
Learning Maps in 3D using Attitude and Noisy Vision Sensors

Bastian Steder Giorgio Grisetti Slawomir Grzonka Cyrill Stachniss Axel Rottmann Wolfram Burgard

Abstract— In this paper, we address the problem of learning
3D maps of the environment using a cheap sensor setup which
consists of two standard web cams and a low cost inertial
measurement unit. This setup is designed for lightweight or
flying robots. Our technique uses visual features extracted from
the web cams and estimates the 3D location of the landmarks
via stereo vision. Feature correspondences are estimated using
a variant of the PROSAC algorithm. Our mapping technique
constructs a graph of spatial constraints and applies an efficient
gradient descent-based optimization approach to estimate the
most likely map of the environment. Our approach has been
evaluated in comparably large outdoor and indoor environ-
ments. We furthermore present experiments in which our
technique is applied to build a map with a blimp.

I. INTRODUCTION

In the last decades, the simultaneous localization and

mapping (SLAM) problem has been an active field of

research and effective solutions have been proposed. The

majority of approaches is able to learn 2D maps of large-

scale environments [13]. When moving from 2D to 3D map

learning, the higher dimension of the search space prevents

us to directly apply 2D algorithms to the 3D case. Different

systems for building 3D maps have been proposed [5], [12],

[14] but most of these approaches rely on bulky sensors

having a high range and accuracy (e.g., SICK laser range

finders) which cannot be used on small flying vehicles.

Cameras are an attractive alternative to laser range finders.

Due to their limited weight and low power consumption, they

can be incorporated into a wide class of devices. Existing

approaches that address the vision-based SLAM problem

mainly focus on scenarios in which a robot repeatedly

observes a set of features [4], [11]. They have been shown

to learn accurate feature maps of small-scale environments.

In this paper, we present a system that allows us to

acquire elevation maps of large environments using two

low quality web-cams and a low cost inertial measurement

unit (IMU). Especially the cameras provide comparably low

quality images which are affected by significant motion blur.

Figure 1 illustrates this sensor setup.

Our approach integrates the data coming from the IMU

and the cameras to obtain an estimate of the camera motion

of the 3D position of the features extracted from the image

data. We address the SLAM problem by constructing a graph

of relations between poses. Each node in the graph represents

a camera pose. An edge between two nodes is obtained from

the sensor measurements and encodes the spatial constraints

between two different camera poses. Our systems combines

SURF features [2] with a PROSAC-based technique [3] to

All authors are members of the University of Freiburg, Department of
Computer Science, D-79110 Freiburg, Germany

Fig. 1. Top Left: the sensors used for testing our approach. We assembled
two cheap USB web-cams as a stereo pair and combined it with a XSens
MTi inertial measurement unit. Bottom Left: a typical stereo image used for
constructing the map. Note the significant motion blur affecting the image.
Right: the procedure for acquiring the data. We mounted the sensors with
the cameras looking downwards on a stick and we then walked around the
campus.

identify the correct correspondences between images. Loops

are detected by matching features extracted from the images

recorded from the different locations. The correction step is

carried out using an optimization algorithm. The contribu-

tion of this paper is an approach that enables us to build

highly accurate elevation maps of large environments using

a comparably poor sensor setup. Our system is designed to

work on lightweight flying vehicles.

II. RELATED WORK

The effectiveness of vision-based approaches strongly

depends on the feature extraction algorithms. To this end,

SIFT features [10] represent a robust and popular option but

they require significant computational resources. Compared

to SIFT, SURF features [2] are significantly faster to com-

pute while providing comparably stable feature descriptors.

Therefore, we apply this technique in our work.

Jensfelt et al. [8] proposed an effective way of meeting

the computational constraints imposed by online processing

by combining a SIFT feature extractor and an interest points

tracker. The interest points are obtained by using an Harris

corner extractor. While the SIFT feature extraction can be

performed at low frequency, the movement of the robot is

constantly estimated by tracking the interest points at high

frequency. Andreasson et al. [1] presented a technique that

is based on a local similarity measure for images. They

store reference images at different locations and use these

references as a map. In this way, their approach is reported

to scale well with the size of the environment.

Davison et al. [4] proposed a single camera SLAM

algorithm. The system computes the map by means of a

Kalman filter. A particle filter is applied to initialize the

3D landmarks. The particles estimate the depth information

of the landmarks. The approach does not depend on an

initial odometry estimate and is effective on small scale

environments as well as in situations in which the robot

repeatedly observes the same scene. However, it requires

good quality images. Montiel et al. [11] extended this

framework by proposing an inverse depth parameterization

of the landmarks. Since this parameterization can be better

approximated by a Gaussian, the use of the particle filter in

the initial stage can be avoided.

Other approaches use a combination of inertial sensors

and cameras. For example, Eustice et. al [5] rely on a com-

bination of highly accurate gyroscopes, magnetometers, and

pressure sensors to obtain a good estimate of orientation and

altitude of an underwater vehicle. Based on these estimates,

they construct an accurate global map using an information

filter based on high resolution stereo images.

The work which is closest to our approach is a technique

proposed by Jung et al. [9]. They use a high resolution stereo

camera for building elevation maps with a blimp. The map

consists of 3D landmarks extracted from interest points in

the stereo image obtained by a Harris corner detector and

the map is estimated using a Kalman filter. Due to the

wide field of view and the high quality of the images the

nonlinearities in the process were adequately solved by the

Kalman filter. In contrast to this, our approach is able to deal

with low resolution and low quality images. It is particularly

suitable for mapping indoor environments and for being used

on small size flying vehicles. We furthermore apply a more

efficient error minimization approach [6].

III. MAXIMUM LIKELIHOOD ELEVATION MAP

ESTIMATION

The SLAM problem can be formulated as a graph: the

nodes of the graph represent the poses of the robot along

its trajectory and an edge between two nodes encodes the

pairwise observations. Here, each node xi of the graph

represents a 6D camera pose. An edge between two nodes

i and j is represented by the tuple 〈δji,Ωji〉. δji and Ωji

are respectively the mean and the information matrix of a

measurement made from the node i about the location of the

node j expressed in the reference frame of the node i.
In our system, the information between two poses depends

on the correspondence of the images acquired between the

poses and on the IMU measurements. Once the graph is

constructed, one has to compute the configuration of the

nodes which best explains the observations. This results in

deforming the robot trajectory based on the constraints to

obtain a map.

Such a graph-based maximum likelihood SLAM approach

requires to solve the following sub-problems:

• The construction of the graph based on the sensor input.

• The optimization of the graph so that the likelihood of

the observations is maximized.

The first problem is addressed in this and the two subsequent

sections. A solution to the second problem is then provided

in Section VI.

Our approach relies on visual features extracted from the

images obtained from two down-looking cameras. We use

SURF features [2] instead of SIFT features [10] since they

are significantly faster to compute while providing the same

robustness. A SURF feature is rotation and scale invariant

and is described by a descriptor vector and the position,

orientation, and scale in the image.

In order to build consistent maps, we need to determine

the camera position (x y z φ θ ψ)T given the features in

the current image, a subset of spatially close features in the

map, and the measurements obtained by the IMU.

The IMU provides the orientation of the system in terms

of the Euler angles roll (φ), pitch (θ), and yaw (ψ). Due

to the low quality IMU in combination with the presence

of magnetic disturbances in indoor environments as well as

on real robots, the heading information is highly affected

by noise. In our experiments, we found that the roll and the

pitch observations can directly be integrated into the estimate

whereas the yaw information was too noisy to provide useful

information. This reduces the dimensionality of each pose

that needs to be estimated from R
6 to R

4.

Whenever a new image is acquired, a node xi+1 that

models the new camera pose is added to the graph. The main

challenge is to add the correct edges between xi+1 and other

nodes xj , j ≤ i of the graph. To do so, one has to solve the

so-called data association problem. This means one has to

determine which feature in the current image corresponds

to which feature in the map. Let S = {s1, . . . , sn} refer

to a local map of features that will be matched against

the features F = {f1, . . . , fm} extracted from the current

image. The result of such a matching is a transformation T
which describes the spatial relations between the two sets of

features. In the remainder of this section, we discuss how to

compute the camera pose given the two sets S and F while

the question of how to determine the set S is discussed in

Section V.

IV. THE TRANSFORMATION BETWEEN CAMERA POSES

In this section, we describe how to compute the transfor-

mation of the camera based on the set of observed features

F and the set of map features S.

Given the camera parameters, such a transformation can

be determined by using two corresponding features in the

two sets. This holds only since the attitude of the camera

is known. In order to reduce the effects of outliers, we

select the correspondences by using a consensus algorithm

similar to PROSAC [3]. The main idea of PROSAC is to

construct a prior for sampling the correspondences based on

the distance of the descriptors. In this way, a smaller number

of trials is required to find good candidate transformations

than with the uninformed version of the RANSAC algorithm.

We first determine the possible correspondences based on the

feature descriptors. Subsequently, we select from this set the

correspondences to compute the candidate transformations.

We assign a score based on a fitness function to each

candidate transformation and select the transformation with

the highest score. The next subsections explain our procedure

in detail.

A. Potential Correspondences

For each feature fi in the camera image and each feature

sj in the map, we compute the Euclidian distance dF (fi, sj)
between their descriptor vectors. The distance is used to

compute the set of potential correspondences C = {cij} by

considering only the feature pairs whose distance is below a

given threshold D as

C = {cij = 〈fi, sj〉 | d
F (fi, sj) < D ∧ fi ∈ F ∧ sj ∈ S}.

(1)

For simplicity of notation, we will refer to the elements

of C as c, neglecting the indices i and j. The features

in a correspondence can be retrieved by using the selector

functions f(c) and s(c) so that

c = 〈fi, sj〉 ↔ fi = f(c) ∧ sj = s(c). (2)

A camera transformation is determined by two corre-

spondences ca and cb. Accordingly, the number of possible

transformations is proportional to |C|2. We can limit the

computational load of the approach by sorting the correspon-

dences based on their distances and by considering only the

best N correspondences, where N = 250 in our current

system. Let C ′ be this reduced set. A candidate transfor-

mation Tab is computed for each pair of correspondences

〈ca, cb〉 ∈ C ′ × C ′.

We compute the transformation Tab based on 〈ca, cb〉 as

follows. Assuming the attitude and the internal parameters of

the camera to be known, it is possible to project the segment

connecting the two features on a plane parallel to the ground.

The same is done with the two features in the map. The offset

between the two camera poses along the z axis is determined

using the pinhole camera model. Subsequently, the yaw

between the images is computed as the angle between the

two projections. Finally, x and y can be directly calculated

by matching a pair of corresponding points in the translated

image after applying the yaw correction.

B. Score

The previous step computes a set of candidate transforma-

tions {Tab}. To select the best one, we need to rank them

according to a score. The score of Tab measures the quality

of a matching by considering all potential correspondences

between the feature sets that have not been used for deter-

mining Tab. This set is given by

C̃ab = C − {ca, cb}. (3)

For each ck ∈ C̃ab, we project the associated features f(ck)
and s(ck) in the image, according to Tab. The score v(ck)
of the correspondence ck is the following:

v(ck) = w

(

1 −
dI(f(ck), s(ck))

dI
max

)

+(1−w)dF (f(ck), s(ck)) .

(4)

Here w is a weighting factor, dI(f(ck), s(ck)) is the dis-

tance between the features projected into the image space,

dI
max is the maximum value to accept as a match, and

dF (f(ck), s(ck)) is the distance between the feature descrip-

tors. The overall score of the transformation Tab is the sum

of the individual scores of the correspondences in C̃ab

score(a, b) =
∑

ck∈C̃ab

v(ck). (5)

V. EXTRACTING CONSTRAINTS

The procedure described in the previous sections tells us

how to compute the transformation of the camera given two

sets of features. So far, we left open how the subsets of map

features S is selected. In this section, we explain how to

choose this subset to adequately keep track of the potential

topologies of the environment. The selection of the subset of

features in combination with the approach described in the

previous section, defines the constraints represented by the

edges in the graph.

While incrementally constructing a graph, one can distin-

guish three types of constraints: visual odometry constraints,

localization constraints, and loop closing constraints. Visual

odometry constraints are computed by considering the poten-

tial match between the features in the current image, and a

limited subset of frames acquired from camera poses which

are temporally close to the current one. Localization con-

straints occur when the camera is moving through an already

visited region. In this case, the features in the current map are

selected in a region around the pose estimate obtained from

visual odometry. Finally, loop closing constraints model a

spatial relation between the current frame and a region in the

map which has been seen long time before. In our approach,

we seek to find these different constraints in each step.

A. Visual Odometry

Each time a new image is acquired, we augment the graph

with a new pose that represents the location of the most

recent camera observation. This node is initialized according

to the translation resulting from to the visual odometry.

The visual odometry estimate is obtained by first con-

structing the set So based on the features extracted from the

last M frames and then extracting the best transformation

according to Section IV. Let xk be a node in the graph and

let S(xk) be the set of features which have been observed

by that node. If xi+1 is the current pose, we compute the set

So for determining the visual odometry as

So =

i
⋃

j=i−M

S(xj). (6)

An advantage of this procedure is that it in practice always

finds a good incremental motion estimate. However, due to

the error accumulation the estimate is affected by a drift

which in general grows over time.

B. Localization

When the camera moves through known terrain, it is

possible to determine the constraints by matching the current

features with the ones in the map. This can be done by

localizing the robot in a region around the estimate provided

by the visual odometry. This set of features is computed by

considering all nodes in the graph that are close to the current

node. Note that we ignore the features that are already used

to compute the visual odometry. This procedure is effective

for re-localizing the camera in a small region around the most

recent position. The computational cost depends roughly on

the area spanned by the search.

C. Loop Closing

As a third step, we seek for loop closures. In case the

camera re-enters known terrain after having moved for a long

time in an unknown region, the accumulated uncertainty can

prevent the localization procedure for determining the right

correspondences. Performing the localization procedure on

the whole map is possible in theory. However, this operation

is typically too expensive to be performed online.

Therefore, our algorithm reduces this cost by executing

this search in two passes. At a first level only one feature

in the current image is matched with all the features in

the map, and the descriptors distances are computed. The

reference feature is the one having the highest score when

computing the visual odometry. Subsequently, a localization

is performed around all features whose distance from the

reference feature is below a given threshold. This is clearly

a heuristic but it shows a robust matching behavior in real

world situations. Note that it can happen that this approach

does not find an existing correspondences but it is unlikely

that this leads to a wrong constraint.

VI. GRAPH OPTIMIZATION

Given a constraint between node i and node j, we can

define the error eji introduced by the constraint as

eji = xj − (xi ⊕ δji). (7)

Here ⊕ represents the standard motion composition operator.

At the equilibrium point, eji is equal to 0 since xj = xi⊕δji.

In this case, an observation perfectly matches the current

configuration of the nodes. Assuming a Gaussian observation

error, the negative log-likelihood of an observation Fji is

Fji(x) =
1

2
(xj − (xi ⊕ δji))

T
Ωji (xj − (xi ⊕ δji)) (8)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
1

2

∑

〈j,i〉∈C

eji(x)T Ωjieji(x) (9)

Here C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is a set of pairs of indices

for which a constraint δjmim
exists.

The goal of the optimization phase is to find the configu-

ration x
∗ of the nodes that maximizes the likelihood of the

observations. This can be written as

x
∗ = argmin

x

F (x). (10)

To compute this quantity, we use a variant of the iterative

3D optimization approach presented by Grisetti et al. [6].

Since in our setting the yaw and the pitch of the camera are

known from the IMU, we perform the search in the (x y z ψ)
space only.

During one iteration, the algorithm optimizes the indi-

vidual constraints sequentially. It distributes the error eji

introduced by the constraint over a set of nodes related to

this constraint. Each time a constraint 〈δji,Ωji〉 between the

nodes i and j is optimized, we consider a path on the graph

between the two nodes and modify the configuration of these

nodes in order to reduce the error.

Let xi and xj be the poses of the nodes in the current

configuration. We can compute the error between the two

constraints in the global reference frame according to Eq. 7.

Let Pji = {x(1), x(2), . . . , x(N)} be the a path in the graph

connecting the nodes i and j. Given a node xk, we consider

the number n(k) of constraints affecting the update of the

node. This number can be determined as:

n(k) =
∑

〈j,i〉∈C

{

1 if xk ∈ Pji

0 otherwise
(11)

In practice n(k) is the number of constraints whose paths

constrain the node xk. By assuming the Ωji to be spherical

information matrices, this number represents an approxima-

tion of the stiffness of a node in the network.

We linearly distribute the error between the nodes in

the path. Each of the nodes in the path will receive a

contribution inversely proportional to its stiffness, according

to the following rule:

∆x(k) = −|Pji|

∑j−1
k=1 1/n(k)

∑N

k=1 1/n(k)
· eji. (12)

Here |Pji| is the length of the path, n(k) is the stiffness of

a node computed according to Eq. (11).

Updating a constraint, however, can increase the error

introduced by other constraints. Therefore, we merge the

effects of the individual updates according to a learning rate.

The learning rate decreases each iteration. Accordingly, the

fraction of the error used for updating a constraint decreases

with each iteration. As a consequence, the modification of

the overall network configuration introduced by the update

will be smaller and the nodes of the graph will converge

towards a common equilibrium point, close to a maximum

likelihood configuration. More details can be found in [6],

[7].

VII. EXPERIMENTS

In this section, we present the experiments carried out to

evaluate our approach. We used only real world data which

we recorded with our sensor platform shown in Figure 1 as

well as using a real blimp.

A. Outdoor Environments

In the first experiment, we measured the performance of

our algorithm using data recorded in outdoor environments.

For obtaining this dataset, we mounted our sensor platform

on the tip of a rod to simulate a freely floating vehicle

with the cameras pointing downwards (see Figure 1). We

−20

−10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

y
 [

m
]

x [m]

−10

 0

 10

 20

 30

 40

 50

 60

−10 0 10 20 30 40 50

y
 [

m
]

x [m]

Fig. 2. The left image shows the path of the camera in black and the
matching constraints in gray. The right image shows the corrected trajectory
after applying the optimization technique.

Fig. 3. Perspective view of the textured elevation map of the outdoor
experiment together with two camera images recorded at the corresponding
locations.

walked on a long path around our building over different

types of ground like grass and pavement. The real trajectory

has a length of about 190 m (estimated via Google Earth).

The final graph contains approximately 1400 nodes and

1600 constraints. The trajectory resulting from the visual

odometry is illustrated in the left image of Figure 2. Our

system autonomously extracted data association hypotheses

and constructed the graph. These matching constraints are

colored light blue/gray in the same image. After applying

our optimization technique, we obtained a map in which the

loop has correctly been closed. The corrected trajectory is

shown in the right image of Figure 2. A perspective view of

the textured elevation is depicted in Figure 3.

The length of the trajectory after correction was 208 m

which is an overestimation of approximatively 9% (given the

rough ground truth estimate obtained from Google Earth).

Given that our low cost stereo system has an uncertainty of

around 10 cm at an altitude of 1 m, this is in the bounds of

a consistent map.

This experiment illustrates that our approach is able to

build maps of comparably large environments and that it

is able to find the correct correspondences between the

observations. Note that this is done without real odometry

information compared to wheeled robots. This is possible

even if the camera images are blurry and mainly show grass

and concrete surfaces.

B. Indoor Environments

The second experiment evaluates the performance of our

approach quantitatively in an indoor environment. The data

C B A

E FD

Fig. 4. Top view of the map in the indoor experiment. The top image show
the map estimate based on the visual odometry (before the global correction)
and the lower image depicts it after least square error minimization. The
labels A to F present six landmarks for which we determined the ground
truth location manually and which are used to evaluate the accuracy of our
approach.

TABLE I

ACCURACY OF THE RELATIVE POSE ESTIMATE BETWEEN LANDMARKS

landmarks A-B B-C C-D D-E E-F F-A loop

mean error [m] 0.19 0.27 0.1 0.23 0.2 0.13 1.11
sigma [m] 0.24 0.35 0.12 0.4 0.32 0.15 1.32
error [%] 4.2 6.1 8.1 5.7 4.5 8.6 5.2

was acquired with the same sensor setup as in the previous

experiment. We moved in the corridor of our building which

has a wooden floor. For a better illustration, some objects

were placed on the ground. Note that although the artificial

objects on the ground act as reliable landmarks, they are not

necessary for our algorithm as shown by the first experiment.

Figure 4 depicts the result of the visual odometry (top image)

and the final map after least square error minimization (lower

image). We measured the location of six landmarks in the

environment manually with a measurement tape (up to an

accuracy of approx. 3 cm). The distance in the x coordinate

between neighboring landmarks is 5 m and it is 1.5 m in

the y direction. The six landmarks are labeled as A to F

in the lower image. We used these six known locations to

estimate the quality of our mapping technique. We repeated

the experiment 10 times and measured the relative distance

between them.

Table I summarizes this experiment. As can be seen, the

error of the relative pose estimates is always below 10%

compared to the true difference. The error results mainly

from potential mismatches of features and from the error in

our low quality stereo setup. Given this cheap setup, this is

an accurate estimate for a system lacking sonar, laser range

data, and real odometry information.

C. Experiment using a Blimp

The third experiment was performed using a real flying

vehicle which is depicted in Figure 5. The problem with

the blimp is its limited payload. Therefore, we were unable

to mount the IMU and had only a single camera available

which was pointing downwards. Since only one camera was

Fig. 5. The left image depicts our blimp and the right one example images
received via the analog video transmission link.

-3

-2

-1

 0

 1

-8 -7 -6 -5 -4 -3 -2 -1 0

y
 [

m
]

x [m]

-3

-2

-1

 0

 1

-8 -7 -6 -5 -4 -3 -2 -1 0

y
 [

m
]

x [m]

Fig. 6. The left image illustrates the trajectory recovered by our approach.
Straight lines indicate that the robot re-localized in previously seen parts
of the environment (loop closure). The small loops and the discontinuities
in the trajectory result from assuming the attitude to be identically zero. In
this way changes in tilt and roll were mapped by our algorithm in changes
in x and y. The right image shows the trajectory obtained after applying
our optimization algorithm.

available, the distance information estimated by the visual

odometry can only be determined up to a scale factor. Fur-

thermore, our system had no information about the attitude

of the sensor platform due to the missing IMU. Therefore,

we flew conservative maneuvers only and assumed that the

blimp was flying parallel to the ground. The left image in

Figure 5 shows our blimp in action.

The data from the camera was transmitted via an analog

video link and all processing has been done off board.

Interferences in the image frequently occurred due to the

analog link as illustrated in the right image of Figure 5. In

practice, such noise typically leads to outliers in the feature

matching. The mapped environment is a factory floor of

concrete that provides poor textures which makes it hard

to distinguish the individual features.

Even under these hard conditions, our system worked

satisfactory well. We obtained a comparably good visual

odometry and could extract correspondences between the in-

dividual nodes on the graph. Figure 6 shows the uncorrected

as well as the corrected graph from a top view.

D. Performance

All the experiments have been executed on a 1.8 GHz Pen-

tium dual core laptop computer. The frame rate we typical

obtain for computing the visual odometry and performing the

local search for matching constraints is between 5 and 10 fps.

We use an image resolution of 320 by 240 pixel and we

typically obtain between 50 and 100 features per image. The

exact value, however, depends on the quality of the images.

The time to carry out the global search for matching

constraints increases linearly with the size of the map. In the

first experiment presented in this paper, the frequency with

which the global search for loop closures could be executed

was 1 Hz.

VIII. CONCLUSIONS

In this paper, we presented a mapping system that is

able to build consistent maps of the environment using a

cheap vision-based sensor setup. Our approach integrates

state-of-the-art techniques to extract features, to estimate

correspondences between landmarks, and to perform least

square error minimization. Our system is robust enough to

handle low textured surfaces like large areas of concrete or

lawn. We are furthermore able to deploy our system on a

flying vehicle and to obtain consistent elevation maps of the

ground.

ACKNOWLEDGMENT

This work has partly been supported by the DFG under

contract number SFB/TR-8, within the Research Training

Group 1103 and by the EC under contract number FP6-IST-

34120-muFly, action line: 2.5.2.: micro/nano based subsys-

tems, and FP6-004250-CoSy.

REFERENCES

[1] H. Andreasson, T. Duckett, and A. Lilienthal. Mini-slam: Minimalistic
visual slam in large-scale environments based on a new interpretation
of image similarity. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Rome, Italy, 2007.
[2] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust

features. In Proc. of the European Conf. on Computer Vision (ECCV),
Graz, Austria, 2006.

[3] O. Chum and J. Matas. Matching with PROSAC - progressive sample
consensus. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), Los Alamitos, USA, 2005.
[4] A. Davison, I. Reid, , N. Molton, and O. Stasse. Monoslam:real

time single camera slam. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(6), 2007.
[5] R.M. Eustice, H. Singh, J.J. Leonard, and M.R. Walter. Visually

mapping the RMS Titanic: conservative covariance estimates for
SLAM information filters. Int. Journal of Robotics Research, 25(12),
2006.

[6] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard.
Efficient estimation of accurate maximum likelihood maps in 3d. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), San Diego, CA, USA, 2007.
[7] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proc. of Robotics: Science and Systems

(RSS), Atlanta, GA, USA, 2007.
[8] P. Jensfelt, D. Kragic, and M. Folkesson, J. B jörkman. A framework

for vision based bearing only 3d slam. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Orlando, CA, 2006.
[9] I. Jung and S. Lacroix. High resolution terrain mapping using low

altitude stereo imagery. In Proc. of the Int. Conf. on Computer Vision

(ICCV), Nice, France, 2003.
[10] D.G. Lowe. Distinctibe image features from scale invariant keypoints.

Int. Journal on Computer Vision, 2004.
[11] J.M. Montiel, J. Civera, and A.J. Davison. Unified inverse depth

parameterization for monocular slam. In Proc. of Robotics: Science

and Systems (RSS), Cambridge, Massatchuttes, USA, 2006.
[12] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM

with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[13] S. Thrun. An online mapping algorithm for teams of mobile robots.

Int. Journal of Robotics Research, 20(5):335–363, 2001.
[14] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

