynamic aspects aretddéieour approach
creates local maps and estimates for each sub-map clust@rssible configurations
of the corresponding space in the environment. This allsM®umodel, for example,
opened and closed doors or moved furniture.

Furthermore, we described how to extend Monte-Carlo leatibn to utilize the
information about the different possible states of the mmment while localizing a



210 CHAPTER 10: MAPPING AND LOCALIZATION IN NON-STATIC ENVIRONMENTS

vehicle. We use a Rao-Blackwellized particle filter to estienthe current state of the
environment as well as the pose of the robot.

Our approach as been implemented and tested on real robatsllass in simu-
lation. The experiments demonstrate that our techniquesyi@ higher localization
accuracy compared to Monte-Carlo localization based ardsta occupancy grids as
well as grid maps obtained after filtering out measuremesitsated by dynamic ob-
jects. As illustrated in this chapter, approaches which atoconsider changes in the
map model are unable to localize a vehicle correctly in gegauations. This is es-
pecially a problem when performing global localization {ghhe environment is not
static.



Chapter 11

Discussion

11.1 Conclusion

earning map is one of the key problems in mobile roboticgesmany ap-
plications require known spacial models. Robots that aletabacquire an
accurate map of the environment on their own are regardedlfdig a
major precondition of truly autonomous mobile vehiclese Butonomous
map learning problem has several important aspects that toglee solved simulta-
neously in order to come up with accurate models. These @mublare mapping,
localization, and path planning. Additionally, most mappeapproaches assume that
the environment of the mobile robots is static and does nagé over time. This as-
sumption, however, is unrealistic since most places arelptgd by humans. Taking
into account non-static aspects is therefore an desirahtare for mapping systems.

In this thesis, we focused on the problem of learning aceursps with single-
and multi-robot systems. We presented solutions to a sefiepen problems in this
context. We started with the problem of exploring an envinent with a mobile robot
equipped with a noisy sensor. We presented a decisiondtieframework that rea-
sons about potential observations to be obtained at the’sdbaet locations. In this
way, the robot is able to select the action that providesitiedst expected uncertainty
reduction in its map. This allows the robot to build accurtgironment models not
exceeding a given level of uncertainty. As the underlyinyesentation, we defined
coverage maps which can be seen as an extension of occupahayaps that allow
us to model partly occupied cells. We then presented in @sgtand 5 a technique
to coordinate a team of robots during exploration. The mhaailenge in this context is
to assign appropriate target locations to each robot sdttbatverall time to complete
the exploration task is minimized. This collaboration begw the robots is achieved
by assigning utilities to all potential target locations.h&hever a target location is
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assigned to a robot, the utility of all locations that arahlesfrom the assigned one
are discounted. This leads to a balanced distribution oftobver the environment
and reduces the amount of redundant work as well as the rigkeference. As a
result, we obtained a significant reduction of the overatktineeded to complete the
exploration mission. We described a way of dealing with t@dicommunication in
the network link. This was achieved by applying our centeadi technique for sub-
teams of robots which are currently able to communicate theamore, we learned
typical properties of indoor environments using the Ada&adgorithm in combina-
tion with simple, single-valued features. By enabling thieats to add semantic labels
to the individual places in the environment, the coordorabf large robot teams can
be optimized. We focused on the exploration of corridorgctvitypically have a high
number of branchings to adjacent rooms, where large teamsbots can be better
distributed over the environment. Using this techniqueawect the environment with
a team of robots, the task can be carried out in an even sipatied of time.
Whenever robots act in the real world, their actions and masens are affected
by noise. Building spacial models under those conditiorieout consider active con-
trol is widely known as the simultaneous localization angpiag (SLAM) problem.
It is often called a chicken and egg problem, since a map idete® localize a ve-
hicle while at the same time an accurate pose estimate isdaeduild a map. We
presented in Chapter 6 a solution to the SLAM problem whichased on a Rao-
Blackwellized patrticle filter using grid maps. In such a filteach sample represents
a trajectory hypothesis and maintains its own map. Each siapdated based on the
trajectory estimate of the corresponding particle. Thenntaiallenge in the context
of Rao-Blackwellized mapping is to reduce its complexiypitally measured by the
number of samples needed to build an accurate map. We pedsaighly efficient
technique which uses an informed proposal distributiorréate the next generation
of particles. We consider the most recent sensor obsemnatiobtain an accurate pro-
posal distribution. This allows us to draw samples only imsthareas where the robot
is likely to be located. We furthermore reduced the numbeesampling actions in
the patrticle filter which helps to make particle depletiossléikely. As a result, our
technique enables us to construct grid maps from large elstas which the robots
traveled for around 2 km in indoor as well as in structuredioat environments. We
are able to obtain maps with outstanding accuracy requaiognd one order of mag-
nitude less samples than other state-of-the-art Rao-Ri@ldiked mapping systems.
After having developed an efficient and accurate tool to dethl the uncertainty
in the pose of the vehicle, we considered the problem of hogotobine exploration
and SLAM systems in Chapter 7. Since exploration stratetyigisally try to cover
unknown terrain as fast as possible, they avoid repeatéd Wisknown areas. This
strategy, however, is suboptimal in the context of the SLAbRem because the robot
needs to revisit places in order to localize itself. A goodgestimate is necessary to
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make the correct data association, i.e., to determine duhent measurements fit into
the map built so far. In the case in which the robot uses aroexipbn strategy that
avoids multiple visits to the same place, the probabilitynalking the correct associa-
tions is reduced. To overcome this limitation, we developeéelocalization technique
for exploration based on loop-closing actions. First, titeot has to detect loops which
have not been traversed to far. This is done by maintainingahrépresentation of the
environment. Beside a grid map, we construct a topologiead brased on the trajec-
tory of the vehicle. By comparing both models, we are ablestiably detect loops.
This information is then used to reenter the known parts efahvironment in order
to relocalize the vehicle. This often leads to better aligmaps especially at the loop
closure point.

The problem of the presented technique lies in its heurediamation of when
to abort the loop-closing process. If the robot moves for dneenely long period
of time through known areas, the so-called particle dembetiroblem can affect the
filter. Particle depletion is the phenomenon that hypothegech are needed later on,
for example to close a second loop, vanish while the robgsstaa first, inner loop.
Chapter 8 describes a technique that allows a mobile robptdpagate the particle
diversity through a loop after actively closing it. By cneat a backup of the filter
when entering a loop and recovering the uncertainty whenrigahe loop, the robot
can stay an arbitrary period of time in a loop without depigimportant hypotheses.
As shown in our experiments, this approach yields accuratesrnwhile reducing the
risk that the filter gets overly confident.

Chapter 9 presented an integrated approach that simulialyeaddresses map-
ping, localization, and path planning. It extends the ideaglecision-theoretic ex-
ploration presented in Chapter 3 and allows us to deal wighpibse uncertainty of
the vehicle. It applies the Rao-Blackwellized particlesfilpresented in Chapter 6 to
model the posterior about the trajectory of the vehicle aedtap of the environment.
The decision-theoretic action selection technique ainmitomize the uncertainty in
joint posterior about the poses of the robot and the map. ignctbntext, we showed
that the entropy of a Rao-Blackwellized filter can be segaraito two components:
The uncertainty of the posterior about the trajectory arduhcertainty in the map
multiplied with the likelihood of the corresponding sample

Whenever our approach evaluates a set of actions, it takead@count sequences
of potential observations in order to minimize the uncettain the overall posterior.
This is achieved by simulating observation sequences las#te posterior about the
map. The actions which are taken into account guide the robotder to explore
unknown areas, move it to places which are well-known in otdeeduce the pose
uncertainty, or actively close loops according to ChapteA3 a result, we obtain a
robust active map learning approach that
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e minimizes the uncertainty in the robot’s world model,
e considers the cost of carrying out an action,

e reasons about potential observation sequences based padfegzior about the
map of the environment,

e considers exploration, place revisiting, and loop-clgsntions, and
e is able to deal with uncertainty in the pose of the robot.

Finally, we addressed the problem of mapping and locatimati non-static envi-
ronments. The assumption of a static world is unrealisticesimost places in which
robots are deployed are populated by humans. In the la#t flears, different tech-
niques that are able to deal with dynamic aspects during mgmyere presented. This
was typically achieved by filtering out the measurementsiviaere reflected by dy-
namic objects. In Chapter 10, we chose a different apprdaskead of removing the
non-static aspects from the map model, we presented a tpehto map their typical
configurations. The idea behind this approach is that semerastatic objects occur
only in a limited number of states. Doors, for example, apdgily either open or
closed and a parking space is either free or occupied by aTderefore, it makes
sense to include their typical configurations into the emvwinent model. By clustering
local sub-maps, we are able to come up with a map model thattamas different
possible configurations for local areas.

We then extended the standard Monte-Carlo localizationcami to enable a mo-
bile robot to localize itself in this kind of map and at the satime estimate the current
state of the environment. This allows us to perform the iaaéibn task more robustly
in case the environment is not static. In practical expentsiewe showed that an
approach that is not able to model different spacial staiiéesdfto localize a robot cor-
rectly whereas our approach succeeded.

All techniques presented in this thesis have been implezdeand thoroughly
tested. The experiments have been carried out on real ralotgell as in simula-
tion. We carried out the real world experiments using Actadv Pioneer and iRobot
B21r platforms. All simulation experiments, except the ®peesented in Chapter 4
and 5, have been carried out using the simulator of the Cerivgllon Robot Navi-
gation Toolkit (CARMEN).

The contributions of this thesis are solutions to variowevjmusly unsolved or un-
addressed aspects of the map learning problem with molitgso In Chapter 9, we
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developed an active map learning system that integrates ohasir techniques de-
scribed in the preceding chapters of this work. In summaeyapproaches presented
in this thesis allow us to answer the following questions:

e How to coordinate a team of mobile robots so that the ovexallagation time
and the amount of redundant work is minimized?

e How to accurately and efficiently solve the grid-based steméous localization
and mapping problem for robots equipped with a laser ranglerfth

e How to adapt an exploration technique to the needs of therlymdg SLAM
approach?

e How to reduce the risk of particle depletion in the contexdative Rao-Blackwellized
mapping?

e How to generate actions and reason about potential obgansgquences for
an exploring mobile robot with the goal to minimize the unagnty in its world
model?

e How to deal with non-static worlds in the context of map |leagrand localiza-
tion?

11.2 Future Work

Despite the encouraging results presented in this thésie aire different aspects that
could be improved. The main issues are pointed out in theviatlg subsections.

11.2.1 Multi-Robot Coordination

One interesting research direction is to consider sitaatio which robots are able to
communicate with each other but do not know their relativsifpans. In this case,

the exploration problem becomes even harder since thegoloet have to solve two
problems. On the one hand they have to extend the map and athiéehand they

need to find out where they are relative to each other. Anesterg approach which
allows the robots to establish a common frame of referensdban presented by Ko
et al.[2003. Additionally, one could investigate scenarios in which #nvironment

changes over time.
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11.2.2 Exploration

Learningtypical structures of the environment and using them as backgronoalk
edge for future tasks can improve the performance of robat®nly in the context
of multi-robot exploration. A single robot can also benafitri such knowledge. By
learning appropriate priors of the map posterior, a robata;dor example, plan better
trajectories through the unobserved parts of the environn¥éhis problem, however,
turns out to be quite difficult. There exist approachésx et al., 2003 that learn pri-
ors from previously explored environments and use thenmufiré tasks. We strongly
believe that solutions to this problem will offer signifitamprovements in a wide
area of robotic applications.

11.2.3 Simultaneous Localization and Mapping

One way of improving our SLAM approach is to use more compaag models and
in this way reduce the memory requirements. Furthermoris, plossible to speed
up the computation of the proposal distribution. This carablkieved by choosing
representatives from the sample set and by performing tim@uatations only for those
samples. We are currently exploring solutions in this dicgc Preliminary results
done together with Giorgio Grisetti show a speed-up of adlaume order of magnitude
compared to the approach presented in this thesis.

Furthermore, building maps from sensor data is typicallgedonly for a limited
period of time. After the robot has acquired a map, it usesrtiodel for a variety of
different tasks. An interesting aspect in the context of regpning is the life-long
map learning problem where the robot has to update and nraitéamodel of the
environment for a long period of time. In general, the lonidper robot integrates ob-
servations obtained in an environment into its grid mapntbee the map gets blurred.
The reason for this are small errors in the observationsjguohbs situations for the
scan-matcher, as well as the sampling process for drawengekt generation of sam-
ples. One possibility to overcome this problem is to abagtrttap update process and
focus on localizing the vehicle. Whenever the robot detebtages in the environ-
ment it would have to consider switching back to the SLAM peoaband updating the
map model appropriately. How to achieve this in an robustedficient way has — due
to the best of our knowledge — not been addressed so far.

11.2.4 Mapping and Localization in Non-Static Environmens

One possibility to extend the approach to mapping and Ipatdin in non-static envi-
ronments is to combine our map model with techniques for SLANIs is an inter-
esting and challenging problem, since the robot is in génerable to distinguish if
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it moves through unknown areas or revisits known terrairciihias changed since its
last visit. Furthermore, it involves the problem of onlinaprclustering.

To support life-long learning one can consider integratirtgne dependency into
the map representation in order to remove configuratiortshénge not been observed
for a long period of time. However, this again introduces pineblem of when to
update the map representation and when to localize witleimnap.

A further aspect, which has not been analyzed in detail isufgeof topological
information for dividing the environment into sub-maps.cB@a segmentation would
probably lead to more intuitive sets of sub-maps.
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Appendix A

A.1 Probability Theory

A.1.1 Product Rule

The following equation is called the product rule

plx,y) = plal|y)- ply) (A1)
= ply|z)- p(x). (A.2)

A.1.2 Independence

If x andy are independent, we have

p(z,y) = plx)- py). (A.3)

A.1.3 Bayes' Rule

The Bayes’ rule, which is frequently used in this thesis Ve by

py | z) - p(x)
ply)

The denominator is a normalizing constant that ensurestiegposterior of the left
hand side adds up to 1 over all possible values. Thus, we witiéa

plzly) = n-ply|x)- p). (A.5)

In case the background knowledges given, Bayes' rule turns into

plr]y) = (A.4)

ply|xe) plr]e)
p(yle) '

p(z |y, e) (A.6)
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A.1.4 Marginalization

The marginalization rule is the following equation
plz) = / p(z,y) dy. (A.7)
Y

In the discrete case, the integral turns into a sum

p(z) = > plx,y). (A.8)

A.1.5 Law of Total Probability

The law of total probability is a variant of the marginalipat rule, which can be
derived using the product rule

plz) = / p( | ) - ply) dy, (A.9)

and the corresponding sum for the discrete case

plz) = Y pla|y) py). (A.10)

A.1.6 Markov Assumption

The Markov assumption (also called Markov property) chir@es the fact that a
variablez; depends only on its direct predecessor state and not onz, with ¢ <
t—1

ploy | w1021) = ploy | 221). (A.11)
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