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Abstract— The ability to learn a map of the environment is important

for numerous types of robotic vehicles. In this paper, we address the

problem of learning a visual map of the ground using flying vehicles.

We assume that the vehicles are equipped with one or two cheap down-

looking cameras in combination with an attitude sensor. Our approach is

able to construct a visual map that can later on be used for navigation.

Key advantages of our approach are that it is comparably easy to

implement, that it can robustly deal with noisy camera images, and that it

can operate either with a monocular camera or a stereo camera system.

Our technique uses visual features and estimates the correspondences

between features using a variant of the PROSAC algorithm. This allows

our approach to extract spatial constraints between camera poses which

can then be used to address the SLAM problem by applying graph

methods. Furthermore, we address the problem of efficiently identifying

loop closures. We performed several experiments with flying vehicles

which demonstrate that our method is able to construct maps of large

outdoor and indoor environments.

Index Terms— SLAM, vision, flying vehicles, attitude sensor

I. INTRODUCTION

The problem of learning maps with mobile robots is a large and

active research field in the robotic community. Traditional solutions

to the simultaneous localization and mapping (SLAM) problem focus

on learning 2D maps of large-scale environments [20]. Also different

systems for building 3D maps have been proposed [7, 15, 22].

However, most of these approaches rely on bulky sensors having

a high range and accuracy (e.g., SICK laser range finders) which

cannot be used on robots such as small flying vehicles. As a result,

several researchers focused on utilizing vision sensors instead of laser

range finders. Cameras are an attractive alternative due to their limited

weight and low power consumption. Existing approaches that address

the vision-based SLAM problem mainly focus on scenarios in which

a robot repeatedly observes a set of features [6, 14] and they have

been shown to learn accurate feature maps.

This paper presents a system that allows aerial vehicles to acquire

visual maps of large environments using an attitude sensor and low

quality cameras pointing downwards. Such a setup can be found on

different air vehicles such as blimps or helicopters. Our system deals

with cameras that provide comparably low quality images which are

also affected by significant motion blur. Furthermore, it can operate in

two different configurations: with a stereo as well as with a monocular

camera. If a stereo setup is available, our approach is able to learn

visual elevation maps of the ground. If, however, only one camera

is carried by the vehicle, our system can be applied by making a

flat ground assumption providing a visual map without elevation

information. To simplify the problem, we used an attitude (roll and

pitch) sensor. In our system, we used an XSens MTi IMU, which has

an error below 0.5 degrees. The advantages of our approach is that

it is easy to implement, provides robust pose and map estimates, and

that is suitable for small flying vehicles. Figure 1 depicts our blimp

and helicopter used to evaluate this work as well as an example

camera image obtained with our light-weight camera.

II. RELATED WORK

Building maps with robots equipped with perspective cameras has

received increasing attention in the last decade. Davison et al. [6]
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Fig. 1. Two aerial vehicles used to evaluate our mapping approach as well
as an example image recorded from an on-board camera.

proposed a single camera SLAM algorithm based on a Kalman filter.

The features are initialized by using a particle filter which estimates

their depth. Montiel et al. [14] extended this framework by proposing

an inverse depth parameterization of the landmarks. Since this pa-

rameterization can be better approximated by a Gaussian, the particle

filter can be avoided in the initialization of the features. Subsequently,

Clemente et. al [5] integrated this technique in a hierarchical SLAM

framework which has been reported to successfully build large scale

maps with comparably poor sensors.

Chekhlov et al. [3] proposed an online visual SLAM framework

which uses a SIFT-like feature descriptors and track the 3D motion of

a single camera by using an unscented Kalman filter. The computation

of the features is speeded up by utilizing the estimated camera

position to guess the scale. Jensfelt et al. [10] proposed an effective

way for online mapping applications by combining a SIFT feature

extractor and an interest points tracker. While the feature extraction

can be performed at low frequency, the movement of the robot is

constantly estimated by tracking the interest points at high frequency.

Other approaches utilize a combination of inertial sensors and

cameras. For example, Eustice et. al [7] rely on a combination of

highly accurate gyroscopes, magnetometers, and pressure sensors to

obtain a good estimate for the orientation and altitude of an under-

water vehicle. Based on these estimates, they construct an accurate

global map using an information filter based on high resolution stereo

images. Piniés et al. [17] implemented a SLAM system for hand-held

monocular cameras and employ an IMU to improve the estimated

trajectories. Andreasson et al. [1] presented a technique that is based

on a local similarity measure for images. They store reference images

at different locations and use these references as a map. In this

way, their approach is reported to scale well with the size of the

environment.

Recently, Konolige and Agrawal [12] presented a technique in-

spired by scan-matching with laser range finders. These poses of

the camera are connected by synthetic measurements obtained from

incremental bundle adjustment performed on the images acquired

at these poses, and an optimization procedure is used to find the

configuration of camera poses which is maximally consistent with

the measurement. Our approach uses a similar SLAM formulation

but it computes the synthetic measurements between poses based on

an efficient pairwise frame alignment technique.

Jung et al. [11] proposed a technique which is close to our

approach. They use a high resolution stereo camera for building

elevation maps with a blimp. The map consists of 3D landmarks

extracted from interest points in the stereo image obtained by a Harris

corner detector and the map is estimated using an Extended Kalman

filter. Due to the wide field of view and the high quality of the images,
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Fig. 2. System overview. This paper describes the visual SLAM system
represented by the grayish box.

the non-linearities in the process were adequately solved by the EKF.

In contrast to this, our approach is able to deal with low-resolution

and low-quality images. It is suitable for mapping indoor and outdoor

environments and for operating on small-size flying vehicles. We

furthermore apply a more efficient error minimization approach [8]

than the Kalman filter which is an extension of the work of Olson et

al. [16].

Our previous work [19] focused more on the optimization approach

and neglected the uncertainty of the vehicle when seeking for

loop-closures. In the approach presented in this paper, we consider

this uncertainty and provide a significantly improved experimental

evaluation using real air vehicles.

III. GRAPH-BASED SLAM

In this paper, we address the SLAM problem by using its graph-

based formulation. In this framework, the poses of the robot are de-

scribed by the nodes of a graph. Edges between these nodes represent

spatial constrains between them. They are typically constructed from

observations or from odometry. Under this formulation, a solution to

the SLAM problem is a configuration of the nodes which minimizes

the error introduced by the constraints.

We apply an online variant of the 3D optimization technique

recently presented by Grisetti et al. [8] to compute the maximum

likely configuration of the nodes. Online performance is achieved by

optimizing only the portions of the graph that require updates after

introducing new constraints. Additional speedups result from reusing

previously computed solutions to obtain the current one, as explained

in [9]. Our system can be used as a black box to which one provides

an initial guess of the position of the nodes as well as the edges and

it computes the new configuration of the network (see Figure 2). The

computed solution minimizes the error introduced by contradicting

constraints.

In our approach, each node xi models a 6DoF camera pose. The

spatial constraints between two poses are computed from the camera

images and the attitude measurements. An edge between two nodes

i and j is represented by the tuple 〈δji, Ωji〉, where δji and Ωji

are the mean and the information matrix of the measurement. Let

eji(x) be the error introduced by the constraint 〈j, i〉. Assuming the

independence of the constraints, a solution to the SLAM problem is

given by

x
∗ = argmin

x

X

〈j,i〉

eji(x)T Ωjieji(x). (1)

Our approach relies on visual features extracted from the images

obtained from two down-looking cameras. We use SURF features [2]

which are invariant with respect to rotation and scale. Each feature is

represented by a descriptor vector and the position, orientation, and

scale in the image. By matching features between different images,

one can estimate the relative motion of the camera and thus construct

the graph which serves as input to the optimizer. In addition to that,

the attitude sensor provides the roll and pitch angle of the camera. In

our experiments, we found that the roll and the pitch measurements

are comparably accurate even for low-cost sensors and can be directly

integrated into the estimate. This reduces the dimensionality of each

pose that needs to be estimated from R
6 to R

4.

In this context, the main challenge is to compute the constraints

between the nodes (here camera poses) based on the data from the

camera and the attitude sensor. Given these constraints, the optimizer

processes the incrementally constructed graph to obtain estimates of

the most likely configuration on-the-fly.

IV. SPATIAL RELATION BETWEEN CAMERA POSES

The input to the optimization approach mentioned in the previous

section is a set of poses and constraints between them. In this section,

we describe how to determine such constraints.

As a map, we directly use the graph structure of the optimizer.

Thus, each camera pose corresponds to one node. Additionally, we

store for each node the observed features as well as their 3D positions

relative to the node. The constraints between nodes are computed

from the features associated with the nodes. In general, at least

three pairs of correspondences between image points and their 3D

positions in the map are necessary to compute the camera position

and orientation [18]. However, in our setting we need only two such

pairs since the attitude of the camera is known from the IMU.

In practice, we can distinguish two different situations when

extracting constraints: visual odometry and place revisiting. Odom-

etry describes the relative motion between subsequent poses. To

obtain an odometry estimate, we match the features in the current

image to the ones stored in the previous n nodes. This situation

is easier than place revisiting because the set of potential features

correspondences is relatively small. In case of place revisiting, we

compare the current features with all the features acquired from robot

poses which lie within the 3σ confidence interval given by the pose

uncertainty. This interval is computed with the approach of Tipaldi

et. al [21] and applies covariance intersection on a spanning tree to

obtain conservative estimates of the covariances. Since the number of

features found during place revisiting can be quite high, we introduce

a further approximation in the search procedure. First, we use only

a small number of features from the current image when looking for

potential correspondences. These features are the one which were

better matched when computing visual odometry (which have the

lowest descriptor distance). Second, we apply a kd-tree to efficiently

query for similar features and we use the best-bins-first technique

proposed by Lowe [13].

Every time a new image is acquired, we compute the current pose

of the camera based on both visual odometry and place revisiting

and augment the graph accordingly. The optimization of the graph is

performed only if the computed poses are contradictory.

In the remainder of this section, we first describe how to compute

a camera pose given a pair of known correspondences, and sub-

sequently we describe our PROSAC-like procedure for determining

the best transformation given a set of correspondences between the

features in the current image and another set of features computed

either via visual odometry or place revisiting.

A. Computing a Transformation from Feature Correspondences

In this section, we explain how to compute the transformation of

the camera if we know the 3D position of two features f1 and f2

in the map and their projections i1 and i2 on the current image.

Assuming known camera calibration parameters, we can compute the

projections of the points on the normalized image plane. By using the

attitude measurements from the IMU, we can compute the positions

of these points as they would have been captured from a perfectly

downwards facing camera. Let these transformed positions be i′1, i
′
2.

Subsequently, we compute the altitude of the camera according to

the procedure illustrated in Figure 3, by exploiting the similarity of

triangles. Once the altitude is known, we can compute the yaw of the

camera by projecting the map features f1 and f2 into the same plane



Fig. 3. This figure illustrates how to compute the height of the camera,
given two corresponding features, under known attitude. cam is the camera
position, i′1, i′2 are the projections of the features f1 and f2 on the normalized
image plane, already rotated according to the attitude measured by the IMU.
pp is the principle point of the camera (vertically downwards from the camera)
on the projection plane. pp′ and f ′

1 are the projections of pp and f1 at the
altitude of f2. h is the altitude difference between the camera and f2, and
it can be determined by exploiting the similarity of the triangles {i′1, i′2, pp}
and {f ′

1, f2, pp′}.

as i′1, i
′
2 and then the yaw is the angle between the two resulting lines

on this plane.

Finally, we determine x and y as the difference between the

positions of the map features and the projections of the corresponding

image points, by reprojecting the image features into the map

according to the known altitude and yaw angle.

B. Computing the Best Camera Transformation Based on a set of

Feature Correspondences

In the previous section, we described how to compute the camera

pose given only two correspondences. However, both visual odometry

and place revisiting return a set of correspondences. In the following,

we describe our procedure to efficiently select from the input set

the pair of correspondences for computing the most likely camera

transformation.

We first order these correspondences according to the Euclidean

distance of their descriptor vectors. Let this ordered set be C =
{c1, ..., cn}. Then we select pairs of correspondences in the order

defined by the following predicate:

〈ca1
, cb1〉 < 〈ca2

, cb2〉 ⇔ (b1 < b2 ∨ (b1 = b2 ∧ a1 < a2))

∧ a1 < b1 ∧ a2 < b2. (2)

In this way, the best correspondences (according to the descrip-

tor distance) are used first but the search procedure will not get

stuck for a long time in case of false matches with low descriptor

distances. This is illustrated in the following example: assume that

the first correspondence c1 is a false match. Our selection strategy

generates the sequence 〈c1, c2〉 , 〈c1, c3〉 , 〈c2, c3〉 , 〈c1, c4〉 , 〈c2, c4〉 ,

〈c3, c4〉 ..... A pair without the false match 〈c2, c3〉 will be selected

in the third step. A more naive selection strategy will try first all pairs

of correspondences 〈c1, cx〉 with c1 in the first position, and results

in a less efficient search.

Only pairs that involve different features are used. The corre-

sponding transformation Tca,cb
is then determined for the current

pair (see section IV-A). This transformation is then evaluated based

on the other features in both sets using a score function, which is

presented in the next subsection. The process can be stopped, when a

transformation with a satisfying score is found or when a timeout is

reached. The solution with the highest score is returned as the current

assumption for the transformation.

C. Evaluating a Camera Transformation

In the previous sections, we explained how to compute a camera

transformation based on two pairs of corresponding features, and

how to select those pairs from two input sets of features. By using

different pairs, we can compute a set of candidate transformations.

In this section, we explain how to evaluate them and how to choose

the best one among them.

To select the best transformation, we rank them according to a

score function. The score is computed by projecting the features in

the map into the current camera image and by then comparing the

distance between the feature positions in the image. The score is

given by

score(Tca,cb
) =

X

{i | i/∈{a,b}}

v(ci). (3)

In this equation, the function v(ci) is defined as the weighted sum of

the relative displacement of the corresponding features in the current

image and the Euclidean distance of their feature descriptors:

v(ci) = 1 −

»

α
ddesc(ci)

ddesc
max

+ (1 − α)
dimg(ci)

d
img
max

–

(4)

In the sum of Eq. (3), we consider only those feature correspondences

ci whose distances dimg(ci) in the image and distances ddesc(ci) in

the descriptor space are smaller than the thresholds dimg
max and ddesc

max

introduced in Eq. (4). This prevents single outliers from leading to

overly bad scores.

More in detail, dimg
max is the maximum distance in pixels between the

original and the re-projected feature. In our experiments this value

was set to 2 pixels for images of 320×240 pixels. The higher the

motion blur in the image the larger this value should be set. The

minimum value depends on the accuracy of the feature extractor.

Increasing this threshold also allows the matching procedure to return

less accurate solutions for the position estimation. The blending

factor α mixes the contribution of the descriptor distance and the re-

projection error. The more distinct the features, are the higher alpha

can be chosen. In all our experiments, we set α = 0.5. The value

ddesc
max has been manually tuned. When using 64-dimensional SURF

descriptors we had good results by setting this threshold to values

around 0.3. The lower the quality of the image, the higher ddesc
max

should be chosen.

Note that the technique to identify the correspondences between

images is similar to the PROSAC [4] algorithm which is a variant

of RANSAC. PROSAC takes into account a quality measure of the

correspondences while sampling, conversely RANSAC draws the

samples uniformly. We use the distance between feature descriptors as

a quality measure. In our variant of PROSAC, the correspondences

are selected deterministically. Since we only need two correspon-

dences to compute the camera transformation, the chances that the

algorithm gets stuck due to wrong correspondences are very small.

After identifying the transformation between the current pose of

the camera and a node in the map, we can directly add a constraint to

the graph. In the subsequent iteration of the optimizer, the constraint

is thus taken into account when computing the updated positions of

the nodes.

V. EXPERIMENTS

In this section, we present the experiments carried out to evaluate

our approach. We used only real world data which we partially

recorded with a sensor platform carried in the hand of a person

as well as with a real blimp and a helicopter (see Figure 1).

In all experiments our system was running at 5 to 15 hertz on

a 2.4 GHz Dual-core. Videos of the experiments can be down-

loaded at http://www.informatik.uni-freiburg.de/

˜steder/homepage/videos.
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Fig. 4. The left image shows the path of the camera in black and the
matching constraints in gray. The right image shows the corrected trajectory
after applying the optimization technique.

Fig. 5. The left image shows a perspective view of the map of the outdoor
experiment together with two camera images recorded at the corresponding
locations. The right one shows a person with the sensor platform mounted on
a rod to simulate a freely floating vehicle.

A. Outdoor Environments

In the first experiment, we measured the performance of our

algorithm using data recorded in outdoor environments. Since even

calm winds outside buildings prevent us from making outdoor ex-

periments with our blimp or our small size helicopter, we mounted

a sensor platform on the tip of a rod and carried this by hand to

simulate a freely floating vehicle. This sensor platform is equipped

with two standard Web cams (Logitech Communicate STX). The

person carried the platform along a long path around a building over

different types of ground like grass and pavement. The trajectory has

a length of about 190 m. The final graph contains approximately 1400

nodes and 1600 constraints. The trajectory resulting from the visual

odometry is illustrated in the left image of Figure 4. Our system

autonomously extracted data association hypotheses and constructed

the graph. These matching constraints are colored light blue/gray

in the same image. After applying our optimization technique, we

obtained a map in which the loop has been closed successfully.

The corrected trajectory is shown in the right image of Figure 4.

A perspective view, which also shows the elevations, is depicted in

Figure 5.

This experiment illustrates that our approach is able to build maps

of comparably large environments and that it is able to find the correct

correspondences between observations. Note that this result has been

achieved without any odometry information and despite the fact that

the cameras are of low quality and that the images are blurry due to

the motion and mostly show grass and concrete.

B. Statistical Experiments

The second experiment evaluates the performance of our approach

quantitatively in an indoor environment. The data was acquired with

the same sensor setup as in the previous experiment. We moved

in the corridor of our building which has a wooden floor. For a

statistical evaluation of the accuracy of our approach, we placed

artifical objects on the ground at known locations. We measured

their locations manually with a measuring tape (up to an accuracy

of approximately 3 cm). The distance in the x coordinate between

neighboring landmarks is 5 m and 1.5 m in the y direction. The six

Fig. 6. Top view of the map of the indoor experiment. The image shows
the map after least square error minimization. The labels A to F present six
landmarks for which we determined the ground truth location manually to
evaluate the accuracy of our approach.

TABLE I

ACCURACY OF THE RELATIVE POSE ESTIMATE BETWEEN LANDMARKS

landmarks A-B B-C C-D D-E E-F F-A loop

mean error [m] 0.18 0.26 0.11 0.20 0.21 0.12 1.10
sigma [m] 0.21 0.32 0.12 0.39 0.3 0.15 1.25
error [%] 3.6 5.2 7.3 4.0 4.2 8.0 4.8

landmarks are labeled A to F in Figure 6. We used these six known

locations as ground truth, which allowed us to measure the accuracy

of our mapping technique. Figure 6 depicts a resulting map after

applying the least square error minimization approach. We repeated

the experiment 10 times and measured the relative distance between

them.

Table I summarizes this experiment. As can be seen, the error of

the relative pose estimates is always below 8% and typically around

5% compared to the true difference. This results mainly from the

error in our self-made and comparably low quality stereo setup. To

our opinion, this is an accurate estimate for a system consisting of

two cheap cameras and an IMU, lacking sonar, laser range data, and

real odometry information.

C. Experiments with a Blimp

The third experiment is also a statistical analysis carried out with

our blimp. The blimp has only one camera looking downwards.

Instead of the stereo setup, we mounted a sonar sensor to measure

its altitude. Furthermore, no attitude sensor was available and we

therefore assumed the roll and pitch angle to be zero (which is an

acceptable approximation given the smooth motion of a blimp). We

placed two landmarks on the ground with a distance of 5 m and flew

10 times over the scene. The mean estimated distance between the

two landmarks was 4.91 m with a standard deviation of 0.11 m. Thus,

the real position was within the 1σ interval.

The next experiment in this paper is designed to illustrate that such

a visual map can be used for navigation. We constructed the map

shown in Figure 7 with our blimp. During this task, the blimp was

instructed to return always to the same location and was repeatedly

pushed away several meters. The blimp was always able to register its

current camera image against the map constructed so far and in this

way kept track of its location relative to the map. This enabled the

controller of the blimp to steer the air vehicle to the desired location.

The experiment lasted 18 min and the blimp recorded during that time

around 10,800 images. The robot processed around 500,000 features

and the map was constructed online.

D. Experiments with a Light-weight Helicopter

We finally mounted an analog RF-camera on our light-weight

helicopter depicted in Figure 1. This helicopter is not equipped with

an attitude sensor nor with a sonar sensor to measure its altitude.

Since neither stereo information nor the elevation of the helicopter

is known, the scale of the visual map was determined by a known

size of one landmark (a book lying on the ground). Furthermore, the

attitude was assumed to be zero which is a quite rough approximation
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Fig. 7. Map constructed by the blimp. The ground truth distance between
both landmarks is 5 m and the estimated distance was 4.91 m with 0.11 m
standard deviation (10 runs). The map was used to autonomously steer the
blimp to user specified locations.

Fig. 8. A person pushes the blimp away. The blimp is able to localize itself
and navigate back using the map shown in Figure 7 (see video material).

Fig. 9. Visual map build with a helicopter overlayed on a 2D grid map
constructed from laser range finder data recorded with a wheeled robot.

for a helicopter. We recorded a dataset by flying the helicopter and

overlayed the resulting map with an occupancy grid map recorded

from laser range data with a wheeled robot. Figure 9 depicts the

result. The red and green crosses indicate the same locations in the

occupancy grid map and the visual map. Even under the hard sensory

limitations, our approach was able to estimate its position in a quite

accurate manner. The helicopter flew a distance of around 35 m and

the map has an error in the landmark locations that varies between

20 cm and 60 cm.

VI. CONCLUSIONS

In this paper, we presented a robust and practical approach to

learn visual maps based on down looking cameras and an attitude

sensor. Our approach applies a robust feature matching technique

based on a variant of the PROSAC algorithm in combination with

SURF features. The main advantages of the proposed methods are

that it can operate with monocular or with a stereo camera system,

that it is easy to implement, and that it is robust to noise in the camera

images.

We presented a series of real world experiments carried out with

a small-size helicopter, a blimp, and by manually carrying a sensor

platform. Different statistical evaluations of our approach show its

ability to learn consistent maps of comparably large indoor and

outdoor environments. We furthermore illustrated that such maps can

be used for navigation tasks of air vehicles.
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