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Abstract In this paper, we consider the problem of learning two-dimensional spatial models

of gas distributions. To build models of gas distributions that can be used to accurately

predict the gas concentration at query locations is a challenging task due to the chaotic nature

of gas dispersal. We formulate this task as a regression problem. To deal with the specific

properties of gas distributions, we propose a sparse Gaussian process mixture model, which

allows us to accurately represent the smooth background signal and the areas with patches of

high concentrations. We furthermore integrate the sparsification of the training data into an

EM procedure that we apply for learning the mixture components and the gating function.

Our approach has been implemented and tested using datasets recorded with a real mobile

robot equipped with an electronic nose. The experiments demonstrate that our technique is

well-suited for predicting gas concentrations at new query locations and that it outperforms

alternative and previously proposed methods in robotics.
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1 Introduction

The problem of modeling gas distributions has important applications in industry, science,

and every-day life. Mobile robots equipped with gas sensors can be deployed for pollution

monitoring in public areas [DustBot, 2008], surveillance of industrial facilities producing

harmful gases, or inspection of contaminated areas within rescue missions.

Although humans have a comparably good odor sensor allowing to distinguish between

around 10 000 odors, it is hard for us to build spatial representations of sensed gas distri-

butions. Building gas distribution maps is a challenging task in principle due to the chaotic

nature of gas dispersal and because only point measurements of gas concentration are avail-

able. The complex interaction of gas with its surroundings is dominated by two physical

effects. First, on a comparably large timescale, diffusion mixes the gas with the surrounding

atmosphere achieving a homogeneous mixture of both in the long run. Second, turbulent air

flow fragments the gas emanating from a source into intermittent patches of high concen-

tration with steep gradients at their edges [Roberts and Webster, 2002]. This chaotic system

of localized patches of gas makes the modeling problem a hard one. In addition, gas sensors

provide information about a small spatial region only since gas sensor measurements require

direct interaction between the sensor surface and the molecules to be analyzed. This makes

gas sensing different to perceiving the environment with other popular robotic sensors like

laser range finders, with which a larger area can be measured directly.

Fig. 1 illustrates actual gas concentration measurements recorded with a mobile robot

along a corridor containing a single gas source. The distribution consists of a rather smooth

“background” signal and several peaks, which indicate high gas concentrations. The chal-

lenge in gas distribution mapping is to model this background signal while being able to

cover also the areas of high concentration and their sharp boundaries.

From a probabilistic point of view, the task of modeling a gas distribution can be de-

scribed as finding a model that best explains the observations and that is able to accurately

predict new ones. A suitable measure for evaluating models and for comparing alternative

ones is to consider the predictive data likelihood of an independent test set. This measure

compares each test data point (which is not contained in the training set) with a predictive

distribution estimated by the model. For this, it does not require insight into the model in-

ternals and it does not depend on any explicit notion of model complexity or the number of

model parameters as, for example, the Bayesian Information Criterion (BIC). The predictive

data likelihood is therefore the measure of choice for evaluating especially nonparametric

models. As a drawback, one needs a sufficiently large amount of data to be able to separate

out a test set without risking that the training set becomes too small to capture the sought-

after distribution. The gas mapping application comes with an abundance of available data,

such that the predictive test set likelihood constitutes a robust measure for model accuracy.

Simple spatial averaging, which represents a straight-forward approach to the model-

ing problem, disregards the different nature of the background concentration and the peaks

resulting from areas of high gas concentrations and, thus, achieves only limited prediction

accuracy. On the other hand, precise physical simulation of the gas dynamics in the environ-

ment would require immense computational resources as well as precise knowledge about

the physical conditions, which is not known in most practical scenarios.

To achieve a balance between model accuracy and efficiency, we treat gas distribution

mapping as a supervised regression problem. We derive a solution by means of a sparse

mixture model of Gaussian processes [Tresp, 2000] that is able to handle both physical phe-

nomena highlighted above. Formally, we interpret gas sensor measurements obtained from

static sensors or from a mobile robot as noisy samples from a time-constant distribution.
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Fig. 1 Gas concentration measurements acquired by a mobile robot in a corridor. The distribution consists of

a rather smooth “background” signal and several peaks, which indicate high gas concentrations.

This implies that the gas distribution in fact exhibits a time-constant structure, an assump-

tion that is often made in unventilated and un-populated indoor environments [Wandel et al.,

2003].

While existing approaches to gas distribution mapping, such as averaging [Ishida et al.,

1998, Purnamadjaja and Russell, 2005, Pyk et al., 2006] or kernel extrapolation [Lilien-

thal and Duckett, 2004] represent the average concentration per location only, our mixture

model actually allows us to do both, computing the mean gas concentration as well as the

multi-modal, predictive densities. We further obtain a more accurate estimate of the gas con-

centration by distinguishing explicitly different components of the distribution, particularly

a “background” component where the concentration varies smoothly and a second compo-

nent that corresponds to the area in which localized patches of gas occur. In a scenario with

a constant, uniform airflow, the latter mixture component represents the gas plume [Murlis

et al., 1992].

As a by-product, we present a generic algorithm that learns a GP mixture model and at

the same time reduces the number of used training data points in order to achieve an efficient

representation even for large data sets. We demonstrate in experiments carried out with real

mobile robots that our model has a lower mean squared error and a higher data likelihood

on test data sets than other existing methods for gas distribution modeling. Thus, it allows

to predict gas concentration at query locations more accurately.

This article is organized as follows. After introducing our mixture model in Sec. 2,

we propose our method for learning the model components from data and for achieving a

sparse approximation in Sec. 3. We then present experimental results involving real mobile

platforms in Sec. 4 and discuss related work in Sec. 5.

2 A Mixture Model for Gas Distributions

The general gas distribution mapping problem given a set of concentration measurements

y1:n acquired at locations x1:n, is to learn a predictive model p(y∗ | x∗,x1:n, y1:n) for gas

concentrations y∗ at a query location x∗. We approach this problem in a nonparametric way,

i.e., not assuming a parametric form of the underlying function f(·) in y = f(x) + ǫ, using

the Gaussian process model [Rasmussen and Williams, 2006]. In this Bayesian approach to

the non-linear regression problem, one places a prior on the space of functions p(f) using
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the following definition: A Gaussian process is a collection of random variables, any of

which have a joint Gaussian distribution. More formally, if we assume that {(xi, fi)}ni=1

with fi = f(xi) are samples from a Gaussian process and define f = (f1, . . . , fn)⊤, we

have

f ∼ N (µ,K) , µ ∈ Rn
,K ∈ Rn×n

. (1)

For simplicity of notation, we can assume µ = 0, since the expectation is a linear operator

and, thus, for any deterministic mean function m(x), the Gaussian process over f ′(x) :=

f(x)−m(x) has zero mean.

The interesting part of the model is indeed the covariance matrix K. It is specified by

[K]ij := cov(fi, fj) = k(xi,xj) using a covariance function k which defines the covari-

ance of any two function values {fi, fj} sampled from the process given their input vectors

{xi,xj} as parameters. Intuitively, the covariance function specifies how similar two func-

tion values f(xi) and f(xj) are depending only on the corresponding inputs. The standard

choice for k is the squared exponential covariance function

kSE(xi,xj) = σ
2

f exp

 

−1

2

|xi − xj |2
ℓ2

!

, (2)

where the so-called length-scale parameter ℓ defines the global smoothness of the function f

and σ2

f denotes the amplitude (or signal variance) parameter. These parameters, along with

the global noise variance σ2
n that is assumed for the noise component, are known as the

hyperparameters of the process. They are denoted as θ = 〈σf , ℓ, σn〉.
Given a setD = {(xi, yi)}ni=1 of training data where xi ∈ Rd are the inputs and yi ∈ R

the targets, the goal in regression is to predict target values y∗ ∈ R at a new input point x∗.

Let X = [x1; . . . ;xn]⊤ be the n × d matrix of the inputs and X∗ be defined analogously

for multiple test data points. In the GP model, any finite set of samples is jointly Gaussian

distributed

»

y

f(X∗)

–

∼ N
„

0,

»

k(X,X) + σ2
nI k(X,X∗)

k(X∗,X) k(X∗,X∗)

–«

, (3)

where k(X,X) refers to the covariance matrix built by evaluating the covariance function

k(·, ·) for all pairs of all row vectors 〈xi,xj〉 of X. To make predictions at X∗, we obtain

the predictive mean

f̄(X∗) := E[f(X∗)] = k(X∗,X)
h

k(X,X) + σ
2
nI
i−1

y (4)

and the (noise-free) predictive variance

V[f(X∗)] = k(X∗,X∗)− k(X∗,X)
h

k(X,X) + σ
2
nI
i−1

k(X,X∗) , (5)

where I is the identity matrix. The corresponding (noisy) predictive variance for an obser-

vation y∗ can be obtained by adding the noise term σ2
n to the individual components of

V[f(X∗)].

The standard GP model recapitulated above has two major limitations in our problem

domain. First, the computational complexity is high, since to compute the predictive vari-

ance given in Eq. (5), one needs to invert the matrix k(X,X) + σ2
nI. This introduces a

complexity of O(n3) where n is the number of training examples. As a result, an important
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issue for GP-based solutions to practical problems is the reduction of this complexity. This

can, as we will show in Sec. 3, be achieved by artificially limiting the training data set in a

way that introduces small loss in the data likelihood while at the same time minimizing the

runtime. As a second limitation, the standard GP model generates a uni-modal distribution

per input location x. This assumption hardly fits our application domain in which a rela-

tively smooth “background” signal is typically mixed with medium- and high-concentration

“packets” of gas. In the following, we address this issue by deriving a mixture model of

Gaussian processes.

2.1 Mixtures of Gaussian Process Models

The GP mixture model [Tresp, 2000] constitutes a locally weighted sum of several Gaussian

process models. For simplicity of notation, we consider without loss of generality the case

of single predictions only (x∗ instead of X∗). Let {GP1, . . . ,GPm} be a set of m Gaussian

processes representing the individual mixture components. Let P (z(x∗) = i) be the proba-

bility that x∗ is associated with the i-th component of the mixture. Let f̄i(x∗) be the mean

prediction of GPi at x∗. The likelihood of observing y∗ is thus given by

h(x∗) := p(y∗ | x∗) =
m
X

i=1

P (z(x∗) = i)Ni(y∗;x∗) , (6)

where we define Ni(y;x) as the Gaussian density function with mean f̄i(x) and variance

V[fi(x)] + σ2
n evaluated at y. One can sample from such a mixture by first sampling the

mixture component according to P (z(x∗) = i) and then sampling from the corresponding

Gaussian. For some applications such as information-driven exploration missions, it is prac-

tical to estimate the mean and variance for this multi-modal model. The mean E[h(x∗)] of

the mixture model is given by

h̄(x∗) := E[h(x∗)] =
m
X

i=1

P (z(x∗) = i)f̄i(x∗) (7)

and the corresponding variance is computed as

V[h(x∗)] =
m
X

i=1

P (z(x∗) = i)
“

V[fi(x∗)] + (f̄i(x∗)− h̄(x∗))
2
”

. (8)

2.2 The Choice of the Covariance Function

The covariance function in a Gaussian Process as well as in our mixture model is a crucial

component as it encodes knowledge about the function to approximate. It specifies the de-

pendency between two function values f(xi), f(xj) and this dependency is computed only

based on the corresponding inputs.

The standard choice for the covariance function is the squared exponential (SE) shown

in Eq. (2), however, there are several other possibilities to define a covariance function. In

this paper, we also analyze how the choice of the covariance function affects the quality of

the gas distribution model. In detail, we analyze the squared exponential and two instances

of the Matérn covariance function.
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Fig. 2 Example plots of the squared exponential covariance function (left) and the Matérn 3/2 covariance

function (right), each plotted for varying hyperparameters.

In case of the Matérn covariance function, we consider the so-called “Matérn 3/2” and

“Matérn 5/2” functions among the class of Matérn kernels. They are given by

kMat 3/2(xi,xj) = σ
2

f

 

1 +

√
3||xi,xj ||

l

!

exp

 

−
√

3||xi,xj ||
l

!

(9)

and

kMat 5/2(xi,xj) = σ
2

f

 

1 +

√
5||xi,xj ||

l
+

5||xi,xj ||2
3l2

!

exp

 

−
√

5||xi,xj ||
l

!

. (10)

As for the case of the SE covariance function, the parameter ℓ is the length-scale that defines

the global smoothness of the function f and σ2

f denotes the amplitude (or signal variance)

parameter.

Fig. 2 shows 2d-plots of these covariance functions illustrating the assumed dependency

between data points of the function to model depending only on the distance of the inputs.

When comparing the properties of the individual covariance functions, the SE function is

a rather smooth one and, therefore, leads to a comparably strong smoothing of the function

approximation. This, however, might contradict the nature of gas distribution as well as

other physical phenomena. Therefore, we also consider the Matérn covariance function that

typically produces rougher estimates and thus might be better suited for the problem studied

in this paper. Among the two Matérn kernels used in this paper, the Matérn 5/2 is smoother

than the Matérn 3/2.

3 Learning the Model from Data

Given a training setD = {(xj , yj)}nj=1 of gas concentration measurements yj and the corre-

sponding sensing locations xj , the task is to jointly learn the assignment z(xj) of data points

to mixture components and, given this assignment, the individual regression models GPi.

Tresp [2000] describes an approach based on Expectation Maximization (EM) for solving

this task. We take his approach, but also seek to minimize the number of training data points

to achieve a computationally tractable model even for large training data sets D. This is of

major importance in our application, since typical gas concentration data sets easily exceed

n = 1 000 data points and the standard GP model (see Sec. 2) is of cubic complexityO(n3).
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Different solutions have been proposed for lowering this upper bound, such as dividing the

input space into different regions and solving these problems individually or by deriving

sparse approximations for the whole space. Sparse GPs [Smola and Bartlett, 2000, Snelson

and Ghahramani, 2006a] use a reduced set of inputs to approximate the full GP model. This

new set can be either a subset of the original inputs [Smola and Bartlett, 2000] or a set of

r new pseudo-inputs [Snelson and Ghahramani, 2006a] which are obtained using an opti-

mization procedure. This reduces the complexity fromO(n3) toO(nr2) with r ≪ n, which

in practice results in a nearly linear complexity.

We apply a method similar to sparse GPs and select a subset of the original inputs. In the

remainder of this section, we describe a greedy forward-selection algorithm integrated into

the EM-learning procedure which achieves a sparse mixture model by selecting a subset of

the original inputs. while also maximizing the cross validation data likelihood.

3.1 Initializing the Mixture Components

In a first step, we subsample n1 data points and learn a standard GP for this set (including

the optimization of the hyperparameters). This model GP1 constitutes the first mixture com-

ponent. To improve the estimate of gas concentration in areas that are poorly modeled by

this initial model, we learn an “error model”, termed GP∆, that captures the absolute dif-

ferences between a set of target values and the predictions of GP1. We then sample points

according to GP∆ and use them to initialize the next mixture component. In this way, the

new mixture is initialized with the data points that are poorly approximated by the first one

and a hyperparameter optimization is performed. This process is repeated until the desired

number of model components is reached. For typical gas modeling scenarios, we found that

two mixture components are sufficient to achieve good results. In our experiments, the con-

verged mixture models nicely reflect the bimodal nature of gas distributions, having one

smooth “background” component and a layer of locally concentrated structures.

It should be mentioned, that depending on the actual data, the error model (“error GP”)

might have to be evaluated at all n − n1 inputs which would lead to large computational

overhead. Instead, we actually average multiple spatially close measurements and evaluate

only at uniformly sampled locations. This is clearly an approximation but only used for the

error model of our approach. We, however, did not encounter problems using this strategy

which is actually used only for initialization.

3.2 Iterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be used to obtain a maximum likelihood

estimate when hidden and observable variables need to be estimated. It consists of two

steps, the so-called estimation (E) step and the maximization (M) step which are executed

alternately.

In the E-step, we estimate the probability P (z(xj) = i) that data point j corresponds

to model component i. This is done by computing the likelihood of each data point for the

model components individually. Thus, the new P (z(xj) = i) is computed given the previous

estimate as

P (z(xj) = i)← P (z(xj) = i)Ni(yj ;xj)
Pm

k=1
P (z(xj) = k)Nk(yj ;xj)

. (11)
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In the M-step, we update the components of our mixture model. This is achieved by

integrating the probability that a data point belongs to a model component into the individual

GP learning steps (see also [Tresp, 2000]). This is achieved by modifying Eq. (4) to

f̄i(X∗) = k(X∗,X)
h

k(X,X) + Ψ
i
i−1

y , (12)

where Ψi is a matrix with

[Ψi]jj =
σ2

n

P (z(xj) = i)
(13)

and zeros in the off-diagonal elements. Eq. (5) is updated accordingly. The matrix Ψi al-

lows us to consider the probabilities that the individual inputs belong to the corresponding

components. Figuratively speaking, the contribution of an unlikely data point to a model is

reduced by increasing the data point specific noise term. If the assignment probability, on

the other hand, is one, only σ2
n remains and the point is fully included as in the standard GP

model.

Learning a GP model also involves the estimation of its hyperparameters θ = {σf , ℓ, σn}.
To estimate them for GPi, we first apply a variant of the hyperparameter heuristic used

by Snelson and Ghahramani [2006a] in their open-source implementation. We extended it

to incorporate the correspondence probability P (z(xk) = i) into this initial guess

ℓ ← max
xj

P (z(xj) = i) ||xj − x̄|| (14)

σ
2

f ←
Pn

j=1
P (z(xj) = i) (yj − E[y])2
Pn

j=1
P (z(xj) = i)

(15)

σ
2
n ←

1

4
σ

2

f , (16)

where x̄ refers to the weighted mean of the inputs, each xj having a weight of P (z(xj) = i).

To optimize the hyperparameters based on this initial estimate, one could apply, for ex-

ample, Rasmussen’s conjugate-gradient–based approach [Rasmussen, 2006]. In our experi-

ments, however, this approach lead to overfitting problems and we therefore resorted to cross

validation-based optimization. Concretely, we repeatedly sample hyperparameters and eval-

uate the model accuracy according to Sec. 3.2 on a separate validation set. As a hyperparam-

eter sampling strategy, we draw in each even iteration of this sampling new hyperparameters

from an uninformed prior and in each odd iteration, we improve the current best parameters

θ′ by sampling from a Gaussian with mean θ′. The standard deviation of that Gaussian is

decreased with the iteration number.

In our experiments, this rather straight forward strategy converged quickly after a few

iterations (approx. 50 iterations, see Fig. 11 for an example). Note that there are more so-

phisticated strategies, for example simulated annealing, that can be used instead. However,

we selected a simpler approach since it provided satisfactory results and can be implemented

with five lines of code.

3.3 Learning the Gating Function

In our mixture model, the gating function defines for each data point the probability of being

assigned to the individual mixture components. The EM algorithm learns the assignment



9

probabilities for the used training inputs xj , maximizing the cross validation data likelihood.

To generalize these assignments to the whole input space (to form a proper gating function),

we place another GP prior on the gating variables. Concretely, we learn a gating GP for each

component i that uses the xj as inputs and the z(xj) obtained from the EM algorithm as

targets. Let f̄z
i (x) be the prediction of z for GPi. Given this set of m GPs, we can compute

the correspondence probability for a new test point x∗ as

P (z(x∗) = i) =
exp(f̄z

i (x∗))
Pm

j=1
exp(f̄z

j (x∗))
. (17)

3.4 Summary

This section briefly summarizes our approach for learning the GP mixture model. First,

we initialize the mixture components which are individual GPs. This done by randomly

sampling data point for the first component. Then, an error GP is learned to estimate the

prediction error. The data points for the subsequent component are then sampled based on

the error GP. Second, the we apply the expectation maximization algorithm to optimize

the mixture components and to estimate the hidden mixture/class assignment variables. In

each iteration of the EM, the hyperparameters for the mixture components are iteratively

optimized. Finally, the gating function is learned using again the GP framework. The gating

function models the class assignments for the whole input space. Learning is done based on

separated training and test sets.

3.5 Illustrating Example

To visualize our approach, we now give a simple, one-dimensional example. The left dia-

gram of Fig. 3 shows simulated data points, of which most were sampled uniformly from

the interval [2 : 2.5] and some are distributed with a larger spread at two distinct locations.

The same diagram also shows a standard GP model learned on this set, which is not able

to explain the data well. The right diagram of the figure shows GP∆, i.e. the resulting er-

ror model, which characterizes the local deviations of the model predictions from the data

points. Based on this model, a second mixture component is initialized and used as input to

the EM algorithm.

The individual diagrams in Fig. 4 illustrate the iterations of the EM algorithm (to be read

from left to right and from top to bottom). They depict the two components of the mixture

model. The learned gating function after convergence of the algorithm is depicted in the left

diagram of Fig. 5. The right diagram in the same figure gives the final GP mixture model. It

is clearly visible that the mixture model better represents this data set than the standard GP

model, which assumes a smooth, uni-modal process (see the left diagram of Fig. 3).

4 Experimental Results

We carried out pollution monitoring experiments in a real-world setting, in which a mobile

robot followed a predefined sweeping trajectory covering the area of interest. Along its path,

the robot was stopped for several seconds, 10 s (outdoors) and 30 s (indoors), at predefined

points to acquire measurements. The spacing between the grid points was set to values
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Fig. 3 Left: The standard GP used to initialize the first mixture component. Right: The error GP used to

initialize the next mixture component.
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Dataset GP GP GP GPM avg GPM avg GPM avg

(SE) (Mat3/2) (Mat5/2) (SE) (Mat3/2) (Mat5/2)

3-rooms -1.22 -1.25 -1.27 -1.50 -1.51 -1.52

corridor -0.98 -1.06 -0.98 -1.58 -1.58 -1.60

outdoor -1.11 -1.17 -1.22 -1.72 -1.88 -1.85

Table 1 Average negative log likelihoods of test data points for different approaches. The results of the

comparison between the GP and the GP mixture model with corresponding covariance functions shown in

this table differ significantly (10 repetitions, α = 5%).

Dataset GP GPM avg GPM

3-rooms -1.22 -1.50 -1.54

corridor -0.98 -1.58 -1.60

outdoor -1.11 -1.72 -1.80

Table 2 Comparison between standard GP (GP), the GP mixture model with averaging (GPM avg) according

to Eq. (8) and Eq. (7), and the GP mixture model with multi-modal estimates (GPM) based on 10 repetitions

(here using the SE covariance function).

between 0.5 m to 2.0 m depending on the topology of the available space, see Fig. 6. In

the experiments, the sweeping motion was performed twice in opposite directions which

allows us to use the second visit for evaluating our predictions. Due to the slow response

of the gas sensors and in order to avoid disturbance to the gas distribution created by the

robot itself, the robot was driven at a maximum speed of 5 cm/s in between the stops. The

gas source was a small cup filled with ethanol and in the experiments, the robot approached

the cup up to a distance of approximatively 0.1 m.

The robot was equipped with a SICK laser range scanner used for pose correction, with

an electronic nose, and an anemometer. The electronic nose is a Figaro TGS 2620 gas sensor

enclosed in an aluminum tube. This tube was mounted horizontally at the front side of the

robot. The electronic nose is actively ventilated through a fan that creates a constant airflow

towards the gas sensor. This lowers the effect of external airflow and the movement of the

robot on the sensor response.

Note that in this work, we concentrate only on the gas concentration measurements and

do not consider the pose uncertainty of the vehicle. One can apply one of the various SLAM

systems available to account for the uncertainty in the robot’s pose [Frese, 2006, Grisetti et

al., 2007, Lilienthal et al., 2007].

4.1 Inspected Environments

Three environments with different properties were selected for the pollution monitoring

experiments. The first experiment, termed 3-rooms, was carried out in an enclosed indoor

area that consists of three rooms which are separated by slightly protruding walls in between

them. The area covered by the robot is approximately 14 m × 6 m. There is little exchange

of air with the “outer world” in this environment. The gas source was placed in the central

room and all three rooms were monitored by the robot. The second location was a part of

a corridor with open ends and a high ceiling. The area covered by the trajectory of the

robot is approximately 14 m × 2 m. The gas source was placed on the floor in the middle

of the investigated corridor segment. Finally, an outdoor scenario was considered. Here, the

experiments were carried out in an 8 m× 8 m region that is part of a much bigger open area.
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Fig. 6 Pictures of the robot inspecting three different environments as well as the corresponding sweeping

trajectories.

low medium high

Fig. 7 Color schema for the gas concentrations visualizations (Matlab default). Gas distribution measure-

ments are always normalized between 0 and 1 given the current set of observations used for learning the

model.

We used the raw sensor readings in all three environments as training sets and applied

our approach to learn the gas distribution models. The robot moved through the environment

twice. We used the first run for learning the model and the second one for evaluating it. To

benchmark our results, we compare against gas distribution models learned using (a) stan-

dard GP regression, (b) a grid-based interpolation approach, and (c) kernel extrapolation.

For the Gaussian process regression, we furthermore analyze the influence of different co-
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Initial, uni-modal model Error model

Means of the mixture components Gating function

GPM mean (3D view) Standard GP mean (3D view)

GPM mean (2D view) Standard GP mean (2D view)

GPM Variance (2D view) Standard GP variance (2D view)

Fig. 8 The 3-rooms dataset with one ethanol gas source in the central room. The room structure itself is not

visualized here. In all plots, blue represents low, yellow reflects medium, and red refers to high values. See

Fig. 7 for the color encoding. The unit of the x- and y-axis is meter.
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variance functions in the obtained results. For the visualizations, we always used the default

Matlab color scheme depicted also in Fig. 7 and normalized the gas concentration measure-

ments obtained to values between zero and one.

4.2 Evaluation

Fig. 8 shows the learned models for the 3-room dataset. The left plot in the first row illus-

trates the mean prediction for the standard GP on the subsampled training set that defines

the first mixture component. The right diagram depicts the error GP representing the differ-

ences between the initial prediction and a set of observations. Based on the error GP, a new

mixture component is initialized and the EM algorithm is carried out. The means of the two

mixture components after convergence are shown in the left diagram of the second row and

the learned gating function is visualized in the adjacent diagram on the right. The left dia-

gram in the third row shows the mean prediction of the final mixture model. As can be seen,

the model consists of a smooth “background” distribution and a peak of gas concentration—

close to the gas source—with a sharp boundary. In contrast to this, the standard GP (right

diagram in the third row) learned using the same data is overly smooth for this dataset, es-

pecially in proximity to the gas source. For both models, the squared exponential covariance

function has been used here.

Table 1 summarizes the negative log likelihoods of the test data (second part of the

dataset, which was not used for training) given our mixture model (GPM) as well as the

standard GP model (GP). As can be seen, our GPM method outperforms the standard GP

model in all settings. A t-test on 10 repeated learning runs revealed that these results are

significant (α = 5%). Two reasons for the increased model accuracy of GPM w.r.t. standard

GPs can be seen in the 2D plots in the last two rows of Fig. 8. First, as already mentioned

before, the standard GP overly smoothes the area close to the gas source and, second, its

variance estimates around the source are too low (since standard GPs assume a constant

noise rate for the whole domain). The table furthermore analyses the results obtained with

different covariance functions. The Matérn kernels perform on average slightly better than

the squared exponential function. This is probably the case because the Matérn kernels are

less smooth which is in line with the nature of the problem addressed in this paper. In

Table 2, we provide two likelihoods for our model, the one given in Eq. (6) (called “GPM”

in the table) and the one computed based on the averaged prediction specified in Eq. (7) and

Eq. (8) (called “GPM avg”).

Fig. 9 visualizes the final results for the corridor experiment for the GPM model (means

of the mixture components in the left diagram and the predictive uncertainty on the right).

The raw dataset from this experiment is plotted in Fig. 1. In this experiment, the area of

high gas concentration was also mapped comparably accurate by the standard GP, but again

the variance close to the area of high gas concentration was too small. This can seen by

comparing the images in the right column of Fig. 9, which show the standard GP results for

different covariance functions in the top three rows and for the GPM below.

By carefully inspecting the results (best viewed in color), one can see slight differences

resulting from the covariance functions. The squared exponential function yields smoother

results than the Matérn kernels which can be seen on the border around the areas of high

concentrations. The results measured by means of the NLPD computed based on separated

test sets over multiple runs illustrate that the GPM models always outperformed the standard

model (see tables). Furthermore, the Matérn kernels seem to be slightly better suited to
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model gas distributions since they are less smooth compared to the squared exponential

function.

Similar results are also obtained in the outdoor dataset. Mean and variance predictions of

the different GP mixture models with different covariance functions are provided in Fig. 10.

The corresponding result of the standard GP including a plot that illustrates the evolution of

the negative log likelihood (NLPD) during sampling of the hyperparameters for the standard

GP model and mixture GP model (SE covariance) is given in Fig. 11.

In all our experiments, we limited the number of data points in the reduced input set

to n1 = 100. The datasets itself contained between 2 500 and 3 500 measurements so our

model was able to make accurate predictions with less than 5% of the data. Matrices of that

size can be easily inverted. As a result the overall computation time for learning our model

including cross validation is around 1 minute for all datasets shown above running Matlab

on a standard laptop computer without explicitly optimized code.

Finally, we compared the mean estimates of our mixture model to the results obtained

with the method of Lilienthal and Duckett [2004] as well as with an often used approach that

uses a grid in combination with linear interpolation like in [Pyk et al., 2006]. The results of

this comparison in terms of the MSE measure are shown in Fig. 12. As can be seen from the

diagram, our method outperforms both alternative methods.

4.3 Distribution Modeling in an Easy Setup

We also tested our gas distribution modeling algorithm with a “smoother” data set. The

electronic nose on the mobile robot is also equipped with a temperature sensor and we used

the temperature measurements as input to the gas distribution modeling algorithm proposed

in this paper. Even so, the obtained measurements were temperature measurements instead

of gas concentration measurements, our approach can be directly applied.

The measurements were recorded along a random sweeping trajectory in a corridor. The

data set indicates a roughly linear gradient in the temperature distribution. In this situation,

we expect that our mixture model should perform similar compared to the standard GP

approach or the kernel extrapolation technique since the simpler techniques are also well

suited to model such a function.

We therefore carried out the modeling task based on the temperature datasets with the

different approaches. Our expectation was actually matched perfectly in this setting. Both

mixture components of our method actually converged to approximatively the same solution

and this model is more or less identical to the one generated by the standard GP approach

as well as to the kernel extrapolation method. All three approaches yield nearly identical

results differing by less than 1%. This holds for the MSE as well as for the NLPD (for GP

and GPM), see Fig. 13. Obviously, the standard GP has a lower computational load than

the mixture approach and thus is preferable if the designer of the system can ensure that no

mixture components are needed to model the data.

5 Related Work

A common approach to creating representations for time-averaged concentration fields is to

acquire measurements using a fixed grid of gas sensors over a long period of time. Equidis-

tant gas sensor locations can be used to directly measure and map the average concentration

values according to a given grid approximation of the environment. This approach was taken
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Standard GP (SE) predictive mean (left) and variance (right)

Standard GP (Matérn 5/2) predictive mean (left) and variance (right)

Standard GP (Matérn 3/2) predictive mean (left) and variance (right)

GP mixture (SE) predictive mean (left) and variance (right)

GP mixture (Matérn 5/2) predictive mean (left) and variance (right)

GP mixture (Matérn 3/2) predictive mean (left) and variance (right)

Fig. 9 Models learned from concentration data recorded in the corridor environment. The gas source was

placed at the location (10, 3). We evaluated the standard GP and the our mixture model all using the different

covariance functions. The unit of the x- and y-axis is meter.
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GPM (SE) predictive mean GPM (SE) predictive variance

GPM (Matérn 5/2) predictive mean GPM (Mat5) predictive variance

GPM (Matérn 3/2) predictive mean GPM (Mat3) predictive variance

Fig. 10 Results for the outdoor dataset in an 8 m by 8 m area with an ethanol source in the center. The

measured airflow indicates a major wind direction approximately from south-east to north-west. The unit of

the x- and y-axis is meter.



18

−8 −6 −4 −2 0

−2

0

2

4

6

−8 −6 −4 −2 0

−2

0

2

4

6

Standard GP predictive mean Standard GP predictive variance

-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6

 0  10  20  30  40  50  60

N
L

P
D

 o
f 

b
es

t 
m

o
d

el

iteration

Standard GP model
Mixture model

Evolution of the NLPD during hyperparameter sampling

Fig. 11 Corresponding results for the outdoor dataset obtained with the standard GP model (top) and the

evolution of the NLPD shown for the first 60 iterations (bottom). The unit of the x- and y-axis in the plots in
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Fig. 12 Experimental comparison of our GP mixture model with different covariance functions to two alter-

native techniques in three real-world settings. The bars show the mean squared error of predicted compared

to the measured concentration on a test set, averaged over 10 runs.
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Fig. 13 Experimental comparison of the GP mixture model (GPM), the standard GP model (GP), and kernel

extrapolation in a simple setting. Top: As expected, all three approaches perform more or less equal. Bottom:

Model learned by the GPM approach (all approaches produced highly similar estimates). The unit of the x-

and y-axis in the plots in the bottom row is meter.

by Ishida et al. [1998]—additionally considering partially simultaneous measurements. A

similar method was used in [Purnamadjaja and Russell, 2005], but instead of the average

concentration, the peak concentration observed during a sampling period of 20 s was con-

sidered to create the map.

Consecutive measurements with a single sensor and time-averaging over 2 minutes for

each sensor location were used by Pyk et al. [2006] to create a map of the distribution of

ethanol. Methods, which aim at determining a map of the instantaneous gas distribution

from successive concentration measurements, rely on the assumption of a time-constant

distribution profile, i.e. on uniform delivery and removal of the gas to be analyzed as well as

on stable environmental conditions. Thus, the experiments of Pyk et al. were performed in

a wind tunnel with a constant airflow and a homogeneous gas source. To make predictions

about locations outside of the directly observed regions, the same authors apply bi-cubic

interpolation in the case of equidistant measurements and triangle-based cubic filtering in

the case, in which the measurement points are not equally distributed. A problem with such

interpolation methods is that there is no means of “averaging out” instantaneous response

fluctuations at measurement locations. Even if response values are measured close to each

other, they will appear independently in the gas distribution map with interpolated values

in between. Consequently, interpolation-based maps tend to become more and more jagged

the more new measurements are added [Lilienthal et al., 2006].

Histogram-based methods approximate the continuous distribution of gas concentration

by means of binning according to regular grids. Hayes et al. [2002] for instance suggest
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using two-dimensional histograms over the number of “odor hits” received in the corre-

sponding area. “Odor hits” are counted whenever the response level of a gas sensor exceeds

a defined threshold. In addition to the dependency of the gas distribution map on the se-

lected threshold, a disadvantage of processing binary information only is that useful infor-

mation contained in the (continuous) sensor readings is discarded. Further disadvantages of

histogram-based methods for gas distribution modeling are their dependency on a properly

chosen bin size and the lack of generalization across bins or beyond the inspection area.

Gas distribution mapping based on kernel extrapolation can be seen as an extension of

the histogram-based approach. The idea was introduced by Lilienthal and Duckett [2004].

In this model, spatial integration is carried out by convolving sensor readings and mod-

eling the information content of the point measurements with a Gaussian kernel. As dis-

cussed in [Lilienthal et al., 2006], this method is related to nonparametric estimation us-

ing Parzen windows. The complexity of model-free approaches for converging to a sta-

ble representation—either in terms of time consumption or the number of sensors—scales

quadratically with the size of the environment.

A model-based approach to estimate concentration maps has been described by Mar-

ques et al. [2005]. In this approach, the work space is discretized into a 2-d regular grid

and the concentration in each cell is represented by a state variable. Using an advection-

diffusion model of chemical transport, a reduced order Kalman filter is applied in order to

estimate the state variables corresponding to the grid cells. According to the assumption of a

non-turbulent transport model, the experimental run presented was carried out in an indoor

environment with artificially introduced laminar airflow of approx. 1.5 m/s. Model-based

approaches have also been applied to infer the parameters of an analytical gas distribution

model from the measurements [Ishida et al., 1998]. They naturally depend on the charac-

teristics of the assumed model. Complex numerical models based on the simulation of fluid

dynamics are computationally expensive and require accurate knowledge of the state of the

environment (boundary conditions) which are typically not available in practice. Simpler an-

alytical models, on the other hand, often make rather unrealistic model assumptions which

hardly fit the real situation. Model-based approaches also rely on well-calibrated gas sensors

and an established understanding of the sensor-environment interaction.

The Kalman filter approach by Marques et al. [2005] provides an estimate of the predic-

tive uncertainty. A related approach is the work by Blanco et al. [2009] in which a Kalman

filter is used for sequential Bayesian estimation on a 2-d grid. Instead of the advection-

diffusion model, a stationary distribution is assumed in the latter work. It is important to

note that the covariance obtained from these two approaches is the covariance of the mean,

which can only decrease as new observations are processed. Since the predictive variance

computed with the algorithm proposed in this paper can adapt to the real variability of the

measurements at each location, its performance in terms of the average negative log likeli-

hood is substantially better than with the approach by Blanco et al. [2009] (personal commu-

nication). We believe that this is also true for the mapping algorithm by Marques et al. [2005]

although the two methods cannot be compared directly due to the strong assumptions on the

environmental conditions by Marques et al.

In contrast to the above-mentioned approaches, we apply a Gaussian process-based mix-

ture model to the problem of learning probabilistic gas distribution maps. The history of

the idea behind the Gaussian process approach to regression dates back to Wiener [1964],

Kolmogoroff [1941], O’Hagan [1978], and others (see [Rasmussen and Williams, 2006,

Sec. 2.8]). For a detailed and quantitative comparison of GPs with alternative approaches

such as neural networks, we refer to [Rasmussen, 1996]. GPs allow us to model the depen-

dencies between measurements by means of a covariance function. They enable us to make
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predictions at locations not observed so far and do not only provide the mean gas distribution

but also the predictive uncertainty. Our mixture model is furthermore able to model sharp

boundaries around areas of high gas concentration. Technically, we build on Tresp’s mixture

model of GP experts (see [Tresp, 2000]) better deal with the varying properties in the data.

Extensions of this technique using infinite mixtures have been proposed by Rasmussen and

Ghahramani [2002] and Meeds and Osindero [2006]. Other model extensions that aim at

increasing the expressiveness of Gaussian processes include, e.g., heteroscedastic GPs for

modeling input-dependent noise [Le et al., 2005, Kersting et al., 2007, Snelson and Ghahra-

mani, 2006b], nonstationary GPs for modeling input-dependent smoothness [Paciorek and

Schervish, 2003, Plagemann et al., 2008, Schmidt and O’Hagan, 2003], or special covari-

ance functions for non-vectorial inputs [Driessens et al., 2006, Collins and Duffy, 2002].

Compared to the latter extensions to the standard GP model, the mixture model approach

can be seen as the natural choice for the gas-mapping task, since the distribution of data

points is multi-modal. Future work, however, could include a quantitative comparison of the

alternative approaches or aim at integrating several of them.

The work presented here extends our previous RSS’2008 paper [Stachniss et al., 2008].

First, we investigated the use of different covariance functions in the GP model for gas distri-

bution mapping. This showed that there are better choices than the previously used squared

exponential covariance function. Second, we extended the experimental section providing a

larger set of experiments. We furthermore identified and evaluated a scenario which is well

designed for the standard GP approach and evaluated the performance of our proposed mix-

ture model. It turned out that in such a situations, designed for the standard GP, our approach

performs equally well.

6 Conclusion

We considered the problem of modeling gas distributions from sensor measurements by

means of sparse Gaussian process mixture models. Gaussian processes are an attractive

modeling technique in this context since they do not only provide a gas concentration esti-

mate for each point in the space but also the predictive uncertainty. Our approach learns a

GP mixture model and simultaneously decreases the computational complexity by reducing

the training set in order to achieve an efficient representation even for a large number of ob-

servations. The mixture model allows us to explicitly distinguish the different components

of the spatial gas distribution, namely areas of high gas concentration from the smoothly

varying background signal. This improves the accuracy of the gas concentration prediction.

Our method has been implemented and tested using gas sensors mounted on a real robot.

With our method, we obtain gas distribution models that better explain the sensor data com-

pared to techniques such as the standard GP regression for gas distribution mapping. Our

approach and the one of Lilienthal and Duckett [2004] provide similar mean gas concen-

tration estimates, their approach as well as the majority of techniques in the field, however,

lack the ability of also estimating the corresponding predictive uncertainties.
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